Chemometric Profiling and Bioactivity of Verbena (Aloysia citrodora) Methanolic Extract from Four Localities in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Methanolic Extract Preparation
2.3. HPLC-PDA-ESI-MS/MS Analysis
2.4. Determination of Total Polyphenol, Flavonoid and Condensed Tannin Contents
2.5. Antioxidant Activity
2.6. Antimicrobial Assay
2.7. Anti-Inflammatory Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Methanolic Extract Composition
3.1.1. Identification of Phenolic Compounds
3.1.2. Phenolic Composition of Methanolic Lemon Verbena Extracts
3.2. Phenolic Contents of Methanolic Lemon Verbena Extracts
3.3. Antioxidant Activity
3.4. Antibacterial Activity
3.5. Antifungal Activity
3.6. Anti-Inflammatory Activity
3.7. Principle Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Monteiro, J.M.; Albuquerque, U.P.; Lins Neto, E.M.; Araújo, E.L.; Albuquerque, M.M.; Amorim, E.L. The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) brenan. Rev. Bras. Farmacogn. 2006, 16, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Santos, S.C.; Costa, W.F.; Batista, F.; Santos, L.R.; Ferri, P.H.; Ferreira, H.D.; Seraphin, J.C. Seasonal variation tannins in barks of barbatimao. Rev. Bras. Farmacogn. 2006, 16, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Krishnaiah, D.; Sarbatly, R.; Bono, A. Phytochemical antioxidants for health and medicine—A move towards nature. Biotechnol. Mol. Biol. Rev. 2007, 1, 97–104. [Google Scholar]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Fernández-Ochoa, Á.; de la Luz Cádiz-Gurrea, M.; Arráez-Román, D.; Segura-Carretero, A. Optimized extraction of phenylpropanoids and flavonoids from lemon verbena leaves by supercritical fluid system using response surface methodology. Foods 2020, 9, 931. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Marzo, N.; Lozano-Sánchez, J.; Cádiz-Gurrea, M.L.; Herranz-López, M.; Micol, V.; Segura-Carretero, A. Relationships between chemical structure and antioxidant activity of isolated phytocompounds from lemon verbena. Antioxidants 2019, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Infusions and decoctions of mixed herbs used in folk medicine: Synergism in antioxidant potential. Phytother. Res. 2011, 25, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, M.; Serravalle, L.; Nadra, M.C.M.; Saad, A.D. Antioxidant capacity and antibacterial activity of phenolic compounds from argentinean herbs infusions. Food Control. 2010, 21, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Maliki, I.; Almehdi, A.M.; El Moussaoui, A.; Abdel-Rahman, I.; Ouahbi, A. Phytochemical screening and the antioxidant, antibacterial and antifungal activities of aqueous extracts from the leaves of Lippia triphylla planted in Morocco. Moroc. J. Chem. 2020, 8, 2943–2956. [Google Scholar]
- Amin, B.; Noorani, R.; Razavi, B.M.; Hosseinzadeh, H. The effect of ethanolic extract of Lippia citrodora on rats with chronic constriction injury of neuropathic pain. Cell J. 2018, 19, 528–536. [Google Scholar] [PubMed]
- Etemad, L.; Zafari, R.; Seyed, A.M.; Vahdati-Mashhadian, N.; Skouei Shirvan, Z.; Hosseinzadeh, H. Teratogenic effect of verbascoside, main constituent of Lippia citrodora leaves, in mice. Iran J. Pharm. Res. 2016, 15, 521–525. [Google Scholar] [PubMed]
- Bahramsoltani, R.; Rostamiasrabadi, P.; Shahpiri, Z.; Marques, A.M.; Rahimi, R.; Farzaei, M.H. Aloysia citrodora Paláu (Lemon verbena): A review of phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 222, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Carnat, A.; Carnat, A.P.; Fraisse, D. The aromatic and polyphenolic composition of lemon verbena tea. Fitoterapia 1999, 70, 44–49. [Google Scholar] [CrossRef]
- Sartoratto, A.; Machado, A.L.M.; Delamerlina, C. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Wernert, M.F.; Wagner, M.L.; Gurni, A.A. Estudio de polifenoles de infusiones y cocimientos de hojas de “Cedrón” (Aloysia citrodora Palau) y “Poleo” (Lippia turbinata Griseb.)–Verbenaceae. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2009, 84, 308–311. [Google Scholar]
- El-Hawary, S.S.; Yousif, M.F.; Abdel Motaal, A.A.; Abd-El Hamid, L.M. Bioactivities, phenolic compounds and in-vitro propagation of Lippia citriodora Kunth cultivated in Egypt. Bull. Fac. Pharm. Cairo Univ. 2012, 50, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bilia, A.R.; Giomi, M.; Innocent, M.; Gallori, S.; Vincier, F.F. HPLC-DAD- ESI-MS analysis of the constituents of aqueous preparations of verbena and Lemon verbena and evaluation of the antioxidant activity. J. Pharm. Biomed. Anal. 2008, 46, 463–470. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Rezig, L.; Saada, M.; Trabelsi, N.; Tammar, S.; Limam, H.; Bettaieb Rebey, I.; Smaoui, A.; Sghaier, G.; Del Re, G.; Ksouri, R.; et al. Chemical composition, antioxidant and antimicrobial activities of Aloysia triphylla L. essential oils and methanolic extract. Ital. J. Food Sci. 2019, 31, 556–572. [Google Scholar]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Mau, J.L.; Chao, G.R.; Wu, K.T. Antioxidant properties of methanolic extracts from several ear mushrooms. J. Agric. Food Chem. 2001, 49, 5461–5467. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six Bioactivities, phenolic compounds and in-vitro propagation of Lippia citriodora Kunth cultivated in Egypt isomers of dicaffeoylquinic acid by LC-MS n. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Nebehaj, E.; Albert, L. Antioxidant properties and detailed polyphenol profiling of European hornbeam (Carpinus betulus L.) leaves by multiple antioxidant capacity assays and high-performance liquid chromatography/multistage electrospray mass spectrometry. Ind. Crop. Prod. 2016, 87, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, W.; Salvaterra, P.M. Functional analysis and tissue-specific expression of Drosophila Na+, K+-ATPase subunits. J. Neurochem. 1998, 71, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Amezouar, F.; Hsaine, M.; Bourhim, N.; Fougrach, H. Évaluation des activités antioxydante et anti-inflammatoire de Erica arborea L. du Maroc. J. Pathol. Biol. 2013, 61, 254–258. [Google Scholar] [CrossRef]
- Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Rguez, S.; Ben Slimene, I.; Abid, G.; Hammemi, M.; Kefi, A.; Elkahoui, S.; Ksouri, R.; Hamrouni Sellami, I.; Djebali, N. Tetraclinis articulata essential oil reduces Botrytis cinerea infections on tomato. Sci. Hortic. 2020, 266, 109291. [Google Scholar] [CrossRef]
- Fehlberg, L.C.C.; Gianinni Nicoletti, A.; Ramos, A.C.; Rodrigues-Costa, F.; Pereira de Matos, A.; Girardello, R.; Andrade Marques, E.; Gales, A.C. In vitro susceptibility of Burkholderia cepacia complex isolates: Comparison of disk diffusion, Etest®, agar dilution, and broth microdilution methods. Diagn. Microbiol. Infect. Dis. 2016, 86, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Schröter, D.; Neugart, S.; Schreiner, M.; Grune, T.; Rohn, S.; Ott, C. Amaranth’s 2-caffeoylisocitric acid—An anti-inflammatory caffeic acid derivative that impairs NF-κB signaling in LPS-challenged RAW 264.7 macrophages. Nutrients 2019, 11, 571. [Google Scholar] [CrossRef] [Green Version]
- Borra, R.C.; Lotufo, M.A.; Gagioti, S.M.; de Mesquita Barros, F.; Andrade, P.M. A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz. Oral Res. 2009, 23, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Griess, P. Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt, Ueber einige Azoverbindungen. Ber. Dtsch. Chem. Ges. 1879, 12, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Kelebek, H. LC-DAD–ESI-MS/MS characterization of phenolic constituents in Turkish black tea: Effect of infusion time and temperature. Food Chem. 2016, 204, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Sun, J.; Shi, H.; Yu, L.L.; Ridge, C.D.; Mazzola, E.P.; Okunji, C.; Iwu, M.M.; Michel, T.K.; Chen, P. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res. Int. 2017, 99, 755–761. [Google Scholar] [CrossRef]
- Funes, L.; Laporta, O.; Cerdán-Calero, M.; Micol, V. Effects of verbascoside, a phenylpropanoid glycoside from lemon verbena, on phospholipid model membranes. Chem. Phys. Lipids 2010, 163, 190–199. [Google Scholar] [CrossRef]
- Liu, X.; Huang, K.; Ziran, N.; Dan, M.; Bo, Z. Protective effect of isochlorogenic acid B on liver fibrosis in non-alcoholic steatohepatitis of mice. Basic Clin. Pharmacol. Toxicol. 2019, 124, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Gong, X.B.; Huang, L.G.; Wang, Z.X.; Wan, R.Z.; Zhang, P.; Zhang, Q.Y.; Chen, Z.; Zhang, B.S. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget 2017, 8, 30723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Cheurfa, M.; Allem, R. Evaluation of antioxidant activity of different extracts of Aloysia triphylla leaves (L’Herit.) from Algeria in vitro. Phytotherapy 2016, 14, 181–187. [Google Scholar] [CrossRef]
- Choupani, M.; Delouee, S.A.; Alami, M. Antioxidant properties of various solvent extracts of lemon verbena (Lippia Citrodora) leaves. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 494–500. [Google Scholar]
- Vinha, A.F.; Soares, M.O.; Castro, A.; Santos, A.; Oliveira Maria, P.P.B.; Machado, M. Phytochemical characterization and radical scavenging activity of aqueous extracts of medicinal plants from Portugal. Eur. J. Med. Plants 2012, 2, 335–347. [Google Scholar] [CrossRef]
- Babili, F.E.; Babili, M.E.L.; Souchard, J.P.; Chatelain, C. Culinary decoctions: Spectrophotometric determination of various polyphenols coupled with their antioxidant activities. Pharm. Crop. 2013, 4, 15–20. [Google Scholar] [CrossRef]
- Kumar, N.K.; Kumar, K.S.; Raman, B.V.; Reddy, I.B.; Ramarao, M.; Rajagopal, S.V. Antibacterial activity of Lippia citrodora a folklore plant. J. Pure Appl. Microbiol. 2008, 2, 249–252. [Google Scholar]
- Bazzaz, B.S.F.; Khameneh, B.; Ostad, M.R.Z.; Hosseinzadeh, H. In vitro evaluation of antibacterial activity of verbascoside, lemon verbena extract and caffeine in combination with gentamicin against drug-resistant Staphylococcus aureus and Escherichia coli clinical isolates. Avicenna J. Phytomed. 2018, 8, 246. [Google Scholar]
- Ali, I.; Sharma, P.; Suri, K.A.; Satti, N.K.; Dutt, P.; Afrin, F.; Khan, I.A. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J. Med. Microbiol. 2011, 60, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Nikonorova, A.; Egorov, C.A.; Galikina, T.G.; Grishin, E.V.; Babakov, A.V. Antifungal activity of phenolic glicozide verbascoside from Plantago major seeds. Mikol. Fitopatol. 2009, 43, 52–57. [Google Scholar]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Lenoir, L.; Rossary, A.; Joubert-Zakeyh, J.; Vergnaud-Gauduchon, J.; Farges, M.C.; Fraisse, D.; Texier, O.; Lamaison, J.L.; Vasson, M.P.; Felgines, C. Lemon verbena infusion consumption attenuates oxidative stress in dextran sulfate sodium-induced colitis in the rat. Digest. Dis. Sci. 2011, 56, 3534–3545. [Google Scholar] [CrossRef] [PubMed]
- Nayaka, H.B.; Londonkar Ramesh, L.; Umesh Madire, K.; Tukappa, A. Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, Y.; Baba, T.; Sasaki, T.; Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents 2015, 46, 666–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Zhang, L.; Zhang, H.; Li, X.; Wang, Y.; Xia, F.; Wang, B.; Cai, R.; Guo, Z.; Zhang, Y.; et al. An ointment consisting of the phage lysin LysGH15 and apigenin for decolonization of methicillin-resistant Staphylococcus aureus from skin wounds. Viruses 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendota, S.; Aderogba, M.A.; Van Staden, J. In vitro antimicrobial activity of extracts and an isolated compound from Boscia albitrunca leaves. S. Afr. J. Bot. 2015, 96, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Mechri, B.; Tekaya, M.; Attia, F.; Hammami, M.; Chehab, H. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Plant Physiol. Biochem. 2020, 156, 178–191. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Hammami, M.; Chehab, H. Root verbascoside and oleuropein are potential indicators of drought resistance in olive trees (Olea europaea L.). Plant Physiol. Biochem. 2019, 141, 407–414. [Google Scholar] [CrossRef]
- Funes, L.; Fernández-Arroyo, S.; Laporta, O.; Pons, A.; Roche, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Micol, V. Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chem. 2009, 117, 589–598. [Google Scholar] [CrossRef]
- Gonçalves, S.; Grevenstuk, T.; Martins, N.; Romano, A. Antioxidant activity and verbascoside content in extracts from two uninvestigated endemic Plantago spp. Ind. Crop. Prod. 2015, 65, 198–202. [Google Scholar] [CrossRef]
- Vertuani, S.; Beghelli, E.; Scalambra, E.; Malisardi, G.; Copetti, S.; Dal Toso, R.; Baldisserotto, A.; Manfredini, S. Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules 2011, 16, 7068–7080. [Google Scholar] [CrossRef] [PubMed]
Bioclimatic Zone | Longitude | Latitude | Elevation (m) | Mean Rainfall (mm/year) | Soil | |
---|---|---|---|---|---|---|
Kairouan | Upper Arid | 10°05′46″ E | 36°27′21″ N | 122 | 287 | Sandy |
Gabes | Middle Arid | 10°05′53″ E | 33°52′53″ N | 299 | 223 | Sandy |
Boussalem | Interior Sub-Humid | 8°46′48″ E | 36°30′04″ N | 143 | 537 | Clay |
Belli | Upper Semi-Arid | 10°44′15″ E | 36°27′21″ N | 14 | 326 | Clay |
Peak | Rt (min) | λmax (nm) | [M-H]− (m/z) | Production (m/z) | Tentative Identification |
---|---|---|---|---|---|
1 | 11.17 | 326 | 335 | 179 | Caffeoylshikimic acid |
2 | 14.08 | 273 | 305 | 289 | Catechin-gallate |
3 | 16.02 | 326 | 515 | 353 | 3,4-Di-caffeoylquinic acid |
4 | 16.7 | 326 | 515 | 353 | 3,5-di-caffeoylquinic acid |
5 | 24.26 | 249, 289, 331 | 623 | 461 | Acteoside |
6 | 25.46 | 249, 289, 331 | 623 | 461 | Isoacteoside |
7 | 27.83 | 281, 325 | 651 | 475 | Martynoside |
8 | 39.44 | 337 | 299 | - | Diosmetin |
9 | 40.72 | 339 | 269 | - | Apigenin |
Peak Area (%) | ||||||
---|---|---|---|---|---|---|
Phenolic Compound | Belli | Gabes | Boussalem | Kairouan | p | |
1 | Caffeoylshikimic acid | 0.64 c ± 0.03 | 0.85 b ± 0.04 | 0.95 a ± 0.05 | 0.53 d ± 0.03 | 0.001 *** |
2 | Catechin-gallate | 0.88 b ± 0.04 | 0.86 b ± 0.04 | 0.96 ab ± 0.05 | 1.01 a ± 0.05 | 0.034 * |
3 | 3,4-di-caffeoylquinic acid | 4.81 a ± 0.24 | 1.05 b ± 0.05 | 4.85 a ± 0.24 | 0.86 b ± 0.04 | 0.001 *** |
4 | 3,5-di-caffeoylquinic acid | 1.28 b ± 0.06 | 0.86 c ± 0.04 | 1.55 a ± 0.08 | 0.67 c ± 0.03 | 0.001 *** |
5 | Acteoside | 76.07 b ± 3.8 | 76.15 b ± 3.81 | 83.54 a ± 4.18 | 81.94 a ± 4.1 | 0.001 *** |
6 | Isoacteoside | 4.35 ab ± 0.22 | 4.19 b ± 0.21 | 4.70 a ± 0.24 | 4.55 a ± 0.23 | 0.021 * |
7 | Martynoside | 5.32 bc ± 0.27 | 5.85 b ± 0.3 | 5.59 b ± 0.28 | 8.18 a ± 0.41 | 0.001 *** |
8 | Diosmetin | 4.58 a ± 0.23 | 4.04 ab ± 0.2 | 3.21 c ± 0.16 | 3.83 b ± 0.19 | 0.01 ** |
9 | Apigenin | 1.66 b ± 0.08 | 2.35 a ± 0.12 | 1.05 bc ± 0.05 | 1.44 b ± 0.07 | 0.001 *** |
Total flavonoids (mg CE/g DW) | 27.53 b ± 1.03 | 37.20 a ± 1.36 | 39.86 a ± 0.64 | 38.86 a ± 0.49 | 0.000 *** | |
Total Polyphenols (mg GAE/g DW) | 12.75 c ± 0.13 | 11.66 c± 0.12 | 29.16 a ± 0.30 | 25.50 b ± 0.26 | 0.000 *** | |
Tannins (mg CE/g DW) | 0.03 ab ± 0.01 | 0.02 c ± 0.01 | 0.04 a ± 0.01 | 0.04 a ± 0.01 | 0.002 ** |
Collecting Regions | Synthetic Standard | p | |||||
---|---|---|---|---|---|---|---|
Belli | Boussalem | Gabes | Kairouan | BHT | Ascorbic Acid | ||
DPPH IC50 (µg/mL) | 14.52 b ± 1.01 | 12.71 d ± 0.24 | 14.90 a ± 0.83 | 13.13 c ± 0.91 | 17 ± 0.41 | - | 0.001 *** |
ABTS IC50 (µg/mL) | 7.62 ab ± 1.05 | 4.54 c ± 1.13 | 8.10 a ± 1.12 | 5.61 c ± 0.92 | 16 ± 1.18 | - | 0.001 *** |
RP IC50 (µg/mL) | 15.24 b ± 1.06 | 10.37 b ± 1.33 | 16.02 a ± 1.15 | 11.24 c ± 1.07 | - | 4 ± 0.12 | 0.001 *** |
Regions | Antibiotic | ||||||
---|---|---|---|---|---|---|---|
Belli | Gabes | Boussalem | Kairouan | Gentamicine | p | ||
Gram + | |||||||
S. aureus | IZ | 13 a ± 2 | 10.33 bc ± 1 | 11 b ± 1 | 10.33 bc ± 2 | 22 ± 2 | 0.001 *** |
MIC | 0.25 ± 0.20 | 0.05 ± 0.01 | |||||
L. monocytogenes | IZ | 26 b ± 1 | 25 bc ± 2 | 23 c ± 2 | 32.5 a ± 2 | 39 ± 3 | 0.001 *** |
MIC | 0.92 ± 0.06 | 0.05 ± 0.01 | |||||
E. faecalis | IZ | 12 b ± 1 | 15 a ± 2 | 16 a ± 2 | 16.33 a ± 1 | 15 ± 1.85 | 0.04 * |
MIC | 1 ± 0.23 | 0.05 ± 0.01 | |||||
Gram − | |||||||
E. coli | IZ | 11 a ± 1 | 9.5 a ± 1 | 10 a ± 1 | 10.33 a ± 1 | 29 ± 2 | 0.52 NS |
MIC | 0.43 ± 0.01 | 0.1 ± 0.42 | |||||
P. aeuroginosa | IZ | 9 c ± 1 | 11.33 b ± 1 | 14 a ± 1 | 11.5 b ± 1 | 19 ± 2.21 | 0.001 *** |
MIC | 1.2 ± 0.38 | 0.86 ± 2.21 | |||||
S. arizonae | IZ | 15.5 ab ± 2 | 17.33 a ± 1 | 11 c ± 1 | 13 b ± 1 | 27.01 ± 2.7 | 0.001 *** |
MIC | 1.33 ± 0.15 | 0.85 ± 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tammar, S.; Salem, N.; Aidi Wannes, W.; Limam, H.; Bourgou, S.; Fares, N.; Dakhlaoui, S.; Hammami, M.; Khammassi, S.; Re, G.D.; et al. Chemometric Profiling and Bioactivity of Verbena (Aloysia citrodora) Methanolic Extract from Four Localities in Tunisia. Foods 2021, 10, 2912. https://doi.org/10.3390/foods10122912
Tammar S, Salem N, Aidi Wannes W, Limam H, Bourgou S, Fares N, Dakhlaoui S, Hammami M, Khammassi S, Re GD, et al. Chemometric Profiling and Bioactivity of Verbena (Aloysia citrodora) Methanolic Extract from Four Localities in Tunisia. Foods. 2021; 10(12):2912. https://doi.org/10.3390/foods10122912
Chicago/Turabian StyleTammar, Sonia, Nidhal Salem, Wissem Aidi Wannes, Hajer Limam, Soumaya Bourgou, Nedia Fares, Sarra Dakhlaoui, Majdi Hammami, Saber Khammassi, Giovanni Del Re, and et al. 2021. "Chemometric Profiling and Bioactivity of Verbena (Aloysia citrodora) Methanolic Extract from Four Localities in Tunisia" Foods 10, no. 12: 2912. https://doi.org/10.3390/foods10122912
APA StyleTammar, S., Salem, N., Aidi Wannes, W., Limam, H., Bourgou, S., Fares, N., Dakhlaoui, S., Hammami, M., Khammassi, S., Re, G. D., Hessini, K., & Msaada, K. (2021). Chemometric Profiling and Bioactivity of Verbena (Aloysia citrodora) Methanolic Extract from Four Localities in Tunisia. Foods, 10(12), 2912. https://doi.org/10.3390/foods10122912