Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Feed Emulsions
Emulsion Characterization
2.3. Production of Microparticles
2.4. Analysis of Encapsulated Oregano Essential Oil
2.4.1. Total and Surface Oil Determination
2.4.2. Determination of Oil Retention and Encapsulation Efficiency
2.4.3. Gas Chromatographic Analysis of the Major Constituents of the Encapsulated OEO
2.5. Physicochemical Characterization of the Spray Dried Particles
2.5.1. Moisture Content
2.5.2. Bulk Density
2.5.3. Reconstitution Properties
2.5.4. Hygroscopicity
2.6. Scanning Electron Microscopy
2.7. Fourier-Transform Infrared Spectroscopy Analysis
2.8. Determination of the Antibacterial Activity of the Spray Dried Particles
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Feed Emulsions
3.2. Powder Recovery, Oil Retention and Encapsulation Efficiency
3.3. Composition of Oregano Essential Oil before and after Encapsulation
3.4. Physicochemical Characterization of the Spray Dried Particles
3.5. Scanning Electron Microscopy (SEM)
3.6. FTIR Analysis
3.7. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OEO | oregano essential oil |
NSD | nano spray drying |
WPI | whey protein isolate |
MD | maltodextrin |
EO | essential oil |
DE | dextrose equivalent |
PDI | polydispersity index |
TO | total oil content |
SO | surface oil content |
OR | oil retention |
EE | encapsulation efficiency |
SMP | skim milk powder |
MSD | conventional/mini spray drying |
MS | modified starch |
GA | gum Arabic |
References
- Majeed, H.; Bian, Y.-Y.; Ali, B.; Jamil, A.; Majeed, U.; Khan, Q.F.; Iqbal, K.J.; Shoemaker, C.F.; Fang, Z. Essential oil encapsulations: Uses, procedures, and trends. RSC Adv. 2015, 5, 58449–58463. [Google Scholar] [CrossRef]
- Asensio, C.M.; Paredes, A.J.; Martin, M.P.; Allemandi, D.A.; Nepote, V.; Grosso, N.R. Antioxidant stability study of oregano essential oil microcapsules prepared by spray-drying. J. Food Sci. 2017, 82, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Arana-Sánchez, A.; Estarrón-Espinosa, M.; Obledo-Vázquez, E.N.; Padilla-Camberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett. Appl. Microbiol. 2010, 50, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Sivropoulou, A.; Papanikolaou, E.; Nikolaou, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Partheniadis, I.; Vergkizi, S.; Lazari, D.; Reppas, C.; Nikolakakis, I. Formulation, characterization and antimicrobial activity of tablets of essential oil prepared by compression of spray-dried powder. J. Drug Deliv. Sci. Technol. 2019, 50, 226–236. [Google Scholar] [CrossRef]
- Botrel, D.A.; Vilela Borges, S.; Victória de Barros Fernandes, R.; Dantas Viana, A.; Maria Gomes da Costa, J.; Reginaldo Marques, G. Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil. Int. J. Food Sci. Technol. 2012, 47, 2289–2296. [Google Scholar] [CrossRef]
- Baranauskaite, J.; Ivanauskas, L.; Masteikova, R.; Kopustinskiene, D.; Baranauskas, A.; Bernatoniene, J. Formulation and characterization of Turkish oregano microcapsules prepared by spray-drying technology. Pharm. Dev. Technol. 2016, 22, 792–803. [Google Scholar] [CrossRef]
- Da Costa, J.M.G.; Borges, S.V.; Hijo, A.A.C.T.; Silva, E.K.; Marques, G.R.; Cirillo, M.Â.; De Azevedo, V.M. Matrix structure selection in the microparticles of essential oil oregano produced by spray dryer. J. Microencapsul. 2013, 30, 717–727. [Google Scholar] [CrossRef]
- Toledo Hijo, A.A.C.; Da Costa, J.M.G.; Silva, E.K.; Azevedo, V.M.; Yoshida, M.I.; Borges, S.V. Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. J. Food Process. Engin. 2015, 38, 1–10. [Google Scholar] [CrossRef]
- Baranauskaite, J.; Kopustinskiene, D.M.; Bernatoniene, J. Impact of gelatin supplemented with gum Arabic, Tween 20, and β-cyclodextrin on the microencapsulation of Turkish oregano extract. Molecules 2019, 24, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranauskiene, R.; Venskutonis, P.R.; Dewettinck, K.; Verhé, R. Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Res. Int. 2006, 39, 413–425. [Google Scholar] [CrossRef]
- Rodríguez, J.; Martín, M.J.; Ruiz, M.A.; Clares, B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int. 2016, 83, 41–59. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohyd. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Dávila-Rodríguez, M.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M.T. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. Lwt—Food Sci. Technol. 2019, 112, 108247. [Google Scholar] [CrossRef]
- Gonçalves da Rosa, C.G.; Zapelini de Melo, A.P.; Sganzerla, W.G.; Machado, M.H.; Nunes, M.R.; Maciel, M.V.D.O.B.; Bertoldi, F.C.; Manique Barreto, P.L. Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocoll. 2020, 99, 105339. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Yilmaz, A.; Akman, P.K.; Bozkurt, F.; Dertli, E.; Basahel, A.; Al-Sasi, B.; Taylan, O.; Sagdic, O. Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innov. Food Sci. Emerg. Technol. 2019, 52, 166–178. [Google Scholar] [CrossRef]
- Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): Synthesis and characterization of the inclusion complexes. Bioengineering 2017, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Nava, R.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M.T. Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying. Food Hydrocoll. 2020, 109, 106077. [Google Scholar] [CrossRef]
- De Medeiros, J.A.S.; Blick, A.P.; Galindo, M.V.; Alvim, I.D.; Yamashita, F.; Ueno, C.T.; Shirai, M.A.; Grosso, C.R.F.; Corradini, E.; Sakanaka, L.S. Incorporation of oregano essential Oil microcapsules in starch-poly (Butylene Adipate Co-Terephthalate) (PBAT) films. Macromol. Symp. 2019, 383, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhou, W.; Pang, C.; Deng, W.; Xu, C.; Wang, X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019, 295, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Heng, D.; Ng, W.K.; Chan, H.K.; Tan, R.B.H. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharm. 2011, 403, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C. A novel laboratory-scale spray dryer to produce nanoparticles. Dry. Technol. 2012, 30, 1113–1121. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Terán-Figueroa, Y.; Espinosa-Solis, V.; Alvarez-Salas, C.; Saavedra-Leos, M. Encapsulation of active ingredients in food industry by spray-drying and encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes 2020, 8, 889. [Google Scholar] [CrossRef]
- Stavra, K.; Plati, F.; Pavlidou, E.; Paraskevopoulou, A. Characterization of lemon juice powders produced by different drying techniques and carrier materials. Dry. Technol. 2021, 1–12. [Google Scholar] [CrossRef]
- Heng, D.; Lee, S.H.; Ng, W.K.; Tan, R.B. The nano spray dryer B-90. Expert Opin. Drug Deliv. 2011, 8, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.K.; Lee, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J. Microcapsul. 2008, 25, 549–560. [Google Scholar] [CrossRef]
- de Barros Fernandes, R.V.; Silva, E.K.; Borges, S.V.; de Oliveira, C.R.; Yoshida, M.I.; da Silva, Y.F.; do Carmo, E.L.; Azevedo, V.M.; Botrel, D.A. Proposing novel encapsulating matrices for spray-dried ginger essential oil from the whey protein isolate-inulin/maltodextrin blends. Food Bioprocess. Technol. 2017, 10, 115–130. [Google Scholar] [CrossRef]
- Botrel, D.A.; de Barros Fernandes, R.V.; Borges, S.V.; Yoshida, M.I. Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res. Int. 2014, 62, 344–352. [Google Scholar] [CrossRef]
- Campelo, P.H.; do Carmo, E.L.; Zacarias, R.D.; Yoshida, M.I.; Ferraz, V.P.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Effect of dextrose equivalent on physical and chemical properties of lime essential oil microparticles. Ind. Crops Prod. 2017, 102, 105–114. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Hu, Q.; Gerhard, H.; Upadhyaya, I.; Venkitanarayanan, K.; Luo, Y. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. Int. J. Biolog. Macromol. 2016, 87, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Veneranda, M.; Hu, Q.; Wang, T.; Luo, Y.; Castro, K.; Madariaga, J.M. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT—Food Sci. Technol. 2018, 89, 596–603. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Hanlidou, E.; Lanaras, T. Essential oil composition of greek (Origanum vulgare ssp. hirtum) and turkish (O. onites) oregano: A tool for their distinction. J. Essent. Oil Res. 2004, 16, 334–338. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, Association of Official Analytical Chemist, 19th ed.; AOAC International: Washington, DC, USA, 2012. [Google Scholar]
- Plati, F.; Matsakidou, A.; Kiosseoglou, V.; Paraskevopoulou, A. Development of a dehydrated dressing-type emulsion with instant powder characteristics. Food Struct. 2019, 20, 100–110. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Andriotis, E.G.; Papi, R.M.; Paraskevopoulou, A.; Achilias, D.S. Synthesis of d-limonene loaded polymeric nanoparticles with enhanced antimicrobial properties for potential application in food packaging. Nanomaterials 2021, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B 2011, 84, 163–171. [Google Scholar] [CrossRef]
- Shamaei, S.; Seiiedlou, S.S.; Aghbashlo, M.; Tsotsas, E.; Kharaghani, A. Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innov. Food Sci. Emerg. Technol. 2017, 39, 101–112. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. A new technique for spray drying orange juice concentrate. Innov. Food Sci. Emerg. Technol. 2010, 11, 342–351. [Google Scholar] [CrossRef]
- Kausadikar, S.; Gadhave, A.D.; Waghmare, J. Microencapsulation of lemon oil by spray drying and its application in flavour tea. Adv. Appl. Sci. Res. 2015, 6, 69–78. [Google Scholar]
- Victória, R.; Fernandes, D.B.; Borges, S.V.; Botrel, A.; Silva, E.K.; Maria, J.; Botrel, A.; Silva, E.K.; Maria, J.; Queiroz, F.; et al. Microencapsulation of rosemary essential oil: Characterization of particles. Dry. Technol. 2013, 3937. [Google Scholar] [CrossRef]
- Koupantsis, T.; Pavlidou, E.; Paraskevopoulou, A. Glycerol and tannic acid as applied in the preparation of milk proteins—CMC complex coavervates for flavour encapsulation. Food Hydrocoll. 2016, 57, 62–71. [Google Scholar] [CrossRef]
- Tavares, L.; Noreña, C.P.Z. Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization. Food Bioprocess. Technol. 2020, 13, 1405–1420. [Google Scholar] [CrossRef]
- Kang, Y.R.; Lee, Y.K.; Kim, Y.J.; Chang, Y.H. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem. 2019, 272, 337–346. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Castro, M.A.; Ayala-Zavala, J.F.; Muñoz-Castellanos, L.; Hernández-Ochoa, L.; Peydecastaing, J.; Durrieu, V. β-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: Preparation, physicochemical and antimicrobial characterization. Food Packag. Shelf Life 2017, 14, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Lboutounne, H. Sustained ex vivo skin antiseptic activity of chlorhexidine in poly (e-caprolactone) nanocapsule encapsulated form and as a digluconate. J. Control. Release 2002, 82, 319–334. [Google Scholar] [CrossRef]
Samples | OEO | WPI | MD | Powder Recovery 1 (%) |
---|---|---|---|---|
WM | 5 | 10 | 10 | 81.58 ± 1.78 b |
W3M | 5 | 5 | 15 | 77.93 ± 1.51 a |
WPI:MD | ||
---|---|---|
1:1 | 1:3 | |
Total oil content (%) | 10.98 ± 0.29 b | 9.88 ± 0.36 a |
Surface oil content (%) | 0.21 ± 0.03 a | 0.93 ± 0.16 b |
Oil retention (%) | 54.88 ± 1.44 b | 49.39 ± 1.80 a |
Encapsulation efficiency (%) | 98.06 ± 0.29 b | 90.58 ± 1.48 a |
Moisture (%) | 9.23 ± 0.65 a | 8.19 ± 0.37 a |
Bulk density (g/cm3) | 0.17 ± 0.01 a | 0.20 ± 0.01 b |
Hygroscopicity (%) | 14.76 ± 0.09 a | 15.78 ± 0.99 a |
Dispersibility (%) | 57.10 ± 1.62 a | 64.17 ± 1.84 b |
Wettability (min) | 7.28 ± 0.20 b | 5.19 ± 0.07 a |
OEO Encapsulated in | |||
---|---|---|---|
Pure OEO | WPI:MD | WPI:3MD | |
Total | Total | ||
Myrcene | 1.50 ± 0.06 | nd | nd |
α-terpinene | 1.66 ± 0.05 | nd | nd |
γ-terpinene | 5.20 ± 0.19 b | 2.74 ± 0.07 a | 2.94 ± 0.79 a |
p-cymene | 6.06 ± 0.21 b | 2.33 ± 0.33 a | 2.41 ± 0.30 a |
β-caryophyllene | 2.17 ± 0.03 a | 4.31 ± 0.05 b | 4.44 ± 0.56 b |
Terpinen-4-ol | 0.52 ± 0.07 b | 0.21 ± 0.03 a | 0.29 ± 0.12 a |
Thymol | 1.38 ± 0.00 b | 1.29 ± 0.00 a | 1.28 ± 0.04 a |
Carvacrol | 80.03 ± 0.35 a | 86.64 ± 0.30 b | 86.05 ± 1.82 b |
Others | 1.48 ± 0.14 a | 2.48 ± 0.05 b | 2.59 ± 0.35 b |
Inhibition Zone Diameter (mm) 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WM | W3M | ||||||||||
Sample weight (mg) | 25 | 50 | 75 | 100 | 125 | 25 | 50 | 75 | 100 | 125 | |
OEO in test discs (mg) | 2.75 | 5.49 | 8.24 | 10.98 | 13.73 | 2.47 | 4.94 | 7.11 | 9.88 | 12.35 | |
E. coli | t = 0 | 42.3 ± 3.8 b | 31.7 ± 1.5 a | 31.0 ± 1.0 a | 30.3 ± 1.5 a | 30.0 ± 2.0 a | 41.3 ± 1.5 c | 37.0 ± 2.0 b | 36.7 ± 1.5 a,b | 33.0 ± 2.0 a | 34.0 ± 2.7 a,b |
t = 1 month | 50.7 ± 2.1 b | - | 46.0 ± 1.7 a | - | - | 51.7 ± 2.9 a | - | 47.3 ± 2.3 a | - | - | |
S. aureus | t = 0 | 51.0 ± 1.0 c | 43.7 ± 1.5 b | 38.3 ± 3.1 a | 36.7 ± 1.2 a | 36.3 ± 0.6 a | 48.7 ± 3.1 d | 44.0 ± 2.0 b,c | 44.7 ± 1.5 c | 40.3 ± 1.5 a,b | 37.0 ± 1.7 a |
t = 1 month | 51.7 ± 2.9 b | - | 47.0 ± 2.0 a | - | - | 54.0 ± 3.6 b | - | 48.0 ± 2.6 a | - | - | |
Pure OEO | Pure OEO | ||||||||||
OEO in test discs (mg) | 2.75 | 8.24 | 2.47 | 7.11 | |||||||
E. coli | 34.3 ± 3.8 a | 35.0 ± 1.0 a | 39.7 ± 2.5 a | 38.7 ± 1.5 a | |||||||
S. aureus | 44.7 ± 1.5 a | 45.7 ± 2.1 a | 46.0 ± 1.7 a | 45.7 ± 1.2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plati, F.; Papi, R.; Paraskevopoulou, A. Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique. Foods 2021, 10, 2923. https://doi.org/10.3390/foods10122923
Plati F, Papi R, Paraskevopoulou A. Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique. Foods. 2021; 10(12):2923. https://doi.org/10.3390/foods10122923
Chicago/Turabian StylePlati, Fotini, Rigini Papi, and Adamantini Paraskevopoulou. 2021. "Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique" Foods 10, no. 12: 2923. https://doi.org/10.3390/foods10122923