Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Human Milk Bank Quality Management System
2.2. Human Milk Collection and Receipt by the Milk Bank
2.3. Pre-Pasteurization Risk Assessment and Input Microbiological Control
2.4. Processing and Post-Pasteurization Microbiological Evaluation
2.5. Design of the Experiment
2.5.1. Analysis of the Presence of B. cereus in PBM
2.5.2. Seasonal Prevalence of B. cereus
2.5.3. Quantitative Post-Pasteurization Bacteriological Evaluation of B. cereus Positive Milk
2.5.4. Enterotoxin Production Assessment
3. Results
3.1. Basic Characteristic of Human Milk Bank Donation and Processing Activities
3.2. Results of the Pre-Pasteurization (Input) Bacteriological Control
3.3. Results of Post-Pasteurization Control
The Spectrum of Bacterial Isolates
3.4. Assessment of the Seasonal Prevalence of B. cereus
3.5. Results of the B. cereus Quantitative Post-Pasteurization Evaluation
3.6. Results of the Enterotoxin Production Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilliard, N.J.; Schelonka, R.L.; Waites, K.B. Bacillus cereus bacteremia in preterm neonate. J. Clin. Microbiol. 2003, 41, 3441–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decousser, J.W.; Ramarao, N.; Duport, C.; Dorval, M.; Bourgeois-Nicolaos, N.; Guinebretière, M.H.; Razafimahefa, H.; Doucet-Populaire, F. Bacillus cereus and severe intestinal infections in preterm neonates. Putative role of pooled breast milk. Am. J. Infect. Control. 2013, 41, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Ministry for Primary Industries. Risk Profile: Bacillus Cereus in Dairy Products. MPI Technical Paper No. 2016/58. Available online: http://www.mpi.govt.nz/news-and-recources/publications/ (accessed on 11 November 2021).
- International Dairy Federation. Bacillus Cereus in Milk and Dairy Products. IDF Factsheet-December 2016. Available online: https://www.fil-idf.org (accessed on 11 November 2021).
- Vidic, J.; Chaix, C.; Manzano, M.; Heyndrickx, M. Food Sensing: Detection of Bacillus cereus Spores in Dairy Products. Biosensors 2020, 25, 15. [Google Scholar] [CrossRef] [Green Version]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha-Pimienta, J.; Martillanes, S.; Ramirez, R.; Parra, J.G.; Delgado, J. Bacillus cereus spores and Staphylococcus aureus sub. Aureus vegetative cell´s inactivation in human milk by high-pressure processing. Food Control 2020, 113, 107212. [Google Scholar] [CrossRef]
- Proroga, Y.T.R.; Capuano, F.; Castellano, S.; Giordano, A.; Mansuci, A.; Delibato, E.; Dumontet, S.; Pasqual, V. Occurrence and toxin gene profile of Bacillus cereus in dairy products. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 58–62. [Google Scholar] [CrossRef]
- Ramarao, N.; Belotti, L.; Deboscker, S.; Ennahar-Vuillemin, M.; de Launay, J.; Lavigne, T.; Koebel, C.; Escande, B.; Guinebretière, M.H. Two unrelated episodes of Bacillus cereus bacteremia in a neonatal intensive care unit. Am. J. Infect. Control 2014, 42, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Demers-Mathieu, V.; Mathijssen, G.; Fels, S.; Chace, D.H.; Medo, E. Impact of vaccination during pregnancy and staphylococci concentration on the presence of Bacillus cereus in raw human milk. J. Perinatol. 2020, 40, 1323–1330. [Google Scholar] [CrossRef]
- Manickam, N.; Knorr, A.; Muldrew, K.L. Neonatal meningoencephalitis caused by Bacillus cereus. Pediatr. Infect. Dis. J. 2008, 27, 843–846. [Google Scholar] [CrossRef]
- Frankard, J.; Li, R.; Taccone, F.; Struelens, M.J.; Jacobs, F.; Kentos, A. Bacillus cereus pneumonia in a patient with acute lymphoblastic leukemia. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 725–728. [Google Scholar] [CrossRef]
- Lequin, M.H.; Vermeulen, J.R.; van Elburg, R.M.; Barkhof, F.; Kornelisse, R.F.; Swarte, R.; Govaert, P.P. Bacillus cereus meningoencephalitis in preterm infants: Neuroimaging characteristics. AJNR Am. J. Neuroradiol. 2005, 26, 2137–2143. [Google Scholar]
- Wiedermann, B.L. Non-anthrax Bacillus infections in children. Pediatr. Infect. Dis. J. 1987, 6, 218–220. [Google Scholar]
- France info. Le Lactarium d’Ile-de-France Suspend la Distribution de Lait Maternel Issu Dedons, Après la Mort Suspecte de Deux Nourrissons. Available online: http://www.francetvinfo.fr/sante/enfant-ado/lactarium-de-necker-aucune-preuve-de-contamination-du-lait-a-ce-stade_1810531.html (accessed on 19 January 2017).
- Lewin, A.; Quach, C.; Rigourd, V.; Picaud, J.C.; Perreault, T.; Frange, P.; Domingo, M.C.; Lalancette, C.; Delage, G.; Germain, M. Bacillus cereus infection in neonates and the absence of evidence for the role of banked human milk: Case reports and literature review. Infect. Control. Hosp. Epidemiol. 2019, 40, 787–793. [Google Scholar] [CrossRef]
- Guinebretiere, M.H.; Nguyen-The, C. Sources of Bacillus cereus contamination in a pasteurized zucchini purée processing line, differentiated by two PCR-based methods. FEMS Microbiol. Ecol. 2003, 43, 207–215. [Google Scholar] [CrossRef]
- Sarita Kumari, P.K.S. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 2016, 69, 20–29. [Google Scholar] [CrossRef]
- Glasset, B.; Herbin, S.; Granier, S.A.; Cavalié, L.; Lafeuille, E.; Guérin, C.; Ruimy, R.; Casagrande-Magne, F.; Levast, M.; Chautemps, M.; et al. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE 2018, 13, e0194346. [Google Scholar]
- Cormontagne, D.; Rigourd, V.; Vidic, J.; Rizzotto, F.; Bille, E.; Ramarao, N. Bacillus cereus Induces Infections in Preterm Neonates: Implication at the Hospital and Human Milk Bank Level. Toxins 2021, 13, 123. [Google Scholar] [CrossRef]
- Lima, H.K.; Wagner-Gillespie, M.; Perrin, M.T.; Fogleman, A.D. Bacteria and Bioactivity in Holder Pasteurized and Shelf-Stable Human Milk Products. Curr. Dev. Nutr. 2017, 1, e001438. [Google Scholar] [CrossRef]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef] [Green Version]
- Demazeau, G.; Plumecocq, A.; Lehours, P.; Martin, P.; Couëdelo, L.; Billeaud, C. A New High Hydrostatic Pressure Process to Assure the Microbial Safety of Human Milk While Preserving the Biological Activity of Its Main Components. Front. Public Health. 2018, 6, 306. [Google Scholar] [CrossRef]
- Fournier, S.; Faraut-Derouin, V.; Casetta, A.; Frange, P.; Doit, C.; Fortineau, N.; Romain, O.; Patkai, J.; Chillaz, C.; Rigourd, V.; et al. Bactériémies à Bacillus cereus en réanimation néonatale à l’AP-HP en 2016. Bull. Epidémiol. Hebd. BEH 2018, 25, 536–540. [Google Scholar]
- Měřička, P.; Houska, M.; Landfeld, A.; Čermák, M. Quantitative assessment of microbiological risk in processing and application of the pasteurized frozen human milk. In Proceedings of the ICR2003, IIR/IIF, International Congress of Refrigeration, Washington, DC, USA, 17–22 August 2003. paper No. ICR0645. [Google Scholar]
- Weaver, G.; Bertino, E.; Gebauer, C.; Grovslien, A.; Mileusnic-Milenovic, R.; Arslanoglu, S.; Barnett, D.; Boquien, C.Y.; Buffin, R.; Gaya, A.; et al. Recommendations for the Establishment and Operation of Human Milk Banks in Europe: A Consensus Statement from the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. The Guide to the Quality and Safety of Organs for Transplantation, 4th ed.; European Directorate for the Quality of Medicines & HealthCare (EDQM): Strasbourg, France, 2019; pp. 327–332. [Google Scholar]
- The European Pharmacopoeia (Ph. Eur.) 6.0. 2612 Microbiological Testing of Non-Sterile Products and Water by Direct Inoculation on Agar; Council of Europe: Strasbourg, France, 2008; pp. 4398–4404. [Google Scholar]
- INFOMET. Information Web of the ČHMÚ (Czech Hydrometeorological Institute-Governmental Agency). Available online: http://www.infomet.cz/ (accessed on 11 November 2021).
- Thermo Fisher Scientific. BCET RPLA Toxin Detection Kit. Available online: http://www.oxoid.com/uk/blue/prod_detail/prod_detail.asp?pr=TD0950&org=9&c=uk&lang=en (accessed on 3 October 2020).
- Mullie, C.; Obin, O.; Outurquin, G.; Grognet, S.; Léké, A.; Adjidé, C. Breast milk donations: Bacteriological assessment, analysis of causes of non-compliance and suggestions for improvement. Arch. Pediatr. 2018, 25, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Saleh-Lakha, S.; Leon-Velarde, C.G.; Chen, S.; Lee, S.; Shannon, K.; Fabri, M.; Downing, G.; Keown, B. A Study To Assess the Numbers and Prevalence of Bacillus cereus and Its Toxins in Pasteurized Fluid Milk. J. Food Prot. 2017, 80, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Landfeld, A.; Strohalm, J.; Kýhos, K.; Průchová, J.; Houška, M.; Novotná, P.; Schlemmerová, L.; Šmuhařová, H.; Špelina, V.; Čermák, P.; et al. High pressure inactivation of Enterococcus faecium—Modelling and verification. Czech J. Food Sci. 2009, 27, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Dewitte, C.; Courdent, P.; Chartier, C.; Dumoulin, D.; Courcol, R.; Pierrat, V. Contamination du lait maternel par une flore aériobie: Évaluation des pertes pour un lactarium. Arch. Pediatr. 2015, 22, 461–467. [Google Scholar] [CrossRef]
- Schlemmerová, L.; Houška, M.; Špelina, V.; Strohalm, J.; Landfeld, A.; Měřička, P. Baroinactivation of Staphylococcus epidermidis–mathematical model and its verification using human and cow milk. Czech J. Food Sci. 2009, 27, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Gaya, A.; Calvo, J. Improving pasteurization to preserve the biological components of donated human milk. Front. Pediatr. 2018, 6, 288. [Google Scholar] [CrossRef]
- Čermák, P.; Landfeld, A.; Měřička, P.; Houška, M. Enterococcus faecium growth Model. Czech J. Food Sci. 2009, 27, 361–371. [Google Scholar] [CrossRef] [Green Version]
Standards | Exclusion Criteria |
---|---|
French legislation | Total bacteria ≥ 105 CFU/mL |
Italian guidelines | Staphylococcus aureus > 104 CFU/mL |
French legislation | Staphylococcus coagulase-positive ≥ 104 CFU/mL |
Australian guidelines | Any enterobacteriaceae, enterococci, or potential pathogens capable of producing heat-stable enterotoxins |
Year | Total Amount of Collected Milk (L) | Milk from External Donors [%] | Milk from Hospitalized Donors [%] |
---|---|---|---|
2017 | 1630.05 | 16.68 | 83.32 |
2018 | 1454.65 | 6.35 | 93.65 |
2019 | 1597.30 | 14.45 | 85.55 |
2020 | 2133.71 | 36.90 | 63.10 |
Year | Total Number of Input Tests | Total Bacteria ≥ 105 CFU/mL | Staphylococcus aureus > 104 CFU/mL |
---|---|---|---|
2017 | 11 | 1 | 0 |
2018 | 29 | 0 | 1 |
2019 | 22 | 0 | 0 |
2020 | 10 | 0 | 1 |
Year | Input Control [%] | Post-Pasteurization Control [%] | Total [%] |
---|---|---|---|
2017 | 0.28 | 8.62 | 8.90 |
2018 | 0.43 | 8.23 | 8.66 |
2019 | 0.00 | 10.00 | 10.00 |
2020 | 0.10 | 9.27 | 9.37 |
Genus | (%) | Genus | (%) |
---|---|---|---|
Acinetobacter | 0.71 | Leuconostoc | 0.04 |
Aerococcus | 0.12 | Micrococcus | 0.94 |
Bacillus | 70.63 | Moraxella | 2.71 |
Brevibacillus | 0.08 | Paenibacillus | 0.75 |
Brevibacterium | 0.04 | Pantoea | 0.04 |
Burkholderia | 0.04 | Pseudomonas | 0.08 |
Corynebacterium | 0.35 | Rhizobacterium | 0.04 |
Enterococcus | 5.94 | Roseomonas | 0.04 |
Staphylococcus (coagulase-negative) | 13.65 | Sphingomonas | 0.04 |
Staphylococcus (coagulase-positive) | 1.18 | Stenotrophomonas | 0.12 |
Kocuria | 0.08 | Streptococcus (α-hemolytic species) | 2.32 |
Lactobacillus | 0.08 |
Prevalence (%) | ||||
---|---|---|---|---|
Year | Period | B. cereus | Other Microbes | p Value |
2017 | April–September | 60 | 44 | p < 0.0001 |
October–March | 40 | 56 | ||
2018 | April–September | 71 | 53 | p < 0.0001 |
October–March | 29 | 47 | ||
2019 | April–September | 75 | 60 | p < 0.0001 |
October–March | 25 | 40 | ||
2020 | April–September | 68 | 55 | p = 0.0004 |
October–March | 32 | 45 |
CFU/mL Range | Frequency | Relative Frequency (%) | Cumulative Relative Frequency (%) |
---|---|---|---|
Negative | 4 | 20 | 20 |
1–5 | 10 | 50 | 70 |
6–10 | 2 | 10 | 80 |
11–15 | 1 | 5 | 85 |
16–20 | 0 | 0 | 85 |
21–25 | 1 | 5 | 90 |
26–30 | 0 | 0 | 90 |
31–35 | 0 | 0 | 90 |
36–40 | 0 | 0 | 90 |
41–45 | 0 | 0 | 90 |
46–50 | 0 | 0 | 90 |
51–99 | 1 | 5 | 95 |
100 | 1 | 5 | 100 |
Total | 20 | xxx | xxx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandová, M.; Měřička, P.; Fišerová, M.; Landfeld, A.; Paterová, P.; Hobzová, L.; Jarkovská, E.; Kacerovský, M.; Houška, M. Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience. Foods 2021, 10, 2955. https://doi.org/10.3390/foods10122955
Jandová M, Měřička P, Fišerová M, Landfeld A, Paterová P, Hobzová L, Jarkovská E, Kacerovský M, Houška M. Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience. Foods. 2021; 10(12):2955. https://doi.org/10.3390/foods10122955
Chicago/Turabian StyleJandová, Miroslava, Pavel Měřička, Michaela Fišerová, Aleš Landfeld, Pavla Paterová, Lenka Hobzová, Eva Jarkovská, Marian Kacerovský, and Milan Houška. 2021. "Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience" Foods 10, no. 12: 2955. https://doi.org/10.3390/foods10122955
APA StyleJandová, M., Měřička, P., Fišerová, M., Landfeld, A., Paterová, P., Hobzová, L., Jarkovská, E., Kacerovský, M., & Houška, M. (2021). Bacillus cereus as a Major Cause of Discarded Pasteurized Human Banked Milk: A Single Human Milk Bank Experience. Foods, 10(12), 2955. https://doi.org/10.3390/foods10122955