Edible Aquatic Insects: Diversities, Nutrition, and Safety
Abstract
:1. Introduction
2. Aquatic Insects and Its Resource as Food and Feed
3. Nutritional and Health Benefits of Edible Aquatic Insects
3.1. Protein Content and Amino Acid Composition of Aquatic Insects
3.2. Characteristics of Fatty Acids in Aquatic Insects
3.3. Characteristics of Mineral Elements in Aquatic Insects
Order | Species | Edvelopmental Stage | Protein (%) | Amino Acid Composition (% of Total Amino Acids or Protein) | Total Amino Acids (g/100 g DM) | Reference | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Val | Ile | Leu | Lys | Tyr | Thr | Phe | Trp | His | Met + Cys | Total EAA ++ | Arg | Asp | Ser | Glu | Gly | Ala | Pro | ||||||
Edible aquatic insects | |||||||||||||||||||||||
Odonata | Epophthalmia elegans | L | 65.23 | 9.96 | 2.78 | 6.43 | 5.62 | 7.06 | 3.84 | 9.26 | 0.58 | 3.74 | 1.63 | 50.90 | 11.79 | 6.91 | 3.94 | 10.92 | 4.42 | 5.97 | 5.15 | 60.16 | [57] |
Anax parthenope | L | 65.76 | 10.04 | 3.20 | 6.96 | 5.72 | 6.96 | 3.87 | 8.82 | 0.63 | 3.20 | 1.13 | 50.55 | 11.91 | 7.04 | 4.09 | 10.84 | 4.32 | 5.93 | 5.33 | 53.99 | ||
Ictinogomphus rapax | L | 62.37 | 10.08 | 3.54 | 7.05 | 4.62 | 7.77 | 4.24 | 12.12 | 0.50 | 3.09 | 1.44 | 54.45 | 9.92 | 6.99 | 3.97 | 8.30 | 4.84 | 6.85 | 4.67 | 55.63 | ||
Sinictinogomphus clavatus | L | 63.64 | 9.55 | 3.51 | 7.19 | 5.42 | 7.64 | 4.32 | 10.51 | 0.53 | 2.89 | 1.66 | 53.23 | 9.95 | 7.74 | 4.00 | 9.32 | 4.91 | 5.98 | 4.87 | 52.98 | ||
Pantala flavescens | L | 65.18 | 9.78 | 3.30 | 7.20 | 5.97 | 6.48 | 4.06 | 8.61 | 0.65 | 2.87 | 1.32 | 50.26 | 12.47 | 7.38 | 4.07 | 10.73 | 4.64 | 6.00 | 4.45 | 58.16 | ||
Orthetrum pruinosum | L | 71.53 | 9.63 | 3.33 | 7.11 | 5.85 | 6.43 | 3.86 | 8.68 | 0.46 | 2.78 | 1.90 | 50.01 | 12.00 | 7.38 | 4.02 | 11.11 | 4.39 | 5.81 | 5.28 | 54.73 | ||
Crocothemis servilia | L | 65.45 | 6.12 | 3.91 | 7.45 | 7.93 | 6.23 | 5.25 | 2.88 | 2.20 | 5.45 | 3.77 | 51.18 | 8.04 | 8.47 | 4.26 | 10.99 | 5.03 | 7.31 | 4.72 | 51.70 | [59] | |
Gomphus cuneatus | L | 64.64 | 6.59 | 7.33 | 3.96 | 6.33 | 7.17 | 4.79 | 3.37 | 0.67 | 6.93 | 4.07 | 51.21 | 4.86 | 6.34 | 4.32 | 14.40 | 5.46 | 7.85 | 5.61 | 50.26 | ||
Lestes praemorsus | L | 46.37 | 6.01 | 6.96 | 4.16 | 8.37 | 7.26 | 4.98 | 3.22 | 5.23 | 6.54 | 2.72 | 55.44 | 8.54 | 6.41 | 4.20 | 13.36 | 4.45 | 7.26 | 5.23 | 36.1 | ||
Ephemeroptera | Ephermeterella jianghongensis | L | 66.26 | 5.75 | 5.29 | 8.51 | 5.51 | 6.00 | 4.88 | 3.27 | - | 3.33 | 3.39 | 45.93 | 5.75 | 8.71 | 4.55 | 15.21 | 4.96 | 9.15 | 5.74 | 65.54 | [60] |
Coleptera | Cybister japonicus | L | 57.34 | 6.33 | 14.18 | 11.96 | 5.14 | 1.06 | 3.95 | 4.53 | - | 4.32 | 2.76 | 54.23 | 6.45 | 8.44 | 4.47 | 8.62 | 8.14 | 7.12 | 2.53 | 47.89 | [61] |
Dytiscus dauricus | L | 57.97 | 6.50 | 12.06 | 11.82 | 5.91 | 1.89 | 4.43 | 3.61 | - | 3.75 | 3.12 | 53.10 | 5.72 | 8.88 | 4.92 | 9.11 | 7.76 | 8.43 | 2.07 | 48.74 | ||
Hydrophilus acminatus | L | 56.41 | 6.12 | 11.24 | 12.16 | 7.08 | 1.19 | 4.14 | 3.28 | - | 3.30 | 2.74 | 51.25 | 4.87 | 10.01 | 4.76 | 8.98 | 8.04 | 7.25 | 2.74 | 47.86 | ||
H. acminatus | L | 20.37 | 5.76 | 4.38 | 7.59 | 6.89 | 5.11 | 4.26 | 4.33 | - | 6.42 | 2.74 | 47.48 | 5.76 | 9.56 | 3.56 | 9.25 | 8.08 | 10.38 | 5.93 | 42.69 | [62] | |
Megaloptera | Acanthacorydalis orientalis | L | 56.56 | 5.63 | 5.61 | 6.96 | 6.25 | 5.76 | 4.88 | 4.39 | - | 4.18 | 2.89 | 46.54 | 6.75 | 10.13 | 4.11 | 17.13 | 5.14 | 5.74 | 4.46 | 53.31 | [60] |
Acanthacory dalisasiatice | A | - | 7.58 | 5.58 | 9.00 | 7.08 | 9.81 | 4.13 | 10.61 | - | 4.02 | 4.21 | 62.01 | 3.90 | 11.73 | 7.69 | - | - | 14.34 | - | 52.01 | [63] | |
Neochauliodes sparsus | L | 67.69 | 6.35 | 4.75 | 7.41 | 7.43 | 6.10 | 4.55 | 4.21 | 0.70 | 4.27 | 3.82 | 49.59 | 7.23 | 9.09 | 4.25 | 12.73 | 4.80 | 7.41 | 4.91 | 56.02 | [64] | |
Edible terrestrial insects | |||||||||||||||||||||||
Hymenoptera | Polybia occidentalis nigratella | B | 61.00 | 5.90 | 4.50 | 7.80 | 7.40 | 5.60 | 4.00 | 3.30 | 0.70 | 3.00 | 5.00 | 47.20 | 5.70 | 8.40 | 4.50 | 12.90 | 7.10 | 6.50 | 6.30 | - | [65] |
Polybia parvulina | B | 61.00 | 6.10 | 4.70 | 7.80 | 7.30 | 5.90 | 4.10 | 3.40 | 0.70 | 3.40 | 5.30 | 48.70 | 5.70 | 7.80 | 4.40 | 13.30 | 7.20 | 6.40 | 6.50 | - | ||
Vespa velutina | B | - | 6.10 | 5.50 | 8.70 | 6.10 | 6.60 | 4.20 | 4.20 | - | 4.20 | 2.40 | 47.00 | 4.50 | 6.30 | 6.30 | 20.10 | 6.30 | 5.50 | 6.10 | 37.90 | [66] | |
V. mandarinia | B | - | 6.30 | 5.70 | 8.70 | 6.30 | 7.30 | 4.30 | 4.30 | - | 4.30 | 2.70 | 48.90 | 2.20 | 6.50 | 6.50 | 21.20 | 6.30 | 5.40 | 5.70 | 36.80 | ||
V. basalis | B | - | 5.70 | 5.30 | 8.50 | 6.80 | 7.10 | 4.30 | 4.30 | - | 4.30 | 1.40 | 46.60 | 4.30 | 6.40 | 6.40 | 22.10 | 5.70 | 5.00 | 5.70 | 28.10 | ||
Coleoptera | Allomyrina dichotoma | L | 54.18 | 5.58 | 4.35 | 6.40 | 4.97 | 7.73 | 3.84 | 3.59 | - | 4.82 | 8.92 | 50.21 | 5.29 | 5.46 | 5.95 | 17.83 | 5.70 | 4.51 | 5.05 | 48.74 | [32] |
Protaetia brevitarsis | L | 44.23 | 6.36 | 4.14 | 5.90 | 4.47 | 8.43 | 3.96 | 4.14 | - | 4.65 | 7.51 | 49.54 | 5.34 | 5.77 | 6.51 | 14.15 | 5.72 | 6.23 | 6.72 | 39.16 | ||
Tenebrio molitor | L | 53.22 | 6.61 | 4.45 | 7.57 | 4.52 | 7.75 | 4.11 | 3.96 | - | 6.29 | 7.10 | 52.36 | 5.01 | 6.20 | 4.94 | 12.99 | 5.87 | 8.90 | 3.73 | 44.50 | ||
Orthoptera | Teleogryllus emma | A | 55.65 | 5.85 | 4.30 | 7.93 | 5.23 | 5.23 | 3.84 | 3.58 | - | 4.82 | 7.63 | 48.41 | 7.43 | 7.71 | 5.91 | 13.03 | 5.09 | 9.19 | 3.24 | 49.95 | |
Gryllus bimaculatus | A | 58.32 | 5.94 | 4.01 | 7.38 | 4.50 | 5.07 | 3.72 | 3.40 | - | 4.64 | 9.98 | 48.63 | 6.69 | 6.69 | 5.07 | 11.87 | 6.17 | 10.48 | 3.70 | 53.83 | ||
Lepidoptera | Antheraea pernyi | P | 71.9 | 6.63 | 7.95 | 3.24 | 4.54 | 2.06 | 4.64 | 8.10 | 4.05 | 2.94 | 1.62 | 45.77 | 4.12 | 6.41 | 4.64 | 12.74 | 4.42 | 6.26 | 12.22 | - | [67] |
Bombyx mori | P | - | 5.60 | 5.70 | 8.30 | 7.50 | 5.40 | 5.40 | 5.10 | 9.00 | 2.50 | 6.00 | 60.50 | 6.80 | 10.90 | 4.70 | 14.90 | 4.60 | 5.50 | 4.00 | - |
Order | Species | Developmental Stage | Lipid % | Fatty Acid Composition (% of Total Fatty Acids) | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | C16:0 | C18:0 | SFA | C18:1 | MUFA | C18:2 | C20:4 | C20:5 | PUFA | |||||
Aquatic insects | ||||||||||||||
Odonata | Epophthalmia elegans | L | 9.14 | 1.67 | 21.88 | 7.85 | 33.73 | 16.97 | 32.84 | 4.46 | 5.02 | 6.11 | 21.05 | [47] |
Anax parthenope julius | L | 11.06 | 1.18 | 24.41 | 7.00 | 34.68 | 17.65 | 27.85 | 7.01 | 3.73 | 3.08 | 27.85 | ||
Ictinogomphus rapax | L | 10.59 | 2.07 | 19.30 | 6.98 | 30.11 | 19.01 | 35.75 | 7.49 | 1.89 | 5.08 | 20.33 | ||
Pantala flavescens | L | 10.4 | 0.75 | 21.6 | 8.55 | 32.3 | 11.98 | 33.07 | 9.59 | 1.91 | 9.44 | 27.51 | ||
Inictinogomphus clavatus | L | 11.9 | 0.89 | 24.61 | 7.74 | 34.43 | 20.58 | 42.28 | 6.66 | 1.24 | 3.87 | 17.75 | ||
Orthetrum pruinosum neglectum | L | 5.72 | 2.34 | 17.57 | 7.65 | 34.97 | 6.85 | 31.53 | 5.77 | 6.70 | 7.83 | 26.70 | ||
Diptera | Stictochironomus pictulus | L | - | 4.70 | 16.10 | 6.20 | 34.00 | 11.00 | 49.50 | 6.70 | 1.00 | 3.60 | 14.30 | [68] |
Anopheles albimanus | L | - | 1.94 | 28.03 | 7.76 | 44.50 | 22.26 | 31.13 | 7.59 | 3.07 | 4.19 | 24.40 | [69] | |
A. vestitipennis | L | - | 1.86 | 21.82 | 6.62 | 37.39 | 22.06 | 36.16 | 12.28 | 2.85 | 2.47 | 26.43 | ||
A. darlingi | L | - | 1.26 | 25.42 | 6.64 | 39.53 | 22.44 | 30.76 | 18.66 | 2.46 | 2.39 | 29.69 | ||
Coleoptera | Cybister japonicus | A | 27.66 | 3.41 | 12.01 | 5.18 | 27.56 | 35.61 | 49.94 | 9.82 | 3.55 | 3.96 | 22.52 | [61] |
Dytiscus danmcus | A | 27.56 | 2.86 | 21.63 | 2.45 | 35.1 | 29.94 | 46.95 | 6.53 | 3.54 | 4.08 | 19.46 | ||
Hydrophilus aoninatus | A | 31.86 | 9.16 | 19.09 | - | 65.2 | 1.83 | 3.81 | 1.98 | - | - | 30.92 | ||
Terrestrial insects | ||||||||||||||
Orthoptera | Gryllus bimaculatus | L | 28.90 | - | 25.44 | 8.74 | 34.67 | 25.86 | 26.54 | 37.05 | - | - | 38.79 | [70] |
Ruspolia differens | A | 48.20 | 0.90 | 31.50 | 5.50 | 38.30 | 24.60 | 26.60 | 31.20 | - | - | 34.40 | [53] | |
Coleoptera | Tenebrio molitor | L | 31.97 | 4.45 | 21.33 | 7.92 | 33.70 | 35.83 | 37.80 | 22.83 | 0 | 0 | 22.94 | [71] |
Hymenoptera | Apis mellifera | L | 4.90 | 2.40 | 37.30 | 11.80 | 51.80 | 47.50 | 48.20 | 0 | - | - | 0 | [72] |
Vespa mandarinia | B | 20.20 | 2.50 | 21.30 | 5.00 | 30.70 | 27.70 | 29.20 | 33.70 | - | - | 40.10 | ||
Lepidoptera | Bombyx mori | P | 32.20 | 0.10 | 24.20 | 4.50 | 24.30 | 26.00 | 27.70 | 7.30 | - | - | 36.30 | [73] |
Species | Developmental Stage | Ca | Mg | K | Na | Fe | P | Mn | Cu | Zn | Se | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Edible aquatic insects | ||||||||||||
Anax parthenope | L | 124.960 | 116.900 | 1591.900 | 1339.760 | 158.210 | - | 6.790 | 4.180 | 74.770 | 0.193 | [57,58] |
Epophthalmia elegans | L | 90.110 | 101.800 | 1350.790 | 1372.490 | 22.640 | - | 12.050 | 2.460 | 40.410 | 0.223 | [57,58] |
Crocothemes servillia | L | 865.000 | 370.000 | 2680.000 | 14,100.000 | 113.000 | - | - | 19.000 | 93.000 | - | [30] |
Lethocerus indicus | L & A | 960.000 | 703.300 | 1700.000 | 8550.000 | 4100.000 | - | - | 11.000 | 295.000 | - | [30] |
Laccotrephes maculatus | L & A | 665.000 | 460.000 | 5500.000 | 15,000.000 | 250.000 | - | - | 137.000 | 231.500 | - | [30] |
Cybister tripunctatus | A | 277.000 | 336.000 | 6430.000 | 3050.000 | 73.000 | - | - | 51.000 | 57.500 | - | [30] |
C. japonicus | A | 3602.820 | 774.520 | 6722.650 | 2251.760 | 148.160 | 5809.000 | 8.700 | 29.370 | 93.990 | 0.360 | [58,74] |
Hydrophilus olivaceous | A | 243.000 | 990.000 | 3900.000 | 8160.000 | 4610.000 | - | - | 17.000 | 118.000 | - | [30] |
Hydrous acuminatus | A | 106.700 | 109.200 | 1807.700 | - | 83.200 | 1905.100 | - | - | 29.000 | - | [62] |
Edible terrestrial insects | ||||||||||||
Gryllus bimaculatus | A | 1660.850 | 1073.750 | 8607.500 | 3649.450 | 81.800 | 11,696.000 | 66.300 | 36.250 | 232.650 | 0.490 | [32,70] |
Acheta domesticus | L & A | 1261.150 | 1040.550 | 13,318.700 | 5122.900 | 77.650 | 10,291.150 | 38.100 | 21.200 | 257.400 | 0.500 | [75] |
Teleogryllus emma | A | 1935.400 | 1524.800 | 8955.000 | 2782.300 | 107.500 | 10,854.000 | 58.600 | 21.900 | 184.700 | - | [32] |
Tenebrio molitor | L | 504.800 | 2450.800 | 8212.375 | 1047.125 | 98.393 | 8282.233 | 14.170 | 18.138 | 116.660 | 0.377 | [32,75,76] |
Zophobas morio | L | 420.400 | 1182.900 | 7505.900 | 1128.300 | 39.200 | 5629.500 | 10.200 | 8.600 | 72.900 | 0.300 | [75] |
Protaetia brevitarsis | L | 2585.600 | 3276.000 | 20,014.000 | 2116.000 | 162.000 | 11,404.000 | 58.900 | 18.200 | 118.900 | - | [32] |
Allomyrina dichotoma | L | 1234.000 | 2835.600 | 12,491.000 | 1483.800 | 142.600 | 8606.900 | 86.400 | 14.300 | 102.600 | 0.064 | [32,58] |
Anoplophora chinensis | L | 269.300 | 1881.000 | 5647.000 | 92.850 | 131.280 | 35.020 | 8.980 | 223.640 | 0.050 | [76] | |
Galleria mellonella | L | 585.500 | 761.400 | 5325.300 | 397.600 | 50.400 | 4698.800 | 3.100 | 9.200 | 61.200 | 0.300 | [75] |
Bombyx mori | L & P | 1023.100 | 2878.600 | 18,265.900 | 2745.700 | 95.400 | 13,699.400 | 24.900 | 20.800 | 177.500 | 0.575 | [58,75] |
Antheraea pernyi | P | 234.000 | 707.000 | 4020.000 | 57.400 | 13.400 | - | 2.200 | 2.900 | 30.600 | 0.210 | [77] |
Vespa velutina | L & P | 388.000 | 639.000 | 7516.000 | 104.000 | 100.000 | 5612.000 | 6.000 | 22.000 | 72.000 | - | [66] |
Polyrhachis vicina | A | 785.500 | 664.500 | - | - | 858.500 | 4028.500 | 291.000 | 21.500 | 147.500 | 0.335 | [78] |
3.4. Chitin and Chitosan
3.5. Active Substances and Healthcare
4. Safety in Utilization of Edible Aquatic Insects
4.1. Contaminant
4.2. Purine Derivatives and Uric Acid
4.3. Allergy
5. Discussion
5.1. Characteristics of Nutrition in Aquatic Insects
5.2. Edible Aquatic Insects Resources and Farming
5.3. Enrich the Use of Aquatic Insects
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Itterbeeck, J.; van Huis, A. Environmental manipulation for edible insect procurement: A historical perspective. J. Ethnobiol. Ethnomed. 2012, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Chen, X.-M.; Zhao, M.; He, Z.; Sun, L.; Wang, C.-Y.; Ding, W.-F. Edible insects in China: Utilization and prospects. Insect Sci. 2017, 25, 184–198. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Kim, H.-W.; Choi, Y.-S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2018, 59, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J. Anthropo-entomophagy: Cultures, evolution and sustainability. Entomol. Res. 2009, 39, 271–288. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Edible insects in three different ethnic groups of Papua and New Guinea. Am. J. Clin. Nutr. 1973, 26, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Séré, A.; Bougma, A.; Ouilly, J.T.; Traoré, M.; Sangaré, H.; Lykke, A.M.; Ouédraogo, A.; Gnankiné, O.; Bassolé, I.H.N. Traditional knowledge regarding edible insects in Burkina Faso. J. Ethnobiol. Ethnomed. 2018, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Indigenous Knowledge about Consumption of Edible Insects in South Africa. Insects 2020, 12, 22. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Oonincx, D.G.A.B.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; Van Loon, J.J.A. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; Brand, H.V.D.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahukar, R.T. Edible Insects Farming: Efficiency and Impact on Family Livelihood, Food Security, and Environment Compared With Livestock and Crops. In Insects Sust Food Ingredients; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 85–111. [Google Scholar] [CrossRef]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Nutritional Composition of Edible Insects Consumed in Africa: A Systematic Review. Nutrients 2020, 12, 2786. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Suleria, H.A.R.; Rauf, A. Edible insects as innovative foods: Nutritional and functional assessments. Trends Food Sci. Technol. 2019, 86, 352–359. [Google Scholar] [CrossRef]
- Huis, A.v.; Itterbeeck, J.V.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- Koroiva, R.; Pepinelli, M. Distribution and Habitats of Aquatic Insects. In Aquatic Insects: Behavior and Ecology; Del-Claro, K., Guillermo, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 11–33. [Google Scholar] [CrossRef]
- Williams, D.D.; Feltmate, B.W. Aquatic Insects; Blackburn Press: Caldwell, NJ, USA, 2017; p. 372. [Google Scholar]
- Kitsa, K. Contribution des insectes comestibles a l’amélioration de la ration alimentaire au Kasai Occidental. Zaire-Afrique 1989, 239, 511–519. [Google Scholar]
- Yen, A. Insects as food and feed in the Asia Pacific region: Current perspectives and future directions. J. Insects Food Feed 2015, 1, 33–55. [Google Scholar] [CrossRef]
- Williams, D.D.; Williams, S.S. Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population. Insects 2017, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Hotaling, S.; Kelley, J.; Frandsen, P. Aquatic Insects Are Dramatically Underrepresented in Genomic Research. Insects 2020, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.; Williams, S.; van Huis, A. Can we farm aquatic insects for human food or livestock feed? J. Insects Food Feed 2021, 7, 121–127. [Google Scholar] [CrossRef]
- Macadam, C.; Stockan, J. The diversity of aquatic insects used as human food. J. Insects Food Feed 2017, 3, 203–209. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, M.; Ding, W.; Chen, X. Overview of edible insect resources and common species utilisation in China. J. Insects Food Feed 2020, 6, 13–25. [Google Scholar] [CrossRef]
- Tanaka, R.; Oda, M. Cyclic Dipeptide of D-ornithine obtained from the dobsonfly, Protohermes grandis Thunberg. Biosci. Biotechnol. Biochem. 2009, 73, 1669–1670. [Google Scholar] [CrossRef] [PubMed]
- Cao, C. Rearing hellgrammites for food and medicine in China. J. Insects Food Feed 2016, 2, 263–267. [Google Scholar] [CrossRef]
- Shi, Z.X. A research on artificial culture of climbing-sand worms-panxi special aquatic organisms based on computer control. J. Xichang Coll. (Nat. Sci. Ed.) 2008, 22, 72–75. [Google Scholar]
- Jongema, Y. List of Edible Insect Species of the World. Available online: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm (accessed on 15 June 2021).
- Mitsuhashi, J. Edible Insects of the World; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–296. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhao, M.; Wang, J.D.; Jiang, Y.Y.; He, Z.; Feng, Y. Molecular identification of a new species of edible dragonfly. Biot. Resour. 2018, 40, 164–169. [Google Scholar] [CrossRef]
- Shantibala, T.; Lokeshwari, R.K.; Debaraj, H. Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J. Insect Sci. 2014, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Nurhasan, M.; Maehre, H.K.; Malde, M.K.; Stormo, S.K.; Halwart, M.; James, D.; Elvevoll, E.O. Nutritional composition of aquatic species in Laotian rice field ecosystems. J. Food Compos. Anal. 2010, 23, 205–213. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Bergeron, D.; Bushway, R.J.; Roberts, F.L.; Kornfield, I.; Okedi, J.; Bushway, A.A. The nutrient composition of an insect flour sample from Lake Victoria, Uganda. J. Food Compos. Anal. 1988, 1, 371–377. [Google Scholar] [CrossRef]
- Okedi, J. Chemical evaluation of Lake Victoria lakefly as nutrient source in animal feeds. Int. J. Trop. Insect Sci. 1992, 13, 373–376. [Google Scholar] [CrossRef]
- FAO; WHO; UNU. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Bukkens, S. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Ekpo, K.E. Effect of processing on the protein quality of four popular insects consumed in Southern Nigeria. Arch. Appl. Sci. Res. 2011, 3, 307–326. [Google Scholar]
- De Guevara, O.L.; Padilla, P.; García, L.; Pino, J.M.; Ramos-Elorduy, J. Amino acid determination in some edible Mexican insects. Amino Acids 1995, 9, 161–173. [Google Scholar] [CrossRef]
- Aguilar, J.G.d.S. An overview of lipids from insects. Biocatal. Agric. Biotechnol. 2021, 33, 101967. [Google Scholar] [CrossRef]
- Hixson, S.M.; Sharma, B.; Kainz, M.J.; Wacker, A.; Arts, M. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: A fundamental dichotomy between freshwater and terrestrial ecosystems. Environ. Rev. 2015, 23, 414–424. [Google Scholar] [CrossRef]
- Bell, J.; Ghioni, C.; Sargent, J.R. Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): A comparison with commercial diets. Aquaculture 1994, 128, 301–313. [Google Scholar] [CrossRef]
- Béligon, V.; Christophe, G.; Fontanille, P.; Larroche, C. Microbial lipids as potential source to food supplements. Curr. Opin. Food Sci. 2016, 7, 35–42. [Google Scholar] [CrossRef]
- Twining, C.W.; Brenna, J.T.; Lawrence, P.; Winkler, D.W.; Flecker, A.S.; Hairston, N.G., Jr. Aquatic and terrestrial resources are not nutritionally reciprocal for consumers. Funct. Ecol. 2019, 33, 2042–2052. [Google Scholar] [CrossRef]
- Popova, O.N.; Haritonov, A.Y.; Sushchik, N.N.; Makhutova, O.N.; Kalachova, G.S.; Kolmakova, A.A.; Gladyshev, M.I. Export of aquatic productivity, including highly unsaturated fatty acids, to terrestrial ecosystems via Odonata. Sci. Total Environ. 2017, 581–582, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Twining, C.W.; Shipley, J.R.; Winkler, D.W. Aquatic insects rich in omega-3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 2018, 21, 1812–1820. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; He, Z.; Zhao, M.; Wang, C.Y.; Sun, L.; Feng, Y. Oil content and fatty acid composition of six kinds of common edible dragonfly naiads. China Oils Fats 2017, 42, 135–139. [Google Scholar]
- Hanson, B. Lipid Content and Fatty Acid Composition of Aquatic Insects: Dietary Influence and Aquatic Adaptation. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1983. [Google Scholar]
- Cerritos, R. Insects as food: An ecological, social and economical approach. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Banjo, A.D.; Lawal, O.A.; Songonuga, E. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006, 5, 298–301. [Google Scholar]
- Kinyuru, J.N.; Mogendi, J.B.; Riwa, C.A.; Ndung’u, N.W. Edible insects-A novel source of essential nutrients for human diet: Learning from traditional knowledge. Anim. Front. 2015, 5, 14–19. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.F.; Interlandi, S.J.; Kilham, S.S.; McCauley, E.; Schulz, K.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Kinyuru, J.N.; Kenji, G.M.; Muhoho, S.N.; Ayieko, M. Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya District, Kenya. J. Agric. Sci. Technol. 2009, 12, 32–46. [Google Scholar]
- Adeduntan, S.A. Nutritonal and Antinutritional Characteristics of Some Insects Foragaing in Akure Forest Reserve Ondo State, Nigeria. J. Food Technol. 2005, 3, 563–567. [Google Scholar]
- Dunkei, F.V. Nutritional value of various insects per 100 grams. Food Insect Newsl. 1996, 9, 1–8. [Google Scholar]
- Omotoso, O. Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J. Zhejiang Univ. Sci. B 2006, 7, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.Y.; Zhao, M.; He, Z.; Wang, C.Y.; Sun, L.; Feng, Y. Nutrition composition and evaluation of six edible dragonfly naiads. Biot. Resour. 2017, 39, 352–359. [Google Scholar] [CrossRef]
- Wang, J.D.; Wang, C.Y.; Zhao, M.; He, Z.; Sun, L.; Feng, Y. Contents of Mercury and Selenium in Common Edible and Medicinal Insects in Yunnan and Their Correlation Analysis. J. Yunnan Agric. Univ. Nat. Sci. 2019, 34, 1033–1040. [Google Scholar]
- Feng, Y.; Chen, X.M.; Wang, S.Y.; Ye, S.D.; Chen, Y. Three Edible Odonata Species and Their Nutritive Value. For. Res. 2001, 14, 421–424. [Google Scholar]
- Feng, Y.; Chen, X.M.; Zhao, M. Edible Insects of China; Science Press: Beijing, China, 2016. [Google Scholar]
- Ma, Y.K.; Zheng, L.J.; Sun, Z.W.; Fu, B.R. Analysis of nutrient components of three species of aquatic beetles. Acta Nutr. Sin. 2002, 24, 90–92. [Google Scholar]
- Guo, L.Z.; Wang, R.L.; Liang, A.P.; Pan, S.M.; Chen, S.H. Analysis and evaluation of nutritional components of Hydrous acuminatus. Entomol. Knowl. 2003, 40, 366–368. [Google Scholar]
- Shi, Y.C.; Ren, Y.; Liu, H.-B.; Gu, J.; Cao, C.Q. Analysis of Main Nutritional Componets in Hellgrammites and Its Anti-Diuretic Effect. Sci. Technol. Food Ind. 2019, 40, 87–92. [Google Scholar]
- Wang, F.B.; Liu, Y.S. Analysis and evaluation of resource components of Neochauliodes sparsus larvae. Chin. J. Appl. Entomol. 2011, 48, 147–151. [Google Scholar]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; de Guevara, O.L. Nutritional Value of Edible Insects from the State of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Ghosh, S.; Namin, S.; Meyer-Rochow, V.; Jung, C. Chemical Composition and Nutritional Value of Different Species of Vespa Hornets. Foods 2021, 10, 418. [Google Scholar] [CrossRef]
- Zhou, J.; Han, D. Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China. J. Food Compos. Anal. 2006, 19, 850–853. [Google Scholar] [CrossRef]
- Kiyashko, S.I.; Imbs, A.B.; Narita, T.; Svetashev, V.I.; Wada, E. Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): Evidence of feeding upon methanotrophic bacteria. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 139, 705–711. [Google Scholar] [CrossRef]
- Komínková, D.; Rejmánková, E.; Grieco, J.; Achee, N. Fatty acids in anopheline mosquito larvae and their habitats. J. Vector Ecol. 2012, 37, 382–395. [Google Scholar] [CrossRef]
- He, Z.; Sun, L.; Wang, C.Y.; Feng, Y.; Zhao, M. Nutritional composition analysis and evaluation of the two-spotted cricket Gryllus bimaculatus (Orthoptera: Gryllidae). Biotic Resources 2021, 43, 303–308. [Google Scholar]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.; Gahukar, R.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Tomotake, H.; Katagiri, M.; Yamato, M. Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. J. Nutr. Sci. Vitaminol. 2010, 56, 446–448. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.C. A preliminary study on the nutritional components of Cybister japonicus sharp. Fisheries Science & Technology of Guangxi 1998, 3, 16–20. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; Chen, R.A.W.; Luo, L.; Ma, H.; Li, Z. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.M.; Li, S.Y.; Zhang, J.; Wei, Q.; Zhao, M.N.; Wang, L.M. Analysis on Nutrientional Content and Amino Acid Composition of Antheraea yamamai Pupa. Science of Sericulture 2017, 43, 479–485. [Google Scholar]
- Bhulaidok, S.; Sihamala, O.; Shen, L. Nutritional and fatty acid profiles of sun-dried edible black ants (Polyrhachis vicina Roger). Maejo Int. J. Sci. Technol. 2010, 4, 101–112. [Google Scholar]
- Lesch, V.; Bouwman, H. Adult dragonflies are indicators of environmental metallic elements. Chemosphere 2018, 209, 654–665. [Google Scholar] [CrossRef]
- Abidin, N.Z.; Kormin, F.; Abidin, N.Z.; Anuar, N.M.; Abu Bakar, M. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int. J. Mol. Sci. 2020, 21, 4978. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Wang, Y.; Han, Q.; Ji, L.; Zhang, H.; Fei, Z.; Wang, Y. Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydr. Polym. 2019, 209, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Baublys, V.; Can, E.; Šatkauskienė, I.; Bitim, B.; Tubelytė, V.; Baran, T. Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology 2014, 133, 285–293. [Google Scholar] [CrossRef]
- Soon, C.Y.; Tee, Y.B.; Tan, C.H.; Rosnita, A.T.; Khalina, A. Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int. J. Biol. Macromol. 2018, 108, 135–142. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Mentes, A.; Asaroglu, M.; Sezen, G.; Tozak, K.O. Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophys. 2014, 9, 145–157. [Google Scholar] [CrossRef]
- Paulino, A.; Simionato, J.I.; Garcia, J.C.; Nozaki, J. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr. Polym. 2006, 64, 98–103. [Google Scholar] [CrossRef]
- Ma, J.; Xin, C.; Tan, C. Preparation, physicochemical and pharmaceutical characterization of chitosan from Catharsius molossus residue. Int. J. Biol. Macromol. 2015, 80, 547–556. [Google Scholar] [CrossRef]
- Torres, J.; Garcia, S.R.S.; Lara-Villalón, M.; Ávila, G.C.G.M.; Mora-Olivo, A.; Reyes-Soria, F.A. Evaluation of Biochemical Components from Pterophylla beltrani (Bolivar & Bolivar) (Orthoptera: Tettigoniidae): A Forest Pest from Northeastern Mexico. Southwest. Entomol. 2015, 40, 741–751. [Google Scholar] [CrossRef]
- Ibitoye, B.E.; Idris, L.H.; Noor, M.M.; Meng, G.Y.; Bakar, M.A.; Jimoh, A.A. Extraction and physicochemical characterization of chitin and chitosan isolated from House Cricket. Biomed. Mater. 2018, 13, 025009. [Google Scholar] [CrossRef] [Green Version]
- Kaya, M.; Baran, T.; Asan-Ozusaglam, M.; Cakmak, Y.S.; Tozak, K.O.; Mol, A.; Menteş, A.; Sezen, G. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng. 2015, 20, 168–179. [Google Scholar] [CrossRef]
- Nemtsev, S.V.; Zueva, O.Y.; Khismatullin, M.R.; Albulov, A.I.; Varlamov, V.P. Isolation of Chitin and Chitosan from Honeybees. Appl. Biochem. Microbiol. 2004, 40, 39–43. [Google Scholar] [CrossRef]
- Kim, M.-W.; Han, Y.S.; Jo, Y.H.; Choi, M.H.; Kang, S.H.; Kim, S.-A.; Jung, W.-J. Extraction of chitin and chitosan from housefly, Musca domestica, pupa shells. Entomol. Res. 2016, 46, 324–328. [Google Scholar] [CrossRef]
- Khayrova, A.; Lopatin, S.; Varlamov, V. Black Soldier Fly Hermetia illucens as a Novel Source of Chitin and Chitosan. Int. J. Sci. 2019, 8, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Kaya, M.; Akyuz, B.; Bulut, E.; Sargin, I.; Eroglu, F.; Tan, G. Chitosan nanofiber production from Drosophila by electrospinning. Int. J. Biol. Macromol. 2016, 92, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-W.; Song, Y.-S.; Seo, D.-J.; Han, Y.S.; Jo, Y.H.; Noh, M.Y.; Yang, Y.C.; Park, Y.-K.; Kim, S.-A.; Choi, C.; et al. Extraction of Chitin and Chitosan from the Exoskeleton of the Cockroach (Periplaneta americana L.). J. Chitin Chitosan 2017, 22, 76–81. [Google Scholar] [CrossRef]
- Nowakowski, A.C.; Miller, A.C.; Miller, M.E.; Xiao, H.; Wu, X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2021, 1–10. [Google Scholar] [CrossRef]
- D’Antonio, V.; Serafini, M.; Battista, N. Dietary Modulation of Oxidative Stress From Edible Insects: A Mini-Review. Front. Nutr. 2021, 8, 642551. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Meyer-Rochow, V.B. Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North-East India). J. Ethnobiol. Ethnomed. 2011, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Rochow, V.B. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: A comparative survey and review. J. Ethnobiol. Ethnomed. 2017, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.F.; Tian, L.X. A brief history of aquatic insect research in China. Entomol. Knowl. 1994, 31, 308–311. [Google Scholar]
- Feng, Y.; Zhao, M.; He, Z.; Chen, Z.; Sun, L. Research and utilization of medicinal insects in China. Entomol. Res. 2009, 39, 313–316. [Google Scholar] [CrossRef]
- Zhu, L.C. Applications of Insect Medicine; People’s Medical Publishing House: Beijing, China, 2012. [Google Scholar]
- Jiang, Y.X. Sympetrum infuscatum as a medicinal dragonfly species in Heilongjiang. Forest By-Prod. Spec. China 2004, 4, 29–30. [Google Scholar]
- Dossey, A.T. Insects and their chemical weaponry: New potential for drug discovery. Nat. Prod. Rep. 2010, 27, 1737–1757. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Front. Nutr. 2019, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [Green Version]
- Rinehart, K.L.; Holt, T.G.; Fregeau, N.L.; Keifer, P.A.; Wilson, G.R.; Perun, T.J., Jr.; Sakai, R.; Thompson, A.G.; Stroh, J.G.; Shield, L.S.; et al. Bioactive Compounds from Aquatic and Terrestrial Sources. J. Nat. Prod. 1990, 53, 771–792. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, X.M.; Ma, Y.; He, Z. Experimental study on immunomodulation of white wax scale (Ericerus pela Chavannes). For. Res. 2006, 19, 221–224. [Google Scholar]
- Bridges, A.R.; Owen, M.D. The morphology of the honey bee (Apis mellifera L.) venom gland and reservoir. J. Morphol. 1984, 181, 69–86. [Google Scholar] [CrossRef]
- Jiang, M.; Lü, S.; Zhang, Y. The Potential Organ Involved in Cantharidin Biosynthesis in Epicauta chinensis Laporte (Coleoptera: Meloidae). J. Insect Sci. 2017, 17, 52. [Google Scholar] [CrossRef]
- Mozhui, L.; Kakati, L.N.; Meyer-Rochow, V.B. Entomotherapy: A study of medicinal insects of seven ethnic groups in Nagaland, North-East India. J. Ethnobiol. Ethnomed. 2021, 17, 17. [Google Scholar] [CrossRef]
- Devakul, V.; Maarse, H. A second compound in the odorous gland liquid of the giant water bug Lethocerus indicus (Lep. and Serv.). Anal. Biochem. 1964, 7, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Kiatbenjakul, P.; Intarapichet, K.-O.; Cadwallader, K.R. Characterization of potent odorants in male giant water bug (Lethocerus indicus Lep. and Serv.), an important edible insect of Southeast Asia. Food Chem. 2015, 168, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-L.; Nour-Eldin, H.H.; Hänniger, S.; Reichelt, M.; Crocoll, C.; Seitz, F.; Vogel, H.; Beran, F. Sugar transporters enable a leaf beetle to accumulate plant defense compounds. Nat. Commun. 2021, 12, 2658. [Google Scholar] [CrossRef]
- Kazana, E.; Pope, T.W.; Tibbles, L.; Bridges, M.; Pickett, J.A.; Bones, A.; Powell, G.; Rossiter, J.T. The cabbage aphid: A walking mustard oil bomb. Proc. R. Soc. B Boil. Sci. 2007, 274, 2271–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Pandit, S.S.; Steppuhn, A.; Baldwin, I.T. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc. Natl. Acad. Sci. USA 2013, 111, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
- Heidari, H.; Azizi, Y.; Maleki-Ravasan, N.; Tahghighi, A.; Khalaj, A.; Pourhamzeh, M. Nature’s gifts to medicine: The metabolic effects of extracts from cocoons of Larinus hedenborgi (Coleoptera: Curculionidae) and their host plant Echinops cephalotes (Asteraceae) in diabetic rats. J. Ethnopharmacol. 2021, 284, 114762. [Google Scholar] [CrossRef] [PubMed]
- Nakane, W.; Nakamura, H.; Nakazato, T.; Kaminaga, N.; Nakano, M.; Sakamoto, T.; Nishiko, M.; Bono, H.; Ogiwara, I.; Kitano, Y.; et al. Construction of TUATinsecta database that integrated plant and insect database for screening phytophagous insect metabolic products with medicinal potential. Sci. Rep. 2020, 10, 17509. [Google Scholar] [CrossRef]
- Lidman, J.; Jonsson, M.; Berglund, M. The effect of lead (Pb) and zinc (Zn) contamination on aquatic insect community composition and metamorphosis. Sci. Total Environ. 2020, 734, 139406. [Google Scholar] [CrossRef]
- Scheibener, S.; Conley, J.M.; Buchwalter, D. Sulfate transport kinetics and toxicity are modulated by sodium in aquatic insects. Aquat. Toxicol. 2017, 190, 62–69. [Google Scholar] [CrossRef]
- Neff, E.; Dharmarajan, G. The direct and indirect effects of copper on vector-borne disease dynamics. Environ. Pollut. 2020, 269, 116213. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Ulloa, R.; Taylor, B.W.; Broadley, H.; Cottingham, K.L.; Baer, N.A.; Weathers, K.C.; Ewing, H.A.; Chen, C.Y. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers. Ecol. Appl. 2016, 26, 1771–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, L. Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Crit. Rev. Toxicol. 1992, 22, 327–369. [Google Scholar] [CrossRef] [PubMed]
- Aydoğan, Z.; Şişman, T.; Incekara, Ü.; Gürol, A. Heavy metal accumulation in some aquatic insects (Coleoptera: Hydrophilidae) and tissues of Chondrostoma regium (Heckel, 1843) relevant to their concentration in water and sediments from Karasu River, Erzurum, Turkey. Environ. Sci. Pollut. Res. 2017, 24, 9566–9574. [Google Scholar] [CrossRef] [PubMed]
- Cain, D.J.; Luoma, S.N.; Wallace, W.G. Linking metal bioaccumulation of aquatic insects to their distribution patterns in a mining-impacted river. Environ. Toxicol. Chem. 2004, 23, 1463–1473. [Google Scholar] [CrossRef]
- Eisler, R. Arsenic hazards to humans, plants, and animals from gold mining. Rev. Environ. Contam. Toxicol. 2004, 180, 133–165. [Google Scholar] [CrossRef]
- Hall, B.D.; Rosenberg, D.M.; Wiens, A.P. Methyl mercury in aquatic insects from an experimental reservoir. Can. J. Fish. Aquat. Sci. 1998, 55, 2036–2047. [Google Scholar] [CrossRef]
- Cristol, D.A.; Brasso, R.L.; Condon, A.M.; Fovargue, R.E.; Friedman, S.L.; Hallinger, K.K.; Monroe, A.P.; White, A.E. The Movement of Aquatic Mercury Through Terrestrial Food Webs. Science 2008, 320, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raikow, D.F.; Walters, D.M.; Fritz, K.M.; Mills, M.A. The distance that contaminated aquatic subsidies extend into lake riparian zones. Ecol. Appl. 2011, 21, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.M.; Schmidt, T.; Walters, D.M.; Wanty, R.B.; Zuellig, R.E.; Wolf, R.E. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecol. Appl. 2014, 24, 235–243. [Google Scholar] [CrossRef]
- Wang, J.D.; Wang, C.Y.; Zhao, M.; Feng, Y. Mercury absorption, enrichment and water-land transfer by aquatic insects. Biot. Resour. 2018, 40, 507–511. [Google Scholar] [CrossRef]
- Cetinić, K.A.; Previšić, A.; Rožman, M. Holo- and hemimetabolism of aquatic insects: Implications for a differential cross-ecosystem flux of metals. Environ. Pollut. 2021, 277, 116798. [Google Scholar] [CrossRef]
- Abu Hassan, A.; Dieng, H.; Satho, T.; Boots, M.; Al Sariy, J.S. Breeding patterns of the JE vector Culex gelidus and its insect predators in rice cultivation areas of northern peninsular Malaysia. Trop. Biomed. 2010, 27, 404–416. [Google Scholar] [PubMed]
- Marsollier, L.; Robert, R.; Aubry, J.; André, J.-P.S.; Kouakou, H.; Legras, P.; Manceau, A.-L.; Mahaza, C.; Carbonnelle, B. Aquatic Insects as a Vector for Mycobacterium ulcerans. Appl. Environ. Microbiol. 2002, 68, 4623–4628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bektaş, M.; Orhan, F.; Erman, Ö.K.; Barış, Ö. Bacterial microbiota on digestive structure of Cybister lateralimarginalis torquatus (Fischer von Waldheim, 1829) (Dytiscidae: Coleoptera). Arch. Microbiol. 2020, 203, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Bruus, M.; Rasmussen, J.J.; Strandberg, M.; Strandberg, B.; Sørensen, P.B.; Larsen, S.E.; Kjær, C.; Lorenz, S.; Wiberg-Larsen, P. Terrestrial adult stages of freshwater insects are sensitive to insecticides. Chemosphere 2019, 239, 124799. [Google Scholar] [CrossRef]
- Maloney, E.; Taillebois, E.; Gilles, N.; Morrissey, C.; Liber, K.; Servent, D.; Thany, S. Binding properties to nicotinic acetylcholine receptors can explain differential toxicity of neonicotinoid insecticides in Chironomidae. Aquat. Toxicol. 2020, 230, 105701. [Google Scholar] [CrossRef] [PubMed]
- Jinguji, H.; Ohtsu, K.; Ueda, T.; Goka, K. Effects of short-term, sublethal fipronil and its metabolite on dragonfly feeding activity. PLoS ONE 2018, 13, e0200299. [Google Scholar] [CrossRef] [Green Version]
- Fukuuchi, T.; Yasuda, M.; Inazawa, K.; Ota, T.; Yamaoka, N.; Mawatari, K.-I.; Nakagomi, K.; Kaneko, K. A Simple HPLC Method for Determining the Purine Content of Beer and Beer-like Alcoholic Beverages. Anal. Sci. 2013, 29, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednářová, M.; Borkovcová, M.; Komprda, T. Purine derivate content and amino acid profile in larval stages of three edible insects. J. Sci. Food Agric. 2013, 94, 71–76. [Google Scholar] [CrossRef]
- Kaneko, K.; Aoyagi, Y.; Fukuuchi, T.; Inazawa, K.; Yamaoka, N. Total Purine and Purine Base Content of Common Foodstuffs for Facilitating Nutritional Therapy for Gout and Hyperuricemia. Biol. Pharm. Bull. 2014, 37, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Sabolová, M.; Kulma, M.; Kouřimská, L. Sex-dependent differences in purine and uric acid contents of selected edible insects. J. Food Compos. Anal. 2020, 96, 103746. [Google Scholar] [CrossRef]
- He, Z.; Zhao, M.; Wang, C.; Sun, L.; Jiang, Y.; Feng, Y. Purine and uric acid contents of common edible insects in Southwest China. J. Insects Food Feed 2019, 5, 293–299. [Google Scholar] [CrossRef]
- Dow, J.A.T. Excretion and salt and water regulation. In The Insects: Structure and Function, 5th ed.; Douglas, A.E., Chapman, R.F., Simpson, S.J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 546–587. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Park, J.-W. Insect Allergens on the Dining Table. Curr. Protein Pept. Sci. 2020, 21, 159–169. [Google Scholar] [CrossRef] [PubMed]
- De Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2015, 70, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Kolakowska, A.; Olley, J.N.; Dunstan, G.A. Fish lipids. In Chemical and Functional Properties of Food Lipids; Sikorski, Z.E., Kolakowska, A., Eds.; CRC Press: New Work, NY, USA, 2002; pp. 1–388. [Google Scholar]
- Wang, D.; Zhai, S.-W.; Zhang, C.-X.; Zhang, Q.; Chen, H. Nutrition value of the Chinese grasshopper Acrida cinerea (Thunberg) for broilers. Anim. Feed Sci. Technol. 2007, 135, 66–74. [Google Scholar] [CrossRef]
- Twining, C.W.; Brenna, J.T.; Hairston, N.G.; Flecker, A.S. Highly unsaturated fatty acids in nature: What we know and what we need to learn. Oikos 2015, 125, 749–760. [Google Scholar] [CrossRef]
- Honeyfield, D.C.; Maloney, K.O. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high-quality headwater streams. Hydrobiologia 2014, 744, 35–47. [Google Scholar] [CrossRef]
- Dai, Z.H.; Liao, B.H.; Wang, Z.H.; Wang, X.J.; Liu, Y.X. A preliminary study on leaching of selenium in the soils of china. J. Environ. Sci. 1995, 338–345. [Google Scholar]
- Lobanov, A.V.; Fomenko, D.E.; Zhang, Y.; Sengupta, A.; Hatfield, D.L.; Gladyshev, V.N. Evolutionary dynamics of eukaryotic selenoproteomes: Large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007, 8, R198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteinless animals: Selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis. Protein Sci. 2007, 17, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Elorduy, J. Threatened edible insects in Hidalgo, Mexico and some measures to preserve them. J. Ethnobiol. Ethnomed. 2006, 2, 51. [Google Scholar] [CrossRef]
- Durst, P.; Hanboonsong, Y. Small-scale production of edible insects for enhanced food security and rural livelihoods: Experience from Thailand and Lao People’s Democratic Republic. J. Insects Food Feed 2015, 1, 25–31. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2010, 30, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, J.; Downes, B.J. Aquatic versus terrestrial insects: Real or presumed differences in population dynamics? Insects 2018, 9, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, P.-C.; Mark, K.-K. Chironomid farming—A means of recycling farm manure and potentially reducing water pollution in Hong Kong. Aquaculture 1980, 21, 155–163. [Google Scholar] [CrossRef]
- Yokoyama, A.; Hamaguchi, K.; Ohtsu, K.; Ishihara, S.; Kobara, Y.; Horio, T.; Endo, S. A method for mass-rearing caddisfly, Cheumatopsyche brevilineata (Iwata) (Trichoptera: Hydropsychidae), as a new test organism for assessing the impact of insecticides on riverine insects. Appl. Entomol. Zool. 2009, 44, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Locklin, J.L.; Huckabee, J.S.; Gering, E.J. A Method for Rearing Large Quantities of the Damselfly, Ischnura ramburii (Odonata: Coenagrionidae), in the Laboratory. Fla. Entomol. 2012, 95, 273–277. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, T.F.; Su, X.D.; Niu, D.M. Study on the techniques of artificial breeding predacious diving beetle. J. Baicheng Norm. Univ. 2019, 33, 1–4. [Google Scholar]
- Wen, Y.C.; Zhang, T.L. A tentative researche to the large aquatic insect in two classes-predacious diving beetles (Dytiscidae) and giant water burs Lethocerus indicus (Lepeletier et Serville). J. Zhanjiang Ocean. Univ. 1993, 13, 22–27. [Google Scholar]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Bektas, M.; Guler, O. Usage of edible aquatic insects for feed rations of poultry animals. Int. J. Sci. Technol. Res. 2019, 5, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
Order | Number | Feeding Habits | Edible Stage | Mainly Edible Family—Genus (Edible Species Number) | Edible Country (Edible Species Number) |
---|---|---|---|---|---|
Ephemeroptera | 11 | phytophagous | naiad, adult | Ephemeridae—Ephemera (3), Baetidae—Cloeon (2) | India (3), Mexico (2), Malawi (2), Japan (2), China, Papua New Guinea, Kenya, Malawi, Tanzania, Uganda |
Odonata | 72 | predatism | naiad, adult | Libellulidae—Sympetrum (8), Libellulidae—Orthetrum (7), Aeschnidae—Rhionaeschna (4), Libellulidae—Neurothemis (3), Libellulidae—Trithemis (3), Aeschnidae—Anax (3), | India (14), China (13), Thailand (13), Indonesia (12), Venezuela (10), Japan (10), Ecuador (4), Mexico (3), Laos (3), Madagascar (2), Myanmar (2), Vietnam (2), USA, Italy, South Korea, D.R.Congo |
Plecoptera | 11 | omnivorous | naiad | Pteronarcyidae—Pteronarcys (4) | Japan (6), USA (4), India (2) |
Hemiptera | 68 | predatism | egg, naiad, adult | Nepidae—Laccotrephes (7), Belostomatidae—Lethocerus (6), Nepidae—Ranatra (5) Belostomatidae—Abedus (3), Belostomatidae—Diplonychus (3), Belostomatidae—Sphaerodema (3), Corixidae—Corisella (3), Corixidae—Graptocorixa (3) | Mexico (17), Thailand (17), China (8), Japan (8), India (7), Venezuela (4), Madagascar (4), Laos (4), USA (3), Myanmar (3), Vietnam (2), D.R. Congo, Cameroon, Zambezian region, Malaysia, Mali, Singapore, Sri Lanka, Republic of Congo, Togo, Malawi, South Korea |
Megaloptera | 15 | predatism | larva | Corydalidae—Acanthacorydalis (6), Corydalidae—Corydalus (4) | China (9), Japan (2), Peru (2), Mexico, Colombia, Venezuela |
Coleoptera | 108 | predatism | larva, pupa, adult | Dytiscidae—Cybister (32), Hydrophilidae—Hydrophilus (14), Dytiscidae—Dytiscus (6), Dytiscidae—Rhantus (6), Dytiscidae—Laccophilus (5), Hydrophilidae—Tropisternus (5), Gyrinidae—Gyrinus (4) | Mexico (35), China (26), Japan (22), Thailand (21), India (11), Madagascar (10), Laos (9), Vietnam (7), Myanmar (6), Senegal (4), North Korea (3), Sri Lanka(3), Benin (3), Malaysia (3), Togo (3), Chile (3), Sabah (2), Cambodia (2), South Korea (2), USA (2), Indonesia (2), Cameroon (2), Turkey (2), Peru (2), Australia (2), Sierra Leone, D.R.Congo, Gabon, Panama |
Diptera | 27 | saprophagous | larva, pupa | Chaoboridae—Chaoborus (4), Tipulidae—Tipula (4), Ephydridae—Ephydra (3), Simuliidae—Simulium (3) | USA (7), Uganda (6), Mexico (5), Venezuela (2), Japan (2), Kenya (2), Tanzania (2), Brazil, China, Colombia, Malawi, N. Am., Nearctic, Sri Lanka, Thailand |
Trichoptera | 17 | phytophagous | larva | Stenopsychidae—Stenopsyche (3) | Japan (12), Venezuela (4), Mexico (2), Colombia |
Order | Species | Developmental Stage | Yield of Chitin (%) | Yield of Chitosan (%) | Reference |
---|---|---|---|---|---|
Aquatic insects | |||||
Coleoptera | Agabus bipustulatus | - | 14.00–15.00 | 71.00 | [85] |
Hydrophilus piceus | - | 19.00–20.00 | 74.00 | ||
Odonata | Anax imperator | L | 11.00–12.00 | 67.00 | |
Hemiptera | Notonecta glauca | - | 10.00–11.00 | 69.00 | |
Ranatra linearis | - | 15.00–16.00 | 70.00 | ||
Terrestrial insects | |||||
Lepidoptera | Bombyx mori | P | 2.59–4.23 | 73.00–96.35 | [86] |
Coleoptera | Catharsius molossus | A | 24.00 | 70.83 | [87] |
Orthoptera | Pterophylla beltrani | - | 11.80 | 58.80 | [88] |
Brachytrupes portentosus | - | 4.30–7.10 | 55.81–81.69 | [89] | |
Calliptamus barbaru | A | 20.50 | 74.00–75.00 | [90] | |
Oedaleus decorus | A | 16.50 | 75.00–76.00 | ||
Hymenoptera | Apsis mellifera | A | 19.00–36.80 | 16.00–30.00 | [91] |
Diptera | Musca domestica | P | 8.02 | 73.19 | [92] |
Hermetia illucens | L | 7.00 | 32.00 | [93] | |
Drosophila melanogaster | A | 7.85 | 70.91 | [94] | |
Blattodea | Periplaneta americana | - | 12.17 | 59.82 | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Wang, C.-Y.; Sun, L.; He, Z.; Yang, P.-L.; Liao, H.-J.; Feng, Y. Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods 2021, 10, 3033. https://doi.org/10.3390/foods10123033
Zhao M, Wang C-Y, Sun L, He Z, Yang P-L, Liao H-J, Feng Y. Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods. 2021; 10(12):3033. https://doi.org/10.3390/foods10123033
Chicago/Turabian StyleZhao, Min, Cheng-Ye Wang, Long Sun, Zhao He, Pan-Li Yang, Huai-Jian Liao, and Ying Feng. 2021. "Edible Aquatic Insects: Diversities, Nutrition, and Safety" Foods 10, no. 12: 3033. https://doi.org/10.3390/foods10123033
APA StyleZhao, M., Wang, C.-Y., Sun, L., He, Z., Yang, P.-L., Liao, H.-J., & Feng, Y. (2021). Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods, 10(12), 3033. https://doi.org/10.3390/foods10123033