Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Juice Production
2.2. Physicochemical and Chemical Juice Characterization
2.3. Fruits and Juices Volatile Fraction Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical and Chemical Characterization of Juices
3.2. HS-SPME/GC-MS Volatile Fraction Characterization of Fruits and Juices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tennant, D.R.; Davidson, J.; Day, A.J. Phytonutrient intakes in relation to European fruit and vegetable consumption patterns observed in different food surveys. Br. J. Nutr. 2014, 112, 1214–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allenda, A.; Tomás-Barberán, F.A.; Gil, M.I. Minimal processing for healthy traditional foods. Trends Food Sci. Tech. 2006, 17, 513–519. [Google Scholar] [CrossRef]
- Oliveira, F.A.R.; Oliveira, J.C. (Eds.) Process optimization and minimal processing of food. In Processing Foods: Quality Optimization and Process Assessment; CRC Press: New York, NY, USA, 1999; ISBN 9780367455699. [Google Scholar]
- Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Van der Plancken, I.; Hendrickx, M.E.; Matser, A.M. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innov. Food Sci. Emerg. Technol. 2011, 12, 235–243. [Google Scholar] [CrossRef]
- Chen, C.S.; Wu, M.C. Kinetic models for thermal inactivation of multiple pectin esterases in citrus juices. J. Food Sci. 1998, 63, 1–4. [Google Scholar] [CrossRef]
- Braddock, R.J. Handbook of Citrus By-Products and Processing Technology; John Wiley and Sons Inc.: New York, NY, USA, 1999; ISBN 978-0-471-19024-0. [Google Scholar]
- Esteve, M.J.; Frígola, A.; Rodrigo, C.; Rodrigo, D. Effect of storage period under variable conditions on the chemical and physical composition and color of Spanish refrigerated orange juices. Food Chem. Toxicol. 2005, 43, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.K.; Zerdin, K.; Howe, E.; Goicoechea, D.; Paramanandhan, P.; Stockman, R.; Sellahewa, J.; Szabo, E.A.; Johnson, R.L.; Stewart, C.M. The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov. Food Sci. Emerg. Technol. 2004, 5, 135–149. [Google Scholar] [CrossRef]
- Kebede, B.; Lee, P.Y.; Leong, S.Y.; Kethireddy, V.; Ma, Q.; Aganovic, K.; Eyres, G.T.; Hamid, N.; Oey, I. A chemometrics approach comparing volatile changes during the shelf life of apple juice processed by pulsed electric fields, high pressure and thermal pasteurization. Foods 2018, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Knorr, D.; Froehling, A.; Jaeger, H.; Reineke, K.; Schlueter, O.; Schoessler, K. Emerging technologies in food processing. Annu. Rev. Food Sci. Technol. 2011, 2, 203–235. [Google Scholar] [CrossRef] [Green Version]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on color, texture and flavour of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Yi, J.J.; Kebede, B.T.; Dang, D.N.H.; Buve, C.; Grauwet, T.; Van Loey, A.; Hu, X.S.; Hendrickx, M. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT 2017, 75, 85–92. [Google Scholar] [CrossRef]
- Soler, C.; Soriano, J.M.; Mañes, J. Apple-products phytochemicals and processing: A review. Nat. Prod. Commun. 2009, 4, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayindirli, A.; Alpas, H.; Bozoglu, F.; Hızal, M. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Food Control 2006, 17, 52–58. [Google Scholar] [CrossRef]
- Juarez-Enriquez, E.; Salmeron-Ochoa, I.; Gutierrez-Mendez, N.; Ramaswamy, H.S.; Ortega-Rivas, E. Shelf life studies on apple juice pasteurised by ultrahigh hydrostatic pressure. LWT 2015, 62, 915–919. [Google Scholar] [CrossRef]
- Landl, A.; Abadias, M.; Sarraga, C.; Vinas, I.; Picouet, P.A. Effect of high pressure processing on the quality of acidified Granny Smith apple puree product. Innov. Food Sci. Emerg. Technol. 2010, 11, 557–564. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Graham, W.D.; Beattie, A.; Linton, M.; McKay, A.; Fearon, A.M.; Patterson, M.F. Defining the stability interfaces of apple juice: Implications on the optimisation and design of High Hydrostatic Pressure treatment. Innov. Food Sci. Emerg. Technol. 2009, 10, 396–404. [Google Scholar] [CrossRef]
- Tetik, N.; Karhan, M.; Turhan, I.; Aksu, M.; Oziyci, H.R. A large-scale study on storage stability of cloudy apple juice treated by N2 and ascorbic acid. J. Food Qual. 2013, 36, 121–126. [Google Scholar] [CrossRef]
- N’Dri, D.; Calani, L.; Mazzeo, T.; Scazzina, F.; Rinaldi, M.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Effects of different maturity stages on antioxidant content of Ivorian Gnagnan (Solanum indicum L.) berries. Molecules 2010, 15, 7125–7138. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Cirlini, M.; Levante, A.; Dall’Asta, C.; Galaverna, G.; Lazzi, C. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Food Res. Int. 2018, 105, 412–422. [Google Scholar] [CrossRef]
- Ricci, A.; Cirlini, M.; Guido, A.; Liberatore, C.M.; Ganino, T.; Lazzi, C.; Chiancone, B. From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods 2019, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Bassi, M.; Lubes, G.; Bianchi, F.; Agnolet, S.; Ciesa, F.; Brunner, K.; Oberhuber, M. Ascorbic acid content in apple pulp, peel, and monovarietal cloudy juices of 64 different cultivars. Int. J. Food Prop. 2017, 20, S2626–S2634. [Google Scholar] [CrossRef] [Green Version]
- Cheftel, J.C. Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. 1995, 1, 75–90. [Google Scholar] [CrossRef]
- Kaushik, N.; Kaur, B.P.; Rao, P.S.; Mishra, H.N. Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innov. Food Sci. Emerg. Technol. 2014, 22, 40–50. [Google Scholar] [CrossRef]
- Jayachandran, L.E.; Chakraborty, S.; Rao, P.S. Effect of high pressure processing on physicochemical properties and bioactive compounds in litchi based mixed fruit beverage. Innov. Food Sci. Emerg. Technol. 2015, 28, 1–9. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; Somasundram, C. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrason. Sonochem. 2013, 20, 1276–1282. [Google Scholar] [CrossRef]
- Murtaza, A.; Iqbal, A.; Marszałek, K.; Iqbal, M.A.; Ali, S.W.; Xu, X.; Pan, S.; Hu, W. Enzymatic, phyto-, and physicochemical evaluation of apple juice under high-pressure carbon dioxide and thermal processing. Foods 2020, 9, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Shen, H.; Tian, Y.; You, Z.; Guo, Y. Effect of thermal pasteurization and ultraviolet treatment on the quality parameters of not-from-concentrate apple juice from different varieties. CYTA J. Food 2019, 17, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.D.S.; Patras, A.; Pokharel, B.; Wu, Y.; Vergne, M.J.; Shade, L.; Xiao, H.; Sasges, M. UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innov. Food Sci. Emerg. Technol. 2016, 34, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Sun, L.; Yang, Y.; Gou, X.; Niu, P.; Guo, Y. Changes in the physicochemical properties, aromas and polyphenols of not from concentrate (NFC) apple juice during production. CYTA J. Food 2018, 16, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Teleszko, M.; Nowicka, P.; Wojdyło, A. Chemical, enzymatic and physical characteristic of cloudy apple juices. Agric. Food Sci. 2016, 25, 34–43. [Google Scholar] [CrossRef]
- Krapfenbauer, G.; Kinner, M.; Gössinger, M.; Schönlechner, R.; Berghofer, E. Effect of thermal treatment on the quality of cloudy apple juice. J. Agric. Food Chem. 2006, 54, 5453–5460. [Google Scholar] [CrossRef]
- Falguera, V.; Gatius, F.; Ibarz, A.; Barbosa-Cánovas, G.V. Changes on color parameters caused by high--pressure processing of apple juice made from six different varieties. Int. J. Food Sci. Techol. 2012, 47, 2158–2164. [Google Scholar] [CrossRef]
- Billy, L.; Mehinagic, E.; Royer, G.; Renard, C.M.; Arvisenet, G.; Prost, C.; Jourjon, F. Relationship between texture and pectin composition of two apple cultivars during storage. Postharvest Biol. Technol. 2008, 4, 315–324. [Google Scholar] [CrossRef]
- Szczepańska, J.; Skąpska, S.; Lorenzo, J.M.; Marszałek, K. The Influence of static and multi-pulsed pressure processing on the enzymatic and physico-chemical quality, and antioxidant potential of carrot juice during refrigerated storage. Food Bioprocess Technol. 2021, 14, 52–64. [Google Scholar] [CrossRef]
- Krebbers, B.; Matser, A.M.; Hoogerwerf, S.H.; Moezelaar, R.; Tomassen, M.M.M.; van den Berg, R.W. Combined high-pressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innov. Food Sci. Emerg. Technol. 2003, 4, 377–385. [Google Scholar] [CrossRef]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Beghè, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Le Guen, S.; Prost, C.; Demaimay, M. Characterization of odorant compounds of mussels (Mytilus edulis) according to their origin using gas chromatography—olfactometry and gas chromatography—mass spectrometry. J. Chromatogr. A 2000, 896, 361–371. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Cirlini, M.; Morini, E.; Galaverna, G. Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. J. Chromatogr. A 2011, 1218, 7557–7565. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A. Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J. Chromatogr. A 2012, 1226, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Valim, M.F.; Rouseff, R.L.; Lin, J. Gas chromatographic-olfactometric characterization of aroma compounds in two types of cashew apple nectar. J. Agric. Food Chem. 2003, 51, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Standard Reference Data NIST. 2019. Available online: http://www.nist.gov/srd/nist1a.cfm/ (accessed on 14 June 2021).
- Aubert, C.; Bourger, N. Investigation of volatiles in charentais cantaloupe melons (Cucumis melo Var. cantalupensis). Characterization of aroma constituents in some cultivars. J. Agric. Food Chem. 2004, 52, 4522–4528. [Google Scholar] [CrossRef]
- Ledauphin, J.; Saint-Clair, J.F.; Lablanquie, O.; Guichard, H.; Founier, N.; Guichard, E.; Barillier, D. Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separations coupled with gas chromatography-mass spectrometry. J. Agric. Food Chem. 2004, 52, 5124–5134. [Google Scholar] [CrossRef]
- Choi, H.S. Character impact odorants of citrus hallabong [(C. unshiuMarcov x C. sinensisOsbeck) x C. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 2003, 51, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Kim, K.S. Volatile organic compounds of medicinal values from Nepalese Acorus calamus L. Kathmandu Univ. J. Sci. Eng. Technol. 2009, 5, 51–65. [Google Scholar]
- Vahirua-Lechat, I.; Mitermite, Y.; Menut, C. Aromatic plants of French Polynesia. IV. Composition and chemical variations of the essential oils of leaves of Etlingera cevuga (seeman) R.E. Smith. J. Essent. Oil Res. 2010, 22, 407–409. [Google Scholar] [CrossRef]
- Reid, L.M.; O’Donnell, C.P.; Kelly, J.D.; Downey, G. Preliminary Studies for the Differentiation of Apple Juice Samples by Chemometric Analysis of Solid-Phase Microextraction-Gas Chromatographic Data. J. Agric. Food Chem. 2004, 52, 6891–6896. [Google Scholar] [CrossRef]
- Plotto, A.; McDaniel, R.M.; Mattheis, J.P. Characterisation of Gala apple aroma and flavor: Differences between controlled atmosphere and air storage. J. Am. Soc. Hortic. Sci. 1999, 124, 416–423. [Google Scholar] [CrossRef]
- Lopez, M.L.; Lavilla, M.T.; Recesens, I.; Graell, J.; Vendrell, M. Changes in aroma quality of Golden Delicious apples after storage at different oxygen and carbon dioxide concentrations. J. Sci. Food Agric. 2000, 80, 311–324. [Google Scholar] [CrossRef]
- Young, H.; Gilbert, J.M.; Murray, S.H.; Ball, R.D. Causal effects of aroma compounds on Royal Gala apple flavours. J. Sci. Food Agric. 1996, 71, 329–336. [Google Scholar] [CrossRef]
- Fraternale, D.; Ricci, D.; Flamini, G.; Giomaro, G. Volatiles Profile of Red Apple from Marche Region (Italy). Rec. Nat. Prod. 2011, 53, 202–207. [Google Scholar]
- Paliyath, G.; Whiting, M.D.; Stasiak, M.A.; Murr, D.P.; Clegg, B.S. Volatile production and fruit quality during development of superficial scald in Red Delicious apples. Food Res. Int. 1997, 30, 95–103. [Google Scholar] [CrossRef]
Cultivar | Stabilization Treatment | pH ± SD | Total Titratable Acidity | Total Soluble Solids | Colorimetric Parameters | ||
---|---|---|---|---|---|---|---|
g/L Malic Acid ± SD | °Bx ± SD | L* ± SD | A* ± SD | B* ± SD | |||
Golden Delicious | NT | 3.7 ± 0.1 | 4.6 ± 0.7 | 12.2 ± 0.4 | 49.9 ± 0.7 | 0.1 ± 0.3 | 33.7 ± 1.5 |
TT | 3.2 ± 0.0 | 4.5 ± 0.2 | 12.1 ± 0.2 | 59.4 ± 0.4 | −7.0 ± 0.0 | 43.0 ± 0.9 | |
HPP | 3.4 ± 0.0 | 5.3 ± 0.2 | 11.8 ± 0.9 | 51.2 ± 0.2 | −2.9 ± 0.2 | 39.1 ± 0.7 | |
Pinova | NT | 3.2 ± 0.1 | 4.4 ± 1.2 | 12.1 ± 0.2 | 47.2 ± 0.6 | 2.8 ± 0.2 | 36.7 ± 1.2 |
TT | 3.3 ± 0.0 | 4.8 ± 0.8 | 12.7 ± 0.4 | 44.6 ± 0.6 | 2.2 ± 0.4 | 34.3 ± 1.1 | |
HPP | 3.3 ± 0.0 | 5.2 ± 0.4 | 12.5 ± 0.1 | 41.1 ± 0.5 | 3.4 ± 0.6 | 36.9 ± 1.1 | |
Red Delicious | NT | 3.7 ± 0.2 | 2.7 ± 0.4 | 12.6 ± 0.4 | 38.9 ± 1.2 | 11.1 ± 1.2 | 26.8 ± 0.9 |
TT | 3.7 ± 0.0 | 2.7 ± 0.1 | 12.2 ± 0.5 | 40.9 ± 0.8 | 4.4 ± 0.4 | 34.9 ± 0.8 | |
HPP | 3.7 ± 0.0 | 3.0 ± 0.0 | 12.3 ± 0.2 | 37.6 ± 1.0 | 6.3 ± 0.9 | 32.0 ± 2.6 | |
Cultivar (CV) | 0.000 | 0.000 | 0.091 | 0.000 | 0.000 | 0.000 | |
Stabilization Treatment (ST) | 0.017 | 0.070 | 0.841 | 0.011 | 0.003 | 0.000 | |
CV * ST | 0.001 | 0.891 | 0.322 | 0.042 | 0.166 | 0.001 |
Peak Number | Identification | Matrix (A/J) | Aromatic Note | LRI Calc. | LRI Litt. | Reference |
---|---|---|---|---|---|---|
Aldehydes | ||||||
1 | Hexanal | A, J | Herbal | 1078 | 1078 | [21] |
2 | Heptanal | A, J | Herbal | 1185 | 1187 | [21] |
3 | 2-Hexenal | A, J | Apple, green | 1219 | 1220 | [21] |
4 | Octanal | A, J | Aldehydic | 1286 | 1294 | [37] |
5 | 2-Heptenal | A, J | Green | 1320 | 1336 | [38] |
6 | Nonanal | A, J | Aldehydic | 1390 | 1390 | [21] |
7 | 2-Octenal | A, J | Green | 1426 | 1438 | [37] |
8 | Furfural | J | Bready, caramel | 1467 | 1475 | [39] |
9 | Decanal | A, J | Orange peel | 1494 | 1492 | [21] |
10 | Benzaldehyde | A, J | Fruity, almond | 1524 | 1524 | [21] |
11 | 2-Nonenal | A, J | Green | 1534 | 1546 | [37] |
12 | Benzeneacetaldehyde | A, J | Green, honey | 1653 | 1630 | [40] |
13 | 2,4-Decadienal | J | Orange, sweet | 1812 | 1758 | [41] |
14 | 2,5-Dimethylbenzaldehyde | J | 1873 | |||
Esters | ||||||
15 | Isobutyl acetate | A, J | Sweet, fruity | 1012 | 1005 | [42] |
16 | Butyl acetate | J | Ethereal | 1077 | 1105 | [42] |
17 | Isoamyl acetate | A, J | Fruity, banana | 1118 | 1113 | [21] |
18 | Amyl acetate | J | Ethereal | 1173 | 1176 | [43] |
19 | Prenyl acetate | J | Sweet, fresh, banana | 1244 | 1248 | [43] |
20 | (E)-2-Methyl-2-butenyl acetate | A, J | 1248 | 1250 | [43] | |
21 | Amylbutyrate | A | Sweet, fruity | 1264 | ||
22 | Hexyl acetate | A, J | Fruit, herb | 1270 | 1270 | [21] |
23 | 3-Hexenyl acetate | J | Green, fruity, apple | 1313 | 1313 | [44] |
24 | 2-Hexenyl acetate | A | Green, fruity | 1332 | 1329 | [20] |
25 | Butylcaproate | A, J | Fruity, pineapple, apple | 1408 | 1407 | [21] |
26 | Hexylbutyrate | A, J | Green | 1410 | 1411 | [21] |
27 | Hexyl n-valerate | A, J | Fruity | 1419 | ||
28 | Isoamylcaproate | A, J | Fruity | 1453 | 1454 | [21] |
29 | 2-Hexenyl butyrate | A, J | Green, fruity, apricot | 1471 | 1460 | [43] |
30 | cis-3-Hexenyl 2-methylbutyrate | A | Fresh, green, apple | 1475 | 1472 | [43] |
31 | Pentylhexanoate | A, J | Sweet, fruity | 1506 | 1505 | [43] |
32 | Isobutyloctanoate | A | Fruity, green | 1548 | 1550 | [43] |
33 | Prenylcaproate | A | Cheesy | 1577 | 1572 | [43] |
34 | Hexylcaproate | A | Green | 1603 | 1606 | [21] |
35 | Butylcaprylate | A, J | Buttery | 1607 | 1613 | [43] |
36 | Ethyldecanoate | J | Sweet, waxy | 1631 | 1645 | [39] |
37 | 2-Methylbutyl octanoate | A | 1668 | 1657 | [43] | |
38 | (E)-2-Hexenyl hexanoate | A | Green, cognac | 1665 | 1660 | [43] |
39 | Phenylmethyl acetate | A, J | Sweet, floral | 1763 | 1754 | [44] |
40 | Hexylcaprylate | A, J | Green | 1801 | 1803 | [21] |
Alcohols | ||||||
41 | Butanol | A, J | Fruity, wine | 1140 | 1141 | [21] |
42 | Isolamylalcohol | A, J | Alcoholic, whiskey | 1205 | 1221 | [21] |
43 | Prenol/2-Heptanol | J | Fruity/fresh | 1317 | 1316 | [43] |
44 | Hexanol | A, J | Herbal | 1348 | 1349 | [21] |
45 | 3-Hexen-1-ol | A, J | Green, leafy | 1381 | 1407 | [42] |
46 | 2-Hexen-1-ol | A, J | Leaf, green | 1401 | 1402 | [21] |
47 | 1 Octen-3-ol | A, J | Earthy | 1446 | 1455 | [37] |
48 | 1-Heptanol | J | Musty, leafy | 1449 | 1460 | [39] |
49 | 6-Methyl-5-hepten-2-ol | A, J | Green | 1459 | 1464 | [45] |
50 | 2-Ethyl-1-hexanol | A, J | Citrus | 1484 | 1483 | [21] |
51 | Octanol | J | Waxy | 1553 | 1553 | [21] |
52 | 2-Octen-1-ol | J | Green, vegetable | 1611 | 1611 | [43] |
53 | Nonanol | J | Fresh, fatty, floral | 1652 | 1657 | [20] |
54 | PhenylethylAlcohol | A, J | Floral | 1904 | 1931 | [39] |
Terepenes, derivatives and norisoprenoids | ||||||
55 | β-Myrcene | A | Spicy | 1160 | 1168 | [46] |
56 | Linalool | J | Floral | 1542 | 1549 | [39] |
57 | Caryophyllene | J | Sweet, woody | 1592 | 1598 | [47] |
58 | Estragole | A, J | Sweet, anise | 1718 | 1685 | [48] |
59 | (Z, E)-α-Farnesene | A | Sweet | 1742 | 1737 | [43] |
60 | (E, E)-α-Farnesene | A, J | Sweet, wood | 1801 | 1764 | [43] |
Ketones | ||||||
61 | Sulcatone | A, J | Citrus | 1335 | 1335 | [21] |
62 | Butyrolactone | A | Bready | 1631 | 1651 | [37] |
Others | ||||||
63 | Dodecane | A | Alkane | 1197 | 1200 | [43] |
64 | Tridecane | A | 1292 | 1300 | [43] |
Compounds | Golden Delcious | Pinova | Red Delicious. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fruit | NT Juice | TT Juice | HPP Juice | Fruit | NT Juice | TT Juice | HPP Juice | Fruit | NT Juice | TT Juice | HPP Juice | |
Heptanal | ||||||||||||
Octanal | ||||||||||||
2-Heptenal | ||||||||||||
2-Octenal | ||||||||||||
Nonanal | ||||||||||||
Benzaldehyde | ||||||||||||
2-Nonenal | ||||||||||||
Benzenacetaldehyde | ||||||||||||
Isobutyl acetate | ||||||||||||
(E)-2-Methyl-2-butenyl acetate | ||||||||||||
Amylbutyrate | ||||||||||||
2-Hexenyl acetate | ||||||||||||
Hexylbutyrate | ||||||||||||
Isoamylcaproate | ||||||||||||
2-hexenyl butyrate | ||||||||||||
cis-3-Hexenyl 2-methylbutyrate | ||||||||||||
Pentylhexanoate | ||||||||||||
Isobutyloctanoate | ||||||||||||
Prenylcaproate | ||||||||||||
Hexylcaproate | ||||||||||||
butylcaprylate | ||||||||||||
2-methylbutyl octanoate | ||||||||||||
(E)-2-Hexenyl hexanoate | ||||||||||||
Phenylmethyl acetate | ||||||||||||
Hexylcaprylate | ||||||||||||
Butanol | ||||||||||||
Isolamylalcohol | ||||||||||||
3-Hexen-1-ol | ||||||||||||
2-Hexen-1-ol | ||||||||||||
1 Octen-3-ol | ||||||||||||
6-Methyl-5-hepten-2-ol | ||||||||||||
2-Ethyl-1-hexanol | ||||||||||||
PhenylethylAlcohol | ||||||||||||
β-Myrcene | ||||||||||||
Butyrolactone |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberatore, C.M.; Cirlini, M.; Ganino, T.; Rinaldi, M.; Tomaselli, S.; Chiancone, B. Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars. Foods 2021, 10, 3046. https://doi.org/10.3390/foods10123046
Liberatore CM, Cirlini M, Ganino T, Rinaldi M, Tomaselli S, Chiancone B. Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars. Foods. 2021; 10(12):3046. https://doi.org/10.3390/foods10123046
Chicago/Turabian StyleLiberatore, Claudia Maria, Martina Cirlini, Tommaso Ganino, Massimiliano Rinaldi, Silvia Tomaselli, and Benedetta Chiancone. 2021. "Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars" Foods 10, no. 12: 3046. https://doi.org/10.3390/foods10123046
APA StyleLiberatore, C. M., Cirlini, M., Ganino, T., Rinaldi, M., Tomaselli, S., & Chiancone, B. (2021). Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars. Foods, 10(12), 3046. https://doi.org/10.3390/foods10123046