Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum (Lamiaceae) Postdistillation Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Preparation of the O. americanum Dry Extract
2.4. Total Phenolic Content (TPC)
2.5. Chromatographic Analyses of the ODE
2.6. Pharmacological Activities
2.6.1. Antiradical Activity against DPPH (In Vitro)
2.6.2. Acute Toxicity and Anti-Inflammatory Activity Studies (In Vivo)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds
3.2. Evaluation of Bioactive Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-salam, E.M.; Qahtan, A.A.; Cantini, C. Production of Plant Secondary Metabolites: Examples, Tips, and Suggestions for Biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Rakić, D.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Pressurized-liquid extraction as an efficient method for valorization of Thymus serpyllum herbal dust towards sustainable production of antioxidants. Molecules 2021, 26, 2548. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020, 25, 309. [Google Scholar] [CrossRef] [Green Version]
- Amor, G.; Sabbah, M.; Caputo, L.; Idbella, M.; De Feo, V.; Porta, R.; Fechtali, T.; Mauriello, G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods 2021, 8, 121. [Google Scholar] [CrossRef]
- The Plant List. 2021. Available online: http://www.theplantlist.org (accessed on 1 October 2021).
- Shanaida, M.; Jasicka-Misiak, I.; Makowicz, E.; Stanek, N.; Shanaida, V.; Wieczorek, P.P. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of Lamiaceae family. J. Pharm. Bioall. Sci. 2020, 12, 139–145. [Google Scholar] [CrossRef]
- Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev. 2020, 19, 907–953. [Google Scholar] [CrossRef]
- Aluko, B.T.; Oloyede, O.I.; Aщayan, A.J. Polyphenolic contents and free radical scavenging potential of extracts from leaves of Ocimum americanum L. Pak. J. Biol. Sci. 2013, 1, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Genfi, A.K.A.; Larbie, C.; Emikpe, B.O.; Oyagbemi, A.A.; Firempong, C.K.; Adjei, C.O. Modulation of Oxidative Stress and Inflammatory Cytokines as Therapeutic Mechanisms of Ocimum americanum L Extract in Carbon Tetrachloride and Acetaminophen-Induced Toxicity in Rats. J. Evid. Based Integr. Med. 2020, 25. [Google Scholar] [CrossRef]
- Shanaida, M.; Golembiovska, O.; Jasicka-Misiak, I.; Oleshchuk, O.; Beley, N.; Kernychna, I.; Wieczorek, P.P. Sedative Effect and Standardization Parameters of Herbal Medicinal Product Obtained from the Ocimum americanum L. Herb. Eur. Pharm. J. 2021, 68, 1–9. [Google Scholar] [CrossRef]
- Zengin, G.; Ferrante, C.; Gnapi, D.E.; Sinan, K.I.; Orlando, G.; Recinella, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Chiavaroli, A.; et al. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L.). Food Res. Int. 2019, 125, 108610. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Polissiou, M.; Astraka, M.; de los Mozos-Pascual, M.; Tarantilis, P.; Herraiz-Peñalver, D.; Santana-Méridas, O. Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind. Crop. Prod. 2013, 49, 150–159. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France; European Pharmacopoeia Commission: Strasbourg, France, 2021; Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition (accessed on 1 October 2021).
- Brglez Mojzer, E.; Knez Hrnčič, M.K.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Gavarić, N.; Kladar, N.; Mišan, A.; Nikolić, A.; Samojlik, I.; Mimica-Dukić, N.; Božin, B. Postdistillation waste material of thyme (Thymus vulgaris L., Lamiaceae) as a potential source of biologically active compounds. Ind. Crop. Prod. 2015, 74, 457–464. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Marzouki, M.; M’Rabet, Y.; Mezni, M.; Ouazzou, A.A.; Hosni, K. Enzyme pretreatment improves the recovery of bioactive phytochemicals from sweet basil (Ocimum basilicum L.) leaves and their hydrodistilled residue by-products, and potentiates their biological activities. Arab. J. Chem. 2020, 13, 6451–6460. [Google Scholar] [CrossRef]
- Shanaida, M.; Hudz, N.; Jasicka-Misiak, I.; Wieczorek, P.P. Polyphenols and Pharmacological Screening of a Monarda fistulosa L. Dry Extract Based on a Hydrodistilled Residue By-Product. Front. Pharm. 2021, 12, 563436. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Nurok, D. Strategies for optimizing the mobile phase in planar chromatography. Chem. Rev. 1989, 89, 363–375. [Google Scholar] [CrossRef]
- Hudz, N.; Makowicz, E.; Shanaida, M.; Białoń, M.; Jasicka-Misiak, I.; Yezerska, O.; Svydenko, L.; Wieczorek, P.P. Phytochemical evaluation of tinctures and essential oil obtained from Satureja montana herb. Molecules 2020, 25, 4763. [Google Scholar] [CrossRef]
- Gougoulias, N.; Mashev, N. Antioxidant activity and polyphenols content of some herbal teas of Lamiaceae family from Greece and Bulgaria. Oxid. Commun. 2015, 38, 25–31. [Google Scholar]
- European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes; Council of Europe: Strasbourg, France, 1986; p. 53.
- Stefanov, O.V. (Ed.) Doklinichni Doslidzhennia Likarskykh Zasobiv (Metodychni Rekomendacii) [Preclinical RESEARCH OF MEDicinal Products]; Avicenna: Kyiv, Ukraine, 2001; pp. 73–209. (In Ukrainian) [Google Scholar]
- Majdi, C.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Alves, M.J.; Rhourri-Frih, B.; Charrouf, Z.; Barros, L.; Amaral, J.S.; Ferreira, I. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv.’Cinnamon’) and Lemon Basil (Ocimum×citriodorum). Antioxidants 2020, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kumar, P.; Arivazhagan, G.; Lee, S.I.; Yoon, H.M.; Kim, I.H.; Kwon, H.J.; Kim, J.M.; Hakkim, F.L. Antioxidant property of leaves and calluses extracts of in-vitro grown 5 different Ocimum species. J. Plant Biotechnol. 2012, 39, 146–153. [Google Scholar] [CrossRef]
- Tufts, H.R.; Harris, C.S.; Bukani, Z.N.; Johns, T. Antioxidant and Anti-Inflammatory Activities of Kenyan Leafy Green Vegetables, Wild Fruits, and Medicinal Plants with Potential Relevance for Kwashiorkor. Evid.-Based Complement. Altern. Med. 2015, 2015, 807158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukardi; Pulungan, M.H.; Purwaningsih, I.; Sita, P.F. Extraction of phenolic compounds from basil (Ocimum americanum L.) leaves with pretreatment using pulsed electric field (PEF). IOP Conf. Ser. Earth Environ. Sci. 2020, 475, 012056. [Google Scholar] [CrossRef]
- Pandey, R.; Chandra, P.; Kumar, B.; Dutt, B.; Sharma, K.R. A rapid and highly sensitive method for simultaneous determination of bioactive constituents in leaf extracts of six Ocimum species using ultra high performance liquid chromatography-hybrid linear ion trap triple quadrupole mass spectrometry. Anal. Methods 2016, 8, 333–341. [Google Scholar] [CrossRef]
- Luo, C.; Zou, L.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Jin, Y.; Sun, S. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front. Pharm. 2020, 11, 153. [Google Scholar] [CrossRef]
- Toma, L.; Sanda, G.M.; Niculescu, L.S.; Deleanu, M.; Stancu, C.S.; Sima, A.V. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. BioFactors 2017, 43, 685–697. [Google Scholar] [CrossRef]
- Zaragozá, C.; Villaescusa, L.; Monserrat, J.; Zaragozá, F.; Álvarez-Mon, M. Potential therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols. Molecules 2020, 25, 1017. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Ezzat, S.M.; Salama, M.M.; Tadros, M.G. Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. J. Pharm. Biomed. Anal. 2016, 125, 292–302. [Google Scholar] [CrossRef]
- Habtemariam, S.; Belai, A. Natural therapies of the inflammatory bowel disease: The case of rutin and its aglycone, quercetin. Mini Rev. Med. Chem. 2018, 18, 234–243. [Google Scholar] [CrossRef]
- Park, C.M.; Song, Y.-S. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 2013, 7, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyedemi, S.O.; Oyedemi, B.O.; Coopoosamy, R.M.; Prieto, J.M.; Stapleton, P.; Gibbons, S. Antibacterial and norfloxacin potentiation activities of Ocimum americanum L. against methicillin resistant Staphylococcus aureus. S. Afr. J. Bot. 2017, 109, 308–331. [Google Scholar] [CrossRef]
- Yousuf, P.H.; Noba, N.Y.; Shohel, M.; Bhattacherjee, R.; Das, B.K. Analgesic, anti-inflammatory and antipyretic effect of Mentha spicata (Spearmint). Br. J. Pharm. Res 2013, 3, 854–864. [Google Scholar] [CrossRef]
- Deme, P.; Aluganti Narasimhulu, C.; Parthasarathy, S. Evaluation of anti-inflammatory properties of herbal aqueous extracts and their chemical characterization. J. Med. Food 2019, 22, 861–873. [Google Scholar] [CrossRef]
- Libby, P. Inflammatory mechanisms: The molecular basis of inflammation and disease. Nutr. Rev. 2007, 65, 140–146. [Google Scholar] [CrossRef]
- Phromnoi, K.; Suttajit, M.; Saenjum, C. Polyphenols and rosmarinic acid contents, antioxidant and anti-inflammatory activities of different solvent fractions from Nga-Mon (Perilla frutescens) leaf. J. Pharm. Nutr. Sci 2019, 9, 239–246. [Google Scholar] [CrossRef]
- Qnais, E.Y.; Abu-Dieyeh, M.; Abdulla, F.A.; Abdalla, S.S. The antinociceptive and anti-inflammatory effects of Salvia officinalis leaf aqueous and butanol extracts. Pharm. Biol. 2010, 48, 1149–1156. [Google Scholar] [CrossRef]
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.; Serra, A.T.; Pinto, R.; Freitas, M.; et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol. 2015, 116, 398–441. [Google Scholar] [CrossRef]
Time (min) after Injection of a Sample | Mobile Phase A (Vol, %) | Mobile Phase B (Vol, %) |
---|---|---|
0–5 | 95 | 5 |
5–35 | 95 → 75 | 5 → 25 |
35–40 | 75 | 25 |
40–60 | 75 → 50 | 25 → 50 |
60–65 | 50 → 20 | 50 → 80 |
65–70 | 20 | 80 |
70–85 | 95 | 5 |
Compound | Retention Time, min | Content, mg/g of Dry Extract |
---|---|---|
Neochlorogenic acid | 14.8 | 0.31 ± 0.01 |
Catechin | 19.5 | 0.90 ± 0.04 |
Chlorogenic acid | 20.4 | 0.95 ± 0.03 |
Caffeic acid | 21.6 | 4.13 ± 0.11 |
Rutin | 30.9 | 11.20 ± 0.26 |
Hyperoside | 31.6 | 6.34 ± 0.12 |
Ferulic acid | 32.3 | 8.21 ± 0.09 |
Luteolin-7-O-glucoside | 33.1 | 17.22 ± 0.49 |
Apigenin-7-O-glucoside | 36.8 | 5.64 ± 0.12 |
Rosmarinic acid | 37.8 | 78.70 ± 1.13 |
Acacetin-7-O-glucoside | 45.8 | 3.51 ± 0.08 |
Quercetin | 46.6 | 2.21 ± 0.06 |
Luteolin | 47.0 | 7.82 ± 0.14 |
Apigenin | 52.4 | 1.94 ± 0.05 |
Treatment | Dose (mg/kg) | Increase in Paw Oedema | |||||
---|---|---|---|---|---|---|---|
After 1 h | After 3 h | After 6 h | |||||
Diff | % AIE | Diff | % AIE | Diff | % AIE | ||
Control | - | 0.34 ± 0.03 | - | 0.41 ± 0.02 | - | 0.38 ± 0.02 | - |
ODE | 25 | 0.29 ± 0.02 2 | 14.71 | 0.33 ± 0.03 2 | 19.5 | 0.34 ± 0.02 1,2 | 10.53 |
50 | 0.27 ± 0.03 2 | 23.53 | 0.30 ± 0.02 1,2 | 26.83 | 0.31 ± 0.01 1 | 18.42 | |
100 | 0.24 ± 0.01 1,2 | 29.41 | 0.28 ± 0.01 1,2 | 31.71 | 0.29 ± 0.02 1 | 23.68 | |
Diclofenac | 8 | 0.18 ± 0.02 1 | 47.05 | 0.21 ± 0.03 1 | 48.78 | 0.29 ± 0.01 1 | 23.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasicka-Misiak, I.; Shanaida, M.; Hudz, N.; Wieczorek, P.P. Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum (Lamiaceae) Postdistillation Waste. Foods 2021, 10, 3063. https://doi.org/10.3390/foods10123063
Jasicka-Misiak I, Shanaida M, Hudz N, Wieczorek PP. Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum (Lamiaceae) Postdistillation Waste. Foods. 2021; 10(12):3063. https://doi.org/10.3390/foods10123063
Chicago/Turabian StyleJasicka-Misiak, Izabela, Mariia Shanaida, Nataliia Hudz, and Piotr Paweł Wieczorek. 2021. "Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum (Lamiaceae) Postdistillation Waste" Foods 10, no. 12: 3063. https://doi.org/10.3390/foods10123063
APA StyleJasicka-Misiak, I., Shanaida, M., Hudz, N., & Wieczorek, P. P. (2021). Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum (Lamiaceae) Postdistillation Waste. Foods, 10(12), 3063. https://doi.org/10.3390/foods10123063