Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae and Other Ingredients
2.2. Couscous Preparation
2.3. Cooking Quality Assessment
2.4. Color Analysis
2.5. Rheology Characterization Plate System
2.6. Texture Analysis
2.7. Proximate Chemical Composition and Fatty Acid Determination
2.8. In Vitro Digestion: INFOGEST Static Model
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Cooking Quality
3.2. Color Stability
3.3. Mechanical Properties
3.3.1. Rheological Properties of Couscous Dough
3.3.2. Texture of Steam-Cooked Couscous
3.4. Nutritional Profile
3.5. In Vitro Digestibility
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y. Perspectives on the 21st century development of functional foods: Bridging Chinese medicated diet and functional foods. Int. J. Food Sci. Technol. 2001, 36, 229–242. [Google Scholar] [CrossRef]
- Rodríguez-Costa, S.; Cardelle-Cobas, A.; Roca-Saavedra, P.; Porto-Arias, J.J.; Miranda, J.; Cepeda, A. In vitro evaluation of the prebiotic effect of red and white grape polyphenolic extracts. J. Physiol. Biochem. 2018, 74, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT 2019, 115, 108439. [Google Scholar] [CrossRef]
- Oncel, S.S.; Kose, A.; Vardar, F.; Torzillo, G. From the ancient tribes to modern societies, microalgae evolution from a simple food to an alternative fuel source. In Handbook of Marine Microalgae; Elsevier: Amsterdam, The Netherlands, 2015; pp. 127–144. [Google Scholar]
- Khemiri, S.; Khelifi, N.; Nunes, M.C.; Ferreira, A.; Gouveia, L.; Smaali, I.; Raymundo, A. Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Res. 2020, 50, 101998. [Google Scholar] [CrossRef]
- Nunes, M.C.; Graça, C.; Vlaisavljević, S.; Tenreiro, A.; Sousa, I.; Raymundo, A. Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread. Algal Res. 2020, 45, 101749. [Google Scholar] [CrossRef]
- Graça, C.; Fradinho, P.; Sousa, I.; Raymundo, A. Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT 2018, 89, 466–474. [Google Scholar] [CrossRef]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- De Souza, M.P.; Hoeltz, M.; Gressler, P.D.; Benitez, L.B.; Schneider, R.C. Potential of microalgal bioproducts: General perspectives and main challenges. Waste Biomass Valorization 2019, 10, 2139–2156. [Google Scholar] [CrossRef]
- Pisanello, D.; Caruso, G. EU Regulation on Novel Foods. In Novel Foods in the European Union; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–29. [Google Scholar]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical characterization of six microalgae with potential utility for food application. J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Batista, A.P.; Gouveia, L.; Bandarra, N.M.; Franco, J.M.; Raymundo, A. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res. 2013, 2, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.; Pereira, H.; Campos, J.; Marques, A.; Varela, J.; Silva, J. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schüler, L.; de Morais, E.G.; Trovão, M.; Machado, A.; Carvalho, B.; Carneiro, M.; Maia, I.; Soares, M.; Duarte, P.; Barros, A. Isolation and characterization of novel Chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications. Front. Bioeng. Biotechnol. 2020, 8, 469. [Google Scholar] [CrossRef]
- Qazi, W.M.; Ballance, S.; Uhlen, A.K.; Kousoulaki, K.; Haugen, J.-E.; Rieder, A. Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii–Impact on dough rheology and bread quality. LWT 2021, 143, 111115. [Google Scholar] [CrossRef]
- Messia, M.C.; Oriente, M.; Angelicola, M.; De Arcangelis, E.; Marconi, E. Development of functional couscous enriched in barley β-glucans. J. Cereal Sci. 2019, 85, 137–142. [Google Scholar] [CrossRef]
- Chemache, L.; Kehal, F.; Namoune, H.; Chaalal, M.; Gagaoua, M. Couscous: Ethnic making and consumption patterns in the Northeast of Algeria. J. Ethn. Foods 2018, 5, 211–219. [Google Scholar] [CrossRef]
- Demir, B.; Bilgicli, N.; Elguen, A.; Demir, M.K. The effect of partial substitution of wheat flour with chickpea flour on the technological, nutritional and sensory properties of couscous. J. Food Qual. 2010, 33, 728–741. [Google Scholar] [CrossRef]
- Doukani, K. Comparative study between industrial couscous and acorn-based couscous. Nat. Technol. 2015, 13, 2. [Google Scholar]
- Guilard, R.; Ryther, J. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar]
- Ounane, G.; Cuq, B.; Abecassis, J.; Yesli, A.; Ounane, S.M. Effects of physicochemical characteristics and lipid distribution in Algerian durum wheat semolinas on the technological quality of couscous. Cereal Chem. 2006, 83, 377–384. [Google Scholar] [CrossRef]
- Nunes, M.C.; Fernandes, I.; Vasco, I.; Sousa, I.; Raymundo, A. Tetraselmis chuii as a sustainable and healthy ingredient to produce gluten-free bread: Impact on structure, colour and bioactivity. Foods 2020, 9, 579. [Google Scholar] [CrossRef]
- Graça, C.; Raymundo, A.; Sousa, I. Wheat bread with dairy products—Technology, nutritional, and sensory properties. Appl. Sci. 2019, 9, 4101. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Bessa, R.J.; Alves, S.P.; Jerónimo, E.; Alfaia, C.M.; Prates, J.A.; Santos-Silva, J. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur. J. Lipid Sci. Technol. 2007, 109, 868–878. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Abecassis, J.; Cuq, B.; Boggini, G.; Namoune, H. Other traditional durum-derived products. Durum Wheat Chem. Technol. 2012, 300, 177–199. [Google Scholar]
- Özyurt, G.; Uslu, L.; Yuvka, I.; Gökdoğan, S.; Atci, G.; Ak, B.; Işik, O. Evaluation of the cooking quality characteristics of pasta enriched with Spirulina platensis. J. Food Qual. 2015, 38, 268–272. [Google Scholar] [CrossRef]
- Saleh, M.I.; Meullenet, J.F. Effect of protein disruption using proteolytic treatment on cooked rice texture properties. J. Texture Stud. 2007, 38, 423–437. [Google Scholar] [CrossRef]
- Youssef, M.; Barbut, S. Physicochemical effects of the lipid phase and protein level on meat emulsion stability, texture, and microstructure. J. Food Sci. 2010, 75, S108–S114. [Google Scholar] [CrossRef] [PubMed]
- Tudorica, C.; Kuri, V.; Brennan, C. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT Food Sci. Technol. 2013, 50, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Gebauer, S.; Harris, W.S.; Kris-Etherton, M.; Etherton, T.D. Dietary n-6: n-3 fatty acid ratio and health. In Healthful Lipids; AOCS Publishing: New York, NY, USA, 2019; pp. 221–248. [Google Scholar]
- Prabhasankar, P.; Ganesan, P.; Bhaskar, N.; Hirose, A.; Stephen, N.; Gowda, L.R.; Hosokawa, M.; Miyashita, K. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chem. 2009, 115, 501–508. [Google Scholar] [CrossRef]
- Shimamatsu, H. Mass production of Spirulina, an edible microalga. Hydrobiologia 2004, 512, 39–44. [Google Scholar] [CrossRef]
- Reinehr, C.O.; Costa, J.A.V. Repeated batch cultivation of the microalga Spirulina platensis. World J. Microbiol. Biotechnol. 2006, 22, 937–943. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Khemiri, S.; Bouchech, I.; Berrejeb, N.; Mejri, M.; Smaali, I.; Khelifi, N. Effect of growth-media variation on the nutri-functional properties of microalgae used for the enrichement of “ricotta”. Food Technol. Biotechnol. 2021. accepted. [Google Scholar] [CrossRef]
Semolina | White Chlorella | Honey Chlorella | Smooth Chlorella | Organic Chlorella | Algaessence® | |
---|---|---|---|---|---|---|
Protein% DW * | 12 | 40.9 | 31.6 | 26.3 | 56.6 | 29.5 |
Carbohydrate% DW * | 69 | 40.1 | 54.1 | 58.1 | 6.3 | 8.6 |
Lipid% DW * | 2.4 | 9.3 | 7.2 | 7 | 8.5 | 4.4 |
Ash% DW * | 0.9 | 5 | 4.1 | 4 | 10.2 | 18.3 |
Fiber% DW * | nd | nd | nd | nd | 12.9 | 33.4 |
Chlorophyll mg/100 g ** | 0.2 | 5.8 | 8.9 | 89 | 322 | 123 |
Minerals mg/100 g ** | ||||||
K | nd | 376 ± 7.1 | 545 ± 13.5 | 700 ± 17.5 | 943 ± 23.5 | 1978 ± 30.8 |
P | nd | 1191 ± 17.8 | 736 ± 13.0 | 1054 ± 30.0 | 2202 ± 42.6 | 886 ± 12.4 |
Mg | nd | 61.9 ± 1.0 | 74.7 ± 2.2 | 109 ± 2.7 | 229 ± 4.3 | 1366 ± 18.8 |
Ca | nd | 493 ± 3.3 | 210 ± 8.1 | 257 ± 6.5 | 1119 ± 25.8 | 947 ± 9.0 |
Fe | nd | 7.1 ± 0.1 | 6.8 ± 0.5 | 10.2 ± 0.9 | 167 ± 3.2 | 177 ± 4.1 |
Cu | nd | 0.6 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 2.6 ± 0.0 | 1.6 ± 0.0 |
Mn | nd | 4.8 ± 0.1 | 3.85 ± 0.0 | 4.03 ± 0.0 | 11.74 ± 0.1 | 15.32 ± 0.1 |
Zn | nd | 14.5 ± 0.2 | 11.1 ± 0.2 | 16.2 ± 0.4 | 34.8 ± 0.5 | 19 ± 0.2 |
Raw Couscous | Cooked Couscous | |||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Control couscous | 74.88 ± 0.38 aA | 0.58 ± 0.05 aA | 36.18 ± 0.60 aA | 69.60 ± 1.64 aB | −0.90 ± 0.29 aB | 28.62 ± 1.18 aB |
White couscous | 65.75 ± 0.52 bA | 0.17 ± 0.05 aA | 33.73 ± 0.66 bA | 60.57 ± 1.41 bB | −1.22 ± 0.14 aB | 29.58 ± 0.60 aB |
Honey couscous | 65.75 ± 0.24 bA | 0.27 ± 0.07 aA | 50.59 ± 1.14 cA | 56.13 ± 1.64 cB | −1.35 ± 0.41 aB | 44.30 ± 1.53 bB |
Smooth couscous | 42.23 ± 1.02 cA | −5.69 ± 0.43 bA | 29.11 ± 0.92 dA | 32.03 ± 0.61 dB | −1.20 ± 0.13 aB | 15.17 ± 0.23 cB |
Organic couscous | 28.64 ± 0.83 dA | −10.40 ± 0.38 cA | 14.35 ± 0.73 eA | 18.97 ± 0.92 eB | −2.99 ± 0.14 bB | 6.38 ± 0.34 dB |
Algaessence couscous | 40.90 ± 0.28 cA | −6.26 ± 0.09 bA | 21.56 ± 0.50 fA | 29.70 ± 0.26 dB | −2.22 ± 0.13 cB | 11.33 ± 0.57 eB |
G′ | G″ | |||
---|---|---|---|---|
α′ | b′ | α″ | b″ | |
Control couscous | 180,500 ± 33,374 a | 0.172 ± 0.005 a | 59,000 ± 12,348 a | 0.222 ± 0.000 a |
White couscous | 418,700 ± 45,632 b | 0.175 ± 0.012 a | 147,800 ± 35,134 b | 0.228 ± 0.000 a |
Honey couscous | 363,700 ± 47,640 b | 0.167 ± 0.012 a | 108,900 ± 15,463 a,b | 0.211 ± 0.000 a |
Smooth couscous | 313,400 ± 16,590 b | 0.175 ± 0.007 a | 95,620 ± 6706 a,b | 0.209 ± 0.000 a |
Organic couscous | 371,700 ± 50,500 b | 0.177 ± 0.001 a | 108,700 ± 16,527 a,b | 0.216 ± 0.000 a |
Algaessence couscous | 387,100 ± 60,765 b | 0.183 ± 0.007 a | 118,900 ± 19,901 b | 0.198 ± 0.000 a |
Control Couscous | White Couscous | Honey Couscous | Smooth Couscous | Organic Couscous | Algaessence Couscous | |
---|---|---|---|---|---|---|
Moisture (% wt/wt) | 45.07 ± 0.13 d | 45.97 ± 0.14 c | 45.27 ± 0.12 c,d | 48.33 ± 0.66 a | 46.37 ± 0.42 b | 47.30 ± 0.11 b |
Protein (g/100 g) | 6.58 ± 0.01 e | 7.34 ± 0.02b | 7.01 ± 0.08 c | 6.85 ± 0.04 d | 7.51 ± 0.2a | 6.72 ± 0.09 d,e |
Fat (g/100 g) | 1.25 ± 0.21 c | 1.62 ± 0.00 a | 1.54 ± 0.11 a,b,c | 1.43 ± 0.06 a,b,c | 1.61 ± 0.10 a,b | 1.26 ± 0.19 b,c |
Ash (g/100 g) | 0.71 ± 0.22 b | 1.00 ± 0.1 a,b,c | 1.37 ± 0.00 a | 0.84 ± 0.23 b,c | 1.20 ± 0.24 a,c | 1.39 ± 0.09 a |
Total carbohydrate * (g/100 g) | 46.39 ± 0.41 a | 44.06 ± 0.10 c | 44.81 ± 0.17 b | 42.55 ± 0.28 e | 43.31 ± 0.33 d | 43.33 ± 0.16 d |
Energy value (kcal/100 g) | 223.11 ± 0.64 a | 220.21 ± 0.40 b | 221.11 ± 0.55 b | 210.46 ± 0.64 c | 217.78 ± 0.46 d | 211.52 ± 1.28 c |
Minerals mg/100 g | ||||||
K (15% RDV ** = 300) | 152.42 ± 5.18 a | 157.04 ± 2.87 a | 158.21 ± 10.10 a | 163.05 ± 8.75 a | 169.03 ± 10.72 a | 201.35 ± 12.55 b |
P (15% RDV = 105) | 83.64 ± 2.98 c | 112.12 ± 4.03 a,b | 110.17 ± 13.03 b,c | 110.14 ± 7.97 b,c | 138.57 ± 18.08 a | 106.28 ± 6.99 b,c |
Mg (15% RDV = 56.2) | 22.42 ± 0.96 b,c | 22.37 ± 0.66 c | 24.10 ± 4.03 b,c | 25.27 ± 1.50 b,c | 28.38 ± 1.55 b | 64.20 ± 4.25a |
Ca (15% RDV = 120) | 10.46 ± 0.77 e | 24.10 ± 1.36 c | 15.39 ± 0.37 d,e | 16.43 ± 1.41 d | 45.87 ± 2.41a | 39.26 ± 3.11b |
Fe (15% RDV = 2.2) | 1.25 ± 0.37 d | 1.08 ± 0.08 d | 5.05 ± 0.16 c | 1.37 ± 0.08 d | 6.82 ± 0.33a | 5.74 ± 0.17b |
Cu (15% RDV = 0.2) | 1.57 ± 0.39 e | 2.73 ± 0.38 c,d | 5.31 ± 0.20 b | 1.78 ± 0.08 d,e | 7.06 ± 0.22 a | 6.44 ± 0.57 a |
Mn (15% RDV = 0.4) | 1.40 ± 0.08 b | 1.79 ± 0.26 a,b | 1.76 ± 0.14 a,b | 1.68 ± 0.12 b | 2.17 ± 0.18 a | 1.50 ± 0.07 b |
Zn (15% RDV = 1.6) | 0.36 ± 0.03 a | 0.37 ± 0.03 a | 0.46 ± 0.17 a | 0.36 ± 0.03 a | 0.42 ± 0.02 a | 0.39 ± 0.03 a |
ω-n | Fatty Acids (%) | Control Couscous | White Couscous | Honey Couscous | Smooth Couscous | Organic Couscous | Algaessence Couscous |
---|---|---|---|---|---|---|---|
C14:0 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.8 | |
C15:0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | |
C16:0 | 18.8 | 21.7 | 21.1 | 20.8 | 19.7 | 20.1 | |
ω9 | C16:1c7 | 0.1 | 0.2 | 1.2 | 0.6 | 0.6 | 0.2 |
ω7 | C16:1c9 | 0.1 | 0.2 | 0.2 | 0.2 | 0.5 | 0.5 |
ω6 | C16:2 | 0.0 | 2.0 | 1.3 | 2.0 | 1.8 | 0.7 |
ω3 | C16:3 | 0.0 | 0.2 | 0.3 | 0.7 | 0.0 | 0.7 |
C17:0 | 0.1 | 0.3 | 0.2 | 0.2 | 0.6 | 0.3 | |
C18:0 | 1.8 | 1.9 | 2.2 | 1.5 | 1.7 | 1.6 | |
ω9 | C18:1c9 | 13.7 | 14.1 | 16.4 | 13.0 | 14.1 | 14.0 |
ω7 | C18:1c11 | 0.8 | 0.7 | 0.7 | 0.7 | 1.0 | 1.0 |
ω6 | C18:2 | 60.1 | 53.8 | 50.4 | 53.7 | 46.9 | 52.6 |
ω3 | C18:3 | 3.3 | 3.2 | 3.5 | 4.6 | 9.0 | 5.6 |
C20:0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
ω7 | C20:1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 |
ω6 | C20:2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
ω6 | C20:4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 |
ω3 | C20:5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
C21:0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | |
C22:0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | |
C24:0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
Others | 0.1 | 0.7 | 1.3 | 0.7 | 3.0 | 0.3 | |
ƩSFA | 21.5 a | 24.8 b | 24.4 c | 23.4 c | 23.0 d | 23.5 c,d | |
ƩUSFA | 78.4 a | 74.6 b,c | 74.3 b,c | 75.9 b,c | 74.0 b | 76.2 c | |
ω3 | 3.3 a | 3.4 a | 3.8 b | 5.3 c | 9.0 d | 6.4 e | |
ω6 | 60.1 a | 55.8 b | 51.7 c | 55.7 b | 48.7 d | 53.8 b,c | |
ω6/ω3 | 18:1 | 17:1 | 14:1 | 11:1 | 5:1 | 8:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khemiri, S.; Nunes, M.C.; Bessa, R.J.B.; Alves, S.P.; Smaali, I.; Raymundo, A. Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods 2021, 10, 3159. https://doi.org/10.3390/foods10123159
Khemiri S, Nunes MC, Bessa RJB, Alves SP, Smaali I, Raymundo A. Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods. 2021; 10(12):3159. https://doi.org/10.3390/foods10123159
Chicago/Turabian StyleKhemiri, Sheyma, Maria Cristiana Nunes, Rui J. B. Bessa, Susana P. Alves, Issam Smaali, and Anabela Raymundo. 2021. "Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility" Foods 10, no. 12: 3159. https://doi.org/10.3390/foods10123159
APA StyleKhemiri, S., Nunes, M. C., Bessa, R. J. B., Alves, S. P., Smaali, I., & Raymundo, A. (2021). Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods, 10(12), 3159. https://doi.org/10.3390/foods10123159