Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate Material Recovery
2.2. Chemical Reagents
2.3. Extraction of Phenolic Compounds from PPE by PLE
2.4. Experimental Design for PPE-PLE
2.5. Characterization of PPE-PLE Obtained under Optimal Conditions
2.5.1. Determination of TPC
2.5.2. Determination of Punicalagin Content
2.5.3. Determination of the Antioxidant Capacity (AC)
2.5.4. Identification of Phenolic and Other Polar Compounds in PPE-PLE by HPLC-DAD-ESI-TOF/MS
2.5.5. Antimicrobial Activity (AMA)
2.5.6. Cytotoxicity Assay
2.5.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Pomegranate Peel Powder as Material Recycling
3.2. Optimization of Extraction of Phenolic Compounds from Pomegranate Peel by PLE Using RSM
3.3. Characterization of PPE-PLE Obtained under Optimal Conditions
3.3.1. TPC and Punicalagin
3.3.2. AC
3.3.3. Qualitative Characterization of Phenolic and Other Polar Compounds in PPE-PLE by HPLC-ESI-TOF-MS
- Sugars
- Organic acids
- Phenolic acids
- Flavonoids
- Hydrolysable tannins
3.3.4. AMA
3.3.5. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez-Rowe, I.; Kahhat, R.; Santillán-Saldívar, J.; Quispe, I.; Bentín, M. Carbon Footprint of Pomegranate (Punica granatum) Cultivation in a Hyper-Arid Region in Coastal Peru. Int. J. Life Cycle Assess. 2017, 22, 601–617. [Google Scholar] [CrossRef]
- Andrade, M.A.; Lima, V.; Sanches Silva, A.; Vilarinho, F.; Castilho, M.C.; Khwaldia, K.; Ramos, F. Pomegranate and Grape By-Products and Their Active Compounds: Are They a Valuable Source for Food Applications? Trends Food Sci. Technol. 2019, 86, 68–84. [Google Scholar] [CrossRef]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A Process for Turning Pomegranate Peels into a Valuable Food Ingredient Using Ultrasound-Assisted Extraction and Encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Bin Ujang, Z. The Food Waste Hierarchy as a Framework for the Management of Food Surplus and Food Waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying Household Waste of Fresh Fruit and Vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.K.; Barrington, S.; Martinez, J. Predicted Growth of World Urban Food Waste and Methane Production. Waste Manag. Res. 2006, 24, 421–433. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, V.; Meybeck, A. Global Food Losses and Food Waste; FAO: Rome, Italy, 2011. [Google Scholar]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/ (accessed on 20 September 2020).
- Brito, T.B.N.; Ferreira, M.S.L.; Fai, A.E.C. Utilization of Agricultural By-Products: Bioactive Properties and Technological Applications. Food Rev. Int. 2020, 1–25. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and Quantification of Phenolic Compounds from Pomegranate (Punica granatum, L.) Peel, Mesocarp, Aril and Differently Produced Juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Saad, H.; Charrier-El Bouhtoury, F.; Pizzi, A.; Rode, K.; Charrier, B.; Ayed, N. Characterization of Pomegranate Peels Tannin Extractives. Ind. Crop. Prod. 2012, 40, 239–246. [Google Scholar] [CrossRef]
- Al-Rawahi, A. Phenolic Constituents of Pomegranate Peels (Punica granatum L.) Cultivated in Oman. European J. Med. Plants 2014, 4, 315–331. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate Peel and Peel Extracts: Chemistry and Food Features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sultana, B.; Anwar, F.; Adnan, A.; Rizvi, S.S.H. Enzyme-Assisted Supercritical Fluid Extraction of Phenolic Antioxidants from Pomegranate Peel. J. Supercrit. Fluids 2015, 104, 122–131. [Google Scholar] [CrossRef]
- Çam, M.; Hişil, Y. Pressurised Water Extraction of Polyphenols from Pomegranate Peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Negi, P.S. Plant Extracts for the Control of Bacterial Growth: Efficacy, Stability and Safety Issues for Food Application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate Peel as Phenolic Compounds Source: Advanced Analytical Strategies and Practical Use in Meat Products. Meat Sci. 2019, 158, 107914. [Google Scholar] [CrossRef] [PubMed]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products—Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial Activity of Pomegranate Peel Extracts Performed by High Pressure and Enzymatic Assisted Extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Gullón, P.; Astray, G.; Gullón, B.; Tomasevic, I.; Lorenzo, J.M. Pomegranate Peel as Suitable Source of High-Added Value Bioactives: Tailored Functionalized Meat Products. Molecules 2020, 25, 2859. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Antimicrobial Potential of Pomegranate Peel: A Review. Int. J. Food Sci. Technol. 2019, 54, 959–965. [Google Scholar] [CrossRef]
- Amyrgialaki, E.; Makris, D.P.; Mauromoustakos, A.; Kefalas, P. Optimisation of the Extraction of Pomegranate (Punica granatum) Husk Phenolics Using Water/Ethanol Solvent Systems and Response Surface Methodology. Ind. Crops Prod. 2014, 59, 216–222. [Google Scholar] [CrossRef]
- Elfalleh, W.; Tlili, N.; Nasri, N.; Yahia, Y.; Hannachi, H.; Chaira, N.; Ying, M.; Ferchichi, A. Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits. J. Food Sci. 2011, 76, C707–C713. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.A. In Vitro Antioxidant Activity and Punicalagin Content Quantification of Pomegranate Peel Obtained as Agro-Waste after Juice Extraction. Pakistan J. Agric. Sci. 2018, 55, 197–201. [Google Scholar] [CrossRef]
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant Properties and Phenolic Profile Characterization by LC–MS/MS of Selected Tunisian Pomegranate Peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar] [CrossRef] [PubMed]
- Sumere, B.R.; de Souza, M.C.; dos Santos, M.P.; Bezerra, R.M.N.; da Cunha, D.T.; Martinez, J.; Rostagno, M.A. Combining Pressurized Liquids with Ultrasound to Improve the Extraction of Phenolic Compounds from Pomegranate Peel (Punica granatum L.). Ultrason. Sonochem. 2018, 48, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Fierascu, I.; Avramescu, S.M.; Sieniawska, E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019, 24, 4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhang, Y.; Wang, D.; Lee, R.; Henning, S.M.; Heber, D. Absence of Pomegranate Ellagitannins in the Majority of Commercial Pomegranate Extracts: Implications for Standardization and Quality Control. J. Agric. Food Chem. 2009, 57, 7395–7400. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC−Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of High-Value Food Waste and Food Residues Biorefineries with Focus on Unavoidable Wastes from Processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [Google Scholar] [CrossRef]
- USDA. Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 9 September 2020).
- Institute of Medicine (U.S.) Panel on the Definition of Dietary Fiber and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes: Proposed Definition of Dietary Fiber: A Report of the Panel on the Definition of Dietary Fiber and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; National Academy Press: Washington, DC, USA, 2001.
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of Polyphenols and Anthocyanins from Pomegranate (Punica granatum) by Spray Drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Zafrilla, P.; Ferreres, F.; Tomás-Barberán, F.A. Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry (Rubus idaeus) Jams. J. Agric. Food Chem. 2001, 49, 3651–3655. [Google Scholar] [CrossRef] [PubMed]
- Cea Pavez, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an Extract Rich in Phenolic Compounds from Olive Pomace by Pressurized Liquid Extraction. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef] [Green Version]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of Antioxidant Properties of Pomegranate Peel Extract in Comparison with Pomegranate Pulp Extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Rongai, D.; Pulcini, P.; Di Lernia, G.; Nota, P.; Preka, P.; Milano, F. Punicalagin Content and Antifungal Activity of Different Pomegranate (Punica ganatum L.) Genotypes. Horticulturae 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, A.; Hinojosa, A.; Robert, P.; Escalona, V. Extraction and Microencapsulation of Bioactive Compounds from Pomegranate (Punica granatum Var. Wonderful) Residues. Int. J. Food Sci. Technol. 2017, 52, 1452–1462. [Google Scholar] [CrossRef]
- Legua, P.; Forner-Giner, M.Á.; Nuncio-Jáuregui, N.; Hernández, F. Polyphenolic Compounds, Anthocyanins and Antioxidant Activity of Nineteen Pomegranate Fruits: A Rich Source of Bioactive Compounds. J. Funct. Foods 2016, 23, 628–636. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Caiazzo, F.; Drioli, E. Separation and Purification of Phenolic Compounds from Pomegranate Juice by Ultrafiltration and Nanofiltration Membranes. J. Food Eng. 2017, 195, 1–13. [Google Scholar] [CrossRef]
- Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative Study of Phenolic Compounds and Their Antioxidant Attributes of Eighteen Pomegranate (Punica granatum L.) Cultivars Grown in Morocco. Arab. J. Chem. 2017, 10, S2675–S2684. [Google Scholar] [CrossRef] [Green Version]
- Türkyılmaz, M.; Özkan, M. Effects of Condensed Tannins on Anthocyanins and Colour of Authentic Pomegranate (Punica granatum L.) Juices. Food Chem. 2014, 164, 324–331. [Google Scholar] [CrossRef]
- Abdulla, R.; Mansur, S.; Lai, H.; Ubul, A.; Sun, G.; Huang, G.; Aisa, H.A. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS. Phytochem. Anal. 2017, 28, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Jayamurthy, P.; Anusha, C.V.; Mahesh, S.K.; Nisha, P. Studies on Activity Guided Fractionation of Pomegranate Peel Extracts and Its Effect on Antidiabetic and Cardiovascular Protection Properties. J. Food Process. Preserv. 2017, 41, e13108. [Google Scholar] [CrossRef]
- Tapias, V.; Cannon, J.R.; Greenamyre, J.T. Pomegranate Juice Exacerbates Oxidative Stress and Nigrostriatal Degeneration in Parkinson’s Disease. Neurobiol. Aging. 2014, 35, 1162–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Shevkani, K.; Singh, N. Composition, Bioactive Compounds and Antioxidant Activity of Common Indian Fruits and Vegetables. J. Food Sci. Technol. 2016, 53, 4056–4066. [Google Scholar] [CrossRef] [Green Version]
- Fellah, B.; Bannour, M.; Rocchetti, G.; Lucini, L.; Ferchichi, A. Phenolic Profiling and Antioxidant Capacity in Flowers, Leaves and Peels of Tunisian Cultivars of Punica granatum L. J. Food Sci. Technol. 2018, 55, 3606–3615. [Google Scholar] [CrossRef]
- Khanavi, M.; Moghaddam, G.; Oveisi, M.R.; Sadeghi, N.; Jannat, B.; Rostami, M.; Saadat, M.A.; Hajimahmoo, M. Hyperoside and Anthocyanin Content of Ten Different Pomegranate Cultivars. Pakistan J. Biol. Sci. 2013, 16, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Parashar, A.; Gupta, C.; Gupta, S.K.; Kumar, A. Antimicrobial Ellagitannin From Pomegranate (Punica granatum) Fruits. Int. J. Fruit Sci. 2009, 9, 226–231. [Google Scholar] [CrossRef]
- Aguilar-Zárate, P.; Wong-Paz, J.E.; Michel, M.; Buenrostro-Figueroa, J.; Díaz, H.R.; Ascacio, J.A.; Contreras-Esquivel, J.C.; Gutiérrez-Sánchez, G.; Aguilar, C.N. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin. Phytochem. Anal. 2017, 28, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Zahin, M.; Aqil, F.; Ahmad, I. Broad Spectrum Antimutagenic Activity of Antioxidant Active Fraction of Punica granatum L. Peel Extracts. Mutat. Res. Toxicol. Environ. Mutagen. 2010, 703, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.A.M.; Barakat, H.H.; Merfort, I.; Nawwar, M.A.M. Tannins from the Leaves of Punica granatum. Phytochemistry 1997, 45, 819–823. [Google Scholar] [CrossRef]
- Fawole, O.A.; Makunga, N.P.; Opara, U.L. Antibacterial, Antioxidant and Tyrosinase-Inhibition Activities of Pomegranate Fruit Peel Methanolic Extract. BMC Complement. Altern. Med. 2012, 12, 1178. [Google Scholar] [CrossRef] [Green Version]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant Antimicrobial Polyphenols as Potential Natural Food Preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.; Debnath, S.; Hazra, S.; Ghosh, S.; Ray, R.; Hazra, B. Pomegranate Pericarp Extract Enhances the Antibacterial Activity of Ciprofloxacin against Extended-Spectrum β-Lactamase (ESBL) and Metallo-β-Lactamase (MBL) Producing Gram-Negative Bacilli. Food Chem. Toxicol. 2012, 50, 4302–4309. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and Antioxidant Features of ‘Gabsi’ Pomegranate Peel Extracts. Ind. Crops Prod. 2018, 111, 345–352. [Google Scholar] [CrossRef]
- Mohamad Sukri, S.N.A.; Shameli, K.; Mei-Theng Wong, M.; Teow, S.-Y.; Chew, J.; Ismail, N.A. Cytotoxicity and Antibacterial Activities of Plant-Mediated Synthesized Zinc Oxide (ZnO) Nanoparticles Using Punica granatum (Pomegranate) Fruit Peels Extract. J. Mol. Struct. 2019, 1189, 57–65. [Google Scholar] [CrossRef]
- Keta, O.; Deljanin, M.; Petkovic, V.; Zdunić, G.; Janković, T.; Živković, J.; Fira, A.R.; Petrović, I.; Šavikin, K. Pomegranate (Punica granatum L.) Peel Extract: Potential Cytotoxic Agent Against Different Cancer Cell Lines. Rec. Nat. Prod. 2020, 14, 326–339. [Google Scholar] [CrossRef]
Run | X1 | X2 | Temperature [X1] | Ethanol [X2] | TPC | Punicalagin | AMA |
---|---|---|---|---|---|---|---|
(°C) | (%) | (mg GAE/g DW) | (mg/g DW) | S. aureus (mm) | |||
1 | −1 | −1 | 55 | 10 | 14.1 ± 0.7 | 7.7 ± 0.2 | 2.0 ± 0.4 |
2 | −1 | 1 | 55 | 90 | 75.9 ± 3.0 | 38.0 ± 1.9 | 7.5 ± 0.7 |
3 | 1 | −1 | 185 | 10 | 73.0 ± 1.0 | 5.0 ± 0.2 | 4.0 ± 0.7 |
4 | 1 | 1 | 185 | 90 | 129.6 ± 6.3 | 30.1 ± 0.9 | 7.0 ± 2.8 |
5 | −1.21 | 0 | 41.3 | 50 | 39.6 ± 1.6 | 36.1 ± 0.6 | 6.0 ± 0.0 |
6 | +1.21 | 0 | 198.6 | 50 | 149.0 ± 5.3 | 22.0 ± 0.3 | 8.3 ± 1.1 |
7 | 0 | −1.21 | 120 | 1.6 | 20.0 ± 3.5 | 4.0 ± 0.3 | 3.0 ± 0.7 |
8 | 0 | +1.21 | 120 | 98.4 | 40.9 ± 1.9 | 23.3 ± 1.3 | 5.5 ± 1.4 |
9 | 0 | 0 | 120 | 50 | 39.2 ± 0.2 | 38.6 ± 2.5 | 4.8 ± 1.1 |
10 | 0 | 0 | 120 | 50 | 27.7 ± 0.5 | 35.0 ± 1.5 | 3.0 ± 0.7 |
11 | 0 | 0 | 120 | 50 | 33.2 ± 1.0 | 31.4 ± 0.6 | 3.8 ± 0.4 |
12 | 0 | 0 | 120 | 50 | 39.0 ± 0.2 | 38.0 ± 1.1 | 4.8 ± 0.4 |
Source | Sum of Squares | df | Mean Square | F-Ratio | p-Value | R2 | R2 df.adj |
---|---|---|---|---|---|---|---|
TPC | |||||||
X1: Temperature | 8662.03 | 1 | 8662.03 | 288.84 | 0.0004 * | 93.3 | 90.7 |
X2: Ethanol | 2980.07 | 1 | 2980.07 | 99.37 | 0.0021 * | ||
X1X1 | 7179.23 | 1 | 7179.23 | 239.39 | 0.0006 * | ||
Lack of fit | 1273.17 | 5 | 254.635 | 8.49 | 0.0542 | ||
Pure error | 899.675 | 3 | 299.892 | ||||
Total (corr.) | 20184.5 | 11 | |||||
Punicalagin | |||||||
X1: Temperature | 110.437 | 1 | 110.437 | 10.14 | 0.0499 * | 91.1 | 87.7 |
X2: Ethanol | 895.186 | 1 | 895.186 | 82.20 | 0.0028 * | ||
X2X2 | 777.825 | 1 | 777.825 | 71.43 | 0.0035 * | ||
Lack of fit | 142.147 | 5 | 284.294 | 2.61 | 0.2297 | ||
Pure error | 32.67 | 3 | 10.89 | ||||
Total (corr.) | 1958.27 | 11 | |||||
AMA | |||||||
X1: Temperature | 257.347 | 1 | 257.347 | 3.60 | 0.1539 | 79.6 | 80.1 |
X2: Ethanol | 191.717 | 1 | 191.717 | 26.84 | 0.0140 * | ||
X1X1 | 113.715 | 1 | 113.715 | 15.92 | 0.0282 * | ||
Lack of fit | 635.145 | 5 | 127.029 | 1.78 | 0.3370 | ||
Pure error | 21.425 | 3 | 0.714167 | ||||
Total (corr.) | 416.106 | 11 | |||||
Multiple Response Optimization | |||||||
Desirability | 0.79896 | ||||||
Factor | Low | High | Optimum | ||||
X1: Temperature | 41.3 | 198.6 | 198.6 | ||||
X2: Ethanol | 1.6 | 98.4 | 76.6 |
Peak | RT (min) | m/z exp | m/z cal | Molecular Formula | Tentative Compound |
1 | 4.2 | 181.0724 | 181.0718 | C6H13O6 | Sugar |
2 | 4.8 | 353.0721 | 353.0725 | C12H17O12 | Sugar |
3 | 5.9 | 353.0724 | 353.0878 | C16H17O9 | Chlorogenic acid |
4 | 7.5 | 191.0195 | 191.0197 | C6H7O7 | Citric acid |
5 | 8.0 | 191.0204 | 191.0197 | C6H7O7 | Isocitric acid |
6 | 10.1 | 331.0657 | 331.0671 | C13H15O10 | Galloyl hexose isomer 1 |
7 | 10.9 | 125.0247 | 125.0244 | C6H5O3 | Phloroglucinol |
8 | 11.3 | 331.0655 | 331.0.671 | C13H15O10 | Galloyl hexose isomer 2 |
9 | 11.7 | 541.0282 | 541.0260 | C24H13O15 | Punicalagin α |
10 | 12.0 | 169.0143 | 169.0142 | C7H5O5 | Gallic acid |
11 | 12.8 | 289.0869 | 289.0929 | C12H17O8 | Sugar derivative |
12 | 13.3 | 541.0284 | 541.0260 | C24H13O15 | Punicalagin β |
13 | 14.2 | 289.0927 | 289.0929 | C12H17O8 | Sugar derivative |
14 | 15.2 | 541.0295 | 541.0260 | C24H13O15 | Punicalagin γ |
15 | 16.5 | 469.0029 | 469.0049 | C21H9O13 | Valonic acid bilactone |
16 | 17.3 | 461.0916 | 461.0937 | C18H21O14 | Unknown 1 |
17 | 17.7 | 219.0514 | 219.0510 | C8H11O7 | Citric acid, dimethyl ester |
18 | 17.7 | 633.0726 | 633.0733 | C27H21O18 | Galloyl-HHDP-hexose |
19 | 18.6 | 289.0718 | 289.0718 | C15H13O6 | Catechin |
20 | 18.7 | 483.0768 | 483.0780 | C20H19O14 | Digalloyl hexoside |
21 | 19.3 | 443.1938 | 443.1711 | C24H27O8 | Unknown 2 |
22 | 19.5 | 453.0963 | 453.0827 | C23H17O10 | Unknown 3 |
23 | 19.8 | 575.0125 | 575.0103 | C27H11O15 | Unknown 4 |
24 | 20.1 | 325.0915 | 325.0929 | C15H17O8 | p-Coumaric acid hexoside |
25 | 21.3 | 633.0740 | 633.0463 | C27H21O18 | Corilagin |
26 | 21.8 | 291.0168 | 291.0146 | C13H7O8 | Brevifolin carboxylic acid |
27 | 22.6 | 431.1941 | 431.1711 | C23H27O8 | Unknown 5 |
28 | 24.1 | 345.0826 | 345.0827 | C14H17O10 | Methyl gallate hexoside |
29 | 24.1 | 600.9896 | 600.9896 | C28H9O16 | Gallagyldilactone |
30 | 24.4 | 197.0462 | 197.0455 | C9H10O5 | Gallic acid dimethyl ether |
31 | 24.8 | 463.0526 | 463.0518 | C20H15O13 | Ellagic acid hexoside |
32 | 24.9 | 275.0208 | 275.0197 | C13H7O7 | Decarboxyellagic acid |
33 | 25.5 | 247.0258 | 247.0096 | C12H7O6 | Brevifolin |
34 | 25.7 | 517.1526 | 517.1563 | C22H29O14 | Feruloyl sucrose |
35 | 26.4 | 293.1034 | 293.1031 | C15H17O6 | Cinnamoyl rhamnoside |
36 | 27.2 | 319.0446 | 319.0459 | C15H11O8 | Brevifolincarboxylic acid ethyl ester |
37 | 27.6 | 491.0845 | 491.0620 | C25H15O11 | Unknown 6 |
38 | 27.9 | 425.0161 | 425.0150 | C20H9O11 | Monodecarboxyvaloneic acid dilactone |
39 | 28.1 | 463.0906 | 463.0882 | C21H19O12 | Hyperoside |
Peak | RT (min) | m/z exp | m/z cal | Molecular Formula | Tentative Identification |
40 | 28.3 | 433.0418 | 433.0412 | C19H13O12 | Ellagic acid pentoside |
41 | 29.0 | 447.0594 | 447.0569 | C20H15O12 | Ellagic acid-deoxyhexoside |
42 | 29.0 | 181.0505 | 181.0506 | C9H9O4 | Homovanillic acid |
43 | 30.0 | 300.9998 | 300.9990 | C14H5O8 | Ellagic acid |
44 | 31.9 | 447.0908 | 447.0933 | C21H19O11 | Luteolin hexoside |
45 | 32.4 | 321.1344 | 321.1344 | C17H21O6 | Unknown 7 |
46 | 33.9 | 417.0822 | 417.0827 | C20H17O10 | Luteolin pentoside |
47 | 34.5 | 285.0431 | 285.0557 | C15H9O6 | Kaempferol |
48 | 35.1 | 329.0305 | 329.0303 | C16H9O8 | Ellagic acid dimethyl ether |
49 | 36.2 | 285.0419 | 285.0405 | C15H9O6 | Luteolin |
50 | 36.7 | 317.0406 | 371.0409 | C18H11O9 | Unknown 8 |
51 | 38.0 | 463.0654 | 463.0671 | C24H15O10 | Unknown 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, P.; Fredes, C.; Cea, I.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Robert, P.; Vergara, C.; Jimenez, P. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods 2021, 10, 203. https://doi.org/10.3390/foods10020203
García P, Fredes C, Cea I, Lozano-Sánchez J, Leyva-Jiménez FJ, Robert P, Vergara C, Jimenez P. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods. 2021; 10(2):203. https://doi.org/10.3390/foods10020203
Chicago/Turabian StyleGarcía, Paula, Carolina Fredes, Inés Cea, Jesús Lozano-Sánchez, Francisco Javier Leyva-Jiménez, Paz Robert, Cristina Vergara, and Paula Jimenez. 2021. "Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction" Foods 10, no. 2: 203. https://doi.org/10.3390/foods10020203
APA StyleGarcía, P., Fredes, C., Cea, I., Lozano-Sánchez, J., Leyva-Jiménez, F. J., Robert, P., Vergara, C., & Jimenez, P. (2021). Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods, 10(2), 203. https://doi.org/10.3390/foods10020203