Physical Properties of Flours Obtained from Wasted Bread Crusts and Crumbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Particle Size, Microstructure and Colour of the Flours
2.2.2. Hydration Properties
2.2.3. Evaluation of Dough Rheology
2.2.4. Gel Properties
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Particle Size, Microstructure and Colour of the Flours
3.2. Hydration Properties
3.3. Rheology of Doughs and Pastes
3.3.1. Properties under Cold Conditions
3.3.2. Properties under Heating Conditions
3.4. Gel Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stenmarck, Å.; Jensen, C.; Quested, T.; Moates, G. Estimates of European food waste levels. In Fusions; EU-Fusions: Stockholm, Sweden, 2016. [Google Scholar]
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef]
- Brancoli, P.; Rousta, K.; Bolton, K. Life cycle assessment of supermarket food waste. Resour. Conserv. Recy. 2017, 118, 39–46. [Google Scholar] [CrossRef]
- Brancoli, P.; Lundin, M.; Bolton, K.; Eriksson, M. Bread loss rates at the supplier-retailer interface—Analysis of risk factors to support waste prevention measures. Resour. Conserv. Recy. 2019, 147, 128–136. [Google Scholar] [CrossRef]
- European Commission. Directive (2008/98/EC) of the European parliament and of the council of 19 November 2008 on waste and repealing certain Directives. In Official Journal of the European Union; (L312/222008); European Commission: Strasbourg, France, 2008. [Google Scholar]
- Afzalzadeh, A.; Boorboor, A.; Fazaeli, H.; Kashan, N.; Ghandi, D. Effect of feeding bakery waste on sheep performance and the carcass fat quality. J. Anim. Vet. Adv. 2007, 6, 559–562. [Google Scholar]
- Kwak, W.S.; Kang, J.S. Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs. Bioresour. Technol. 2006, 97, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Solid state fermentation of waste bread pieces by Aspergillus awamori: Analysing the effects of airflow rate on enzyme production in packed bed bioreactors. Food Bioprod. Process. 2015, 95, 63–75. [Google Scholar] [CrossRef]
- Pietrzak, W.; Kawa-Rygielska, J. Simultaneous saccharification and ethanol fermentation of waste wheat–Rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel 2015, 147, 236–242. [Google Scholar] [CrossRef]
- Torabi, S.; Satari, B.; Hassan-Beygi, S.R. Process optimization for dilute acid and enzymatic hydrolysis of waste wheat bread and its effect on aflatoxin fate and ethanol production. Biomass Convers. Biorefin. 2019. [Google Scholar] [CrossRef]
- Samray, M.N.; Masatcioglu, T.M.; Koksel, H. Bread crumbs extrudates: A new approach for reducing bread waste. J. Cereal Sci. 2019, 85, 130–136. [Google Scholar] [CrossRef]
- Gelinas, P.; McKinnon, C.M.; Pelletier, M. Sourdough-type bread from waste bread crumb. Food Microbiol. 1999, 16, 37–43. [Google Scholar] [CrossRef]
- Martínez, M.M.; Román, L.; Gómez, M. Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust. Food Chem. 2018, 239, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Bernal, J.L.; Gómez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Mancebo, C.M.; Picón, J.; Gómez, M. Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies. LWT 2015, 64, 264–269. [Google Scholar] [CrossRef]
- Román, L.; Pico, J.; Antolín, B.; Martínez, M.M.; Gómez, M. Extruded flour improves batter pick-up, coating crispness and aroma profile. Food Chem. 2018, 260, 106–114. [Google Scholar] [CrossRef]
- Román, L.; Reguilón, M.P.; Gómez, M. Physicochemical characteristics of sauce model systems: Influence of particle size and extruded flour source. J. Food Eng. 2018, 219, 93–100. [Google Scholar] [CrossRef]
- Martínez, M.M.; Rosell, C.M.; Gómez, M. Modification of wheat flour functionality and digestibility through different extrusion conditions. J. Food Eng. 2014, 143, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Pareyt, B.; Delcour, J.A. The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: A review on sugar-snap cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef]
- Martínez, M.M.; Sanz, T.; Gómez, M. Influence of wheat flour subjected to different extrusion conditions on the rheological behaviour and thermal properties of batter systems for coating. LWT 2015, 64, 1309–1314. [Google Scholar] [CrossRef]
- De la Hera, E.; Gomez, M.; Rosell, C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013, 98, 421–427. [Google Scholar] [CrossRef] [Green Version]
- AACC International. Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2012. [Google Scholar]
- Rosell, C.M.; Yokoyama, W.; Shoemaker, C. Rheology of different hydrocolloids– rice starch blends. Effect of successive heating–cooling cycles. Carbohydr. Polym. 2011, 84, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.A.; Bemiller, J.N. Bread staling: Molecular basis and control. Compr. Rev. Food Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Belorio, M.; Sahagun, M.; Gomez, M. Influence of flour particle size distribution on the quality of maize gluten-free cookies. Foods 2019, 8, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, M.; Ruiz-Paris, E.; Oliete, B. Influence of flour mill streams on cake quality. Int. J. Food Sci. Technol. 2010, 45, 1794–1800. [Google Scholar] [CrossRef]
- Roman-Gutierrez, A.D.; Guilbert, S.; Cuq, B. Description of microstructural changes in wheat flour and flour components during hydration by using environmental scanning electron microscopy. LWT 2002, 35, 730–740. [Google Scholar] [CrossRef]
- Therdthai, N.; Zhou, W. Manufacture. In Bakery Products Science and Technology; Zhou, W., Ed.; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key issues and challenges in whole wheat flour milling and storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Purlis, E. Browning development in bakery products—A review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Jiang, H.X.; Martin, J.; Okot-Kotber, M.; Seib, P.A. Color of whole-wheat foods prepared from a bright-white hard winter wheat and the phenolic acids in its coarse bran. J. Food Sci. 2011, 76, 846–852. [Google Scholar] [CrossRef]
- Purlis, E.; Salvadori, V.O. Bread browning kinetics during baking. J. Food Eng. 2009, 80, 1107–1115. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie-versus cracker-baking-what’s the difference? Flour functionality requirements explored by SRC and alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef]
- Hagenimana, A.; Ding, X.; Fang, T. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 2006, 43, 38–46. [Google Scholar] [CrossRef]
- Chiu, T.H.; Chen, M.L.; Chang, H.C. Comparisons of emulsifying properties of Maillard reaction products conjugated by green, red seaweeds and various commercial proteins. Food Hydrocoll. 2009, 23, 2270–2277. [Google Scholar] [CrossRef]
- Patel, B.K.; Waniska, R.D.; Seetharaman, K. Impact of different baking processes on bread firmness and starch properties in breadcrumb. J. Cereal Sci. 2005, 42, 173–184. [Google Scholar] [CrossRef]
- Protonotariou, S.; Batzaki, C.; Yanniotis, S.; Mandala, I. Effect of jet milled whole wheat flour in biscuits properties. LWT 2016, 74, 106–113. [Google Scholar] [CrossRef]
- Tester, R.F.; Qi, X.; Karkalas, J. Hydrolysis of native starches with amylases. Anim. Feed Sci. Technol. 2006, 130, 39–54. [Google Scholar] [CrossRef]
- Wang, S.J.; Copeland, L. Effect of acid hydrolysis on starch structure and functionality: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1079–1095. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Colombo, A.; León, A.E.; Añón, M.C. Effects of soy protein on physical and rheological properties of wheat starch. Starch 2007, 59, 614–623. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J.; Otgonchimeg, S.; Walsh, M. Rheological study of starch and dairy ingredient-based food systems. Food Chem. 2004, 86, 571–578. [Google Scholar] [CrossRef]
- Bravo-Núñez, A.; Garzón, R.; Rosell, C.M.; Gómez, M. Evaluation of starch–protein interactions as a function of pH. Foods 2019, 8, 155. [Google Scholar] [CrossRef] [Green Version]
Wholemeal Loaf | Classic Loaf | Loaf with Additives | Ciabatta | Small Breads | “Candeal” Bread | Pan Loaf | Rustic Bread | |
---|---|---|---|---|---|---|---|---|
Sunflower oil | X | |||||||
Sugar | X | |||||||
Emulsifiers | X | X | X | X | X | |||
Enzymes | X | X | X | X | ||||
Plant extracts | X | |||||||
Wheat gluten | X | |||||||
Wheat flour | X | X | X | X | X | X | X | X |
Malted flour | X | X | ||||||
Baker’s yeast | X | X | X | X | X | X | X | |
Sourdough | X | X | ||||||
Other additives * | X | X | X | X | X | X | ||
Salt | X | X | X | X | X | X | X | X |
Seeds | X |
D [4,3] | L* | a* | b* | |
---|---|---|---|---|
Flour | 97.20 ± 0.00 | 89.75 ± 6.39 | 1.62 ± 0.25 | 10.80 ± 0.35 |
Crumb | 206.19 a | 84.48 b | 3.20 a | 15.13 a |
Crust | 193.38 a | 81.15 a | 7.73 b | 21.40 b |
Error | 7.39 | 0.43 | 0.24 | 0.40 |
Wholemeal loaf | 233.75 b | 71.05 a | 8.95 c | 20.97 d |
Classic loaf | 217.50 b | 85.44 cd | 4.57 ab | 17.86 abc |
Loaf with additives | 191.50 ab | 83.87 bc | 5.75 b | 18.80 bcd |
Ciabatta | 197.75 ab | 84.25 bcd | 5.22 b | 18.81 bcd |
Small breads | 192.25 ab | 86.62 d | 3.58 a | 16.49 ab |
“Candeal” bread | 201.00 b | 84.30 bcd | 5.22 b | 19.75 cd |
Pan loaf | 155.75 a | 84.33 bcd | 5.07 b | 15.87 a |
Rustic bread | 208.75 b | 82.68 b | 5.32 b | 17.55 abc |
Error | 14.78 | 0.86 | 0.47 | 0.79 |
WHC | SV | WBC | WAI | |
---|---|---|---|---|
Flour | 1.39 ± 0.21 | 2.23 ± 0.02 | 0.92 ± 0.01 | 4.57 ± 0.01 |
Crumb | 3.15 a | 3.84 a | 1.95 a | 4.39 a |
Crust | 3.18 a | 3.84 a | 2.05 a | 4.69 b |
Error | 0.05 | 0.06 | 0.05 | 0.05 |
Wholemeal loaf | 2.95 b | 3.83 bc | 2.02 b | 4.08 a |
Classic loaf | 3.51 de | 4.11 cd | 2.26 b | 4.80 cd |
Loaf with additives | 3.24 bcd | 3.96 bcd | 2.05 b | 4.49 b |
Ciabatta | 3.00 b | 3.71 b | 1.99 b | 5.04 d |
Small breads | 3.66 e | 4.29 d | 2.03 b | 4.65 bc |
“Candeal” bread | 3.31 cd | 3.92 bc | 2.00 b | 4.67 bc |
Pan loaf | 2.53 a | 3.20 a | 1.60 a | 4.00 a |
Rustic bread | 3.10 bc | 3.68 b | 2.05 b | 4.61 bc |
Error | 0.10 | 0.11 | 0.10 | 0.10 |
Cold | Heating | |||||
---|---|---|---|---|---|---|
G’ | G’’ | tan δ | G’ | G’’ | tan δ | |
Flour | 398 ± 107 | 70 ± 5 | 0.18 ± 0.04 | |||
Crumb | 1911.57 a | 314.41 a | 0.18 a | 808.91 a | 123.48 a | 0.16 b |
Crust | 1916.69 a | 300.30 a | 0.21 b | 1188.01 b | 157.20 a | 0.14 a |
Error | 337.26 | 46.60 | 0.01 | 36.59 | 4.16 | 0.001 |
Wholemeal loaf | 1025.86 ab | 171.26 ab | 0.19 c | 319.88 a | 50.63 a | 0.16 cd |
Classic loaf | 3966 c | 567.58 c | 0.15 a | 1053.33 d | 148.23 c | 0.14 b |
Loaf with additives | 2073.84 b | 341.69 bc | 0.17 abc | 697.9 b | 107.85 b | 0.16 cd |
Ciabatta | 2665.15 bc | 423.98 bc | 0.17 abc | 991.75 cd | 147.35 c | 0.15 bc |
Small breads | 2600.13 bc | 406.35 bc | 0.16 ab | 1367.25 e | 179.95 d | 0.13 a |
“Candeal” bread | 1545.87 ab | 304.95 abc | 0.20 c | 1915.5 f | 247.75 e | 0.13 a |
Pan loaf | 197 a | 45.71 a | 0.35 d | 773.3 bc | 102.81 b | 0.13 a |
Rustic bread | 1239.21 ab | 197.37 ab | 0.19 bc | 868.8 bcd | 138.18 c | 0.16 d |
Error | 674.51 | 93.21 | 0.01 | 73.17 | 8.33 | 0.003 |
L* | a* | b* | Hardness (N) | |
---|---|---|---|---|
Flour | 61.15 | −0.95 | 4.74 | 0.39 |
Crumb | 67.14 b | −0.14 a | 5.86 a | 0.20 a |
Crust | 61.14 a | 4.29 b | 13.76 b | 0.25 b |
Error | 0.51 | 0.23 | 0.39 | 0.01 |
Wholemeal loaf | 54.51 a | 6.89 c | 14.93 d | 0.03 a |
Classic loaf | 65.10 bc | 0.81 ab | 8.09 ab | 0.29 e |
Loaf with additives | 63.74 bc | 1.98 b | 9.91 bc | 0.20 c |
Ciabatta | 65.98 bcd | 1.22 ab | 9.19 abc | 0.23 cd |
Small breads | 68.64 d | 0.07 a | 7.41 a | 0.34 f |
“Candeal” bread | 65.93 bcd | 2.02 b | 10.95 c | 0.38 g |
Pan loaf | 66.72 cd | 2.16 b | 9.57 abc | 0.07 b |
Rustic bread | 63.28 b | 1.42 ab | 8.42 ab | 0.24 d |
Error | 1.03 | 0.46 | 0.77 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Peláez, J.; Guerra, P.; Gallego, C.; Gomez, M. Physical Properties of Flours Obtained from Wasted Bread Crusts and Crumbs. Foods 2021, 10, 282. https://doi.org/10.3390/foods10020282
Fernández-Peláez J, Guerra P, Gallego C, Gomez M. Physical Properties of Flours Obtained from Wasted Bread Crusts and Crumbs. Foods. 2021; 10(2):282. https://doi.org/10.3390/foods10020282
Chicago/Turabian StyleFernández-Peláez, Juan, Priscila Guerra, Cristina Gallego, and Manuel Gomez. 2021. "Physical Properties of Flours Obtained from Wasted Bread Crusts and Crumbs" Foods 10, no. 2: 282. https://doi.org/10.3390/foods10020282