Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Chemicals
2.3. Walnut Storage
2.4. Walnut Oil Extraction
2.5. Moisture Content
2.6. Fat Content
2.7. Quality Parameters
2.8. Oxidative Stability
2.9. Kernel Color Score
2.10. Fatty Acid Profile
2.11. Tocopherols Extraction and Analysis
2.12. Total Phenols in Kernel and Oil
2.13. Volatile Compounds in Kernel and Oil
2.14. Data Analysis
3. Results and Discussion
3.1. Evolution of the Quality Parameters during Storage
3.2. Oil and Kernel Oxidative Stability during Storage
3.3. Effect of Cultivar and Storage on Kernel Surface Darkness
3.4. Effect of Cultivar and Storage on Walnut Oil Fatty Acid Profile
3.5. Changes in Tocopherols Concentration during Storage
3.6. Changes in Kernel Phenols during Storage
3.7. Changes in Oil Phenols during Storage
3.8. Changes in Kernel Volatile Concentration during Storage
3.9. Changes in Oil Volatile Concentration during Storage
3.10. PCA Analysis
3.11. Hierarchical Cluster Analysis (HCA)
3.12. Partial Least Squares-Discriminant Analysis (PLS-DA) for Volatile Compounds Discrimination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vahdati, K. Traditions and folks for walnut growing around the silk road. Acta Hortic. 2014, 1032, 19–24. [Google Scholar] [CrossRef]
- FAO Food and Agriculture Organization of United Nations. Top 10 Country Production of Walnuts. Available online: http://www.fao.org/faostat/en/#rankings/ (accessed on 12 June 2020).
- California Walnuts Consumer Research and Demand. Available online: https://walnuts.org/food-professionals/why-walnuts/consumer-research-and-demand-for-walnuts/ (accessed on 9 September 2019).
- Alasalvar, C.; Salvadó, J.S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef]
- Arranz, S.; Cert, R.; Pérez-Jiménez, J.; Cert, A.; Saura-Calixto, F. Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem. 2008, 110, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Jelen, H.H. Solid-Phase Microextraction in the Analysis of Food Taints and Off-Flavors. J. Chromatogr. Sci. 2006, 44, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Frankel, E.N. Volatile lipid oxidation products. Prog. Lipid Res. 1983, 22, 1–33. [Google Scholar] [CrossRef]
- Guillen, M.D.; Goicoechea, E. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data. Food Chem. 2009, 116, 183–192. [Google Scholar] [CrossRef]
- Maté, J.I.; Saltveit, M.E.; Krochta, J.M. Peanut and Walnut Rancidity: Effects of Oxygen Concentration and Relative Humidity. J. Food Sci. 1996, 61, 465–469. [Google Scholar] [CrossRef]
- Franklin, L.M.; Chapman, D.M.; King, E.S.; Mau, M.; Huang, G.; Mitchell, A.E. Chemical and sensory characterization of oxidative changes in roasted almonds undergoing accelerated shelf life. J. Agric. Food Chem. 2017, 65, 2549–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; John, J.A. Oxidative rancidity in nuts. In Improving the Safety and Quality of Nuts; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 198–229. ISBN 9780857092663. [Google Scholar]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Singh, J.; Bargale, P.C. Development of a small capacity double stage compression screw press for oil expression. J. Food Eng. 2000, 43, 75–82. [Google Scholar] [CrossRef]
- AOCS. Official Methods of Analysis of the AOC, 16th ed.; Association of official analytical chemists; AOAC International: Arlington, VA, USA, 1992. [Google Scholar]
- United States Standards for Grades of Shelled Walnuts and Walnuts in the Shell. Available online: https://www.ams.usda.gov/rules-regulations/united-states-standards-grades-shelled-walnuts-and-walnuts-shell (accessed on 17 April 2020).
- Tapia, M.I.; Sánchez-Morgado, J.R.; García-Parra, J.; Ramírez, R.; Hernández, T.; González-Gómez, D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventos, R.M.; De la Torre, M.C.; Lopez-Sabater, M.C. The effects of harvest and extraction methods on the antioxidant content (phenolics, alpha-tocopherol, and beta-carotene) in virgin olive oil. Food Chem. 2002, 78, 207–211. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez-Alonso, S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef]
- Polari, J.J.; Wang, S.C. Comparative Effect of Hammer Mill Screen Size and Cell Wall-Degrading Enzymes during Olive Oil Extraction. ACS Omega 2020, 5, 6074–6081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habashi, R.T.; Zomorodi, S.; Talaie, A.; Jari, S.K. Evaluation of shelf life of walnut kernel coated by antioxidants in combination with packaging under different storage conditions. J. Postharvest Technol. 2019, 7, 87–95. [Google Scholar]
- Buransompob, A.; Tang, J.; Mao, R.; Swanson, B.G. Rancidity of Walnuts and Almonds Affected By Short time Heat Treatments for Insect Control. J. Food Process. Preserv. 2003, 27, 445–464. [Google Scholar] [CrossRef]
- Ling, B.; Hou, L.; Li, R.; Wang, S. Thermal treatment and storage condition effects on walnut paste quality associated with enzyme inactivation. LWT Food Sci. Technol. 2014, 59, 786–793. [Google Scholar] [CrossRef]
- Farhoosh, R. Shelf-life prediction of edible fats and oils using Rancimat. Lipid Technol. 2007, 19, 232–234. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2014, 51, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Sena-Moreno, E.; Pardo, J.E.; Pardo-Giménez, A.; Gómez, R.; Alvarez-Ortí, M. Differences in Oils from Nuts Extracted by Means of Two Pressure Systems. Int. J. Food Prop. 2016, 19, 2750–2760. [Google Scholar] [CrossRef] [Green Version]
- Rabadán, A.; Álvarez-Ortí, M.; Pardo, J.E.; Alvarruiz, A. Storage stability and composition changes of three cold-pressed nut oils under refrigeration and room temperature conditions. Food Chem. 2018, 259, 31–35. [Google Scholar] [CrossRef]
- Martínez, M.L.; Penci, M.C.; Ixtaina, V.; Ribotta, P.D.; Maestri, D. Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT Food Sci. Technol. 2013, 51, 44–50. [Google Scholar] [CrossRef]
- Grilo, F.S.; Srisaard, Y.; Wang, S.C. Prediction of Walnut Deterioration Using Kernel Oxidative Stability. Foods 2020, 9, 1207. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hortic. (Amsterdam) 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Salcedo, C.L.; López de Mishima, B.A.; Nazareno, M.A. Walnuts and almonds as model systems of foods constituted by oxidisable, pro-oxidant and antioxidant factors. Food Res. Int. 2010, 43, 1187–1197. [Google Scholar] [CrossRef]
- Zaini, P.A.; Feinberg, N.G.; Grilo, F.S.; Saxe, H.J.; Salemi, M.R.; Phinney, B.S.; Crisosto, C.H.; Dandekar, A.M. Comparative Proteomic Analysis of Walnut (Juglans regia L.) Pellicle Tissues Reveals the Regulation of Nut Quality Attributes. Life 2020, 10, 314. [Google Scholar] [CrossRef]
- Warmund, M.R.; Elmore, J.; Drake, M.; Yates, M.D. Descriptive analysis of kernels of selected black and Persian walnut cultivars. J. Sci. Food Agric. 2009, 89, 117–121. [Google Scholar] [CrossRef]
- Ortiz, C.M.; Vicente, A.R.; Fields, R.P.; Grillo, F.; Labavitch, J.M.; Donis-Gonzalez, I.; Crisosto, C.H. Walnut (Juglans regia L.) kernel postharvest deterioration as affected by pellicle integrity, cultivar and oxygen concentration. Postharvest Biol. Technol. 2019, 156, 110948. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 1984, 23, 197–221. [Google Scholar] [CrossRef]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and Fatty Acid Profile, and Protein Content of Different Walnut Cultivars and Genotypes (Juglans regia L.) Grown in the USA. Int. J. Fruit Sci. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Tsantili, E. Oil composition in stored walnut cultivars-quality and nutritional value. Eur. J. Lipid Sci. Technol. 2015, 117, 338–348. [Google Scholar] [CrossRef]
- Wagner, K.H.; Elmadfa, I. Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. Eur. J. Lipid Sci. Technol. 2000, 102, 624–629. [Google Scholar] [CrossRef]
- Kafkas, S.; Burgut, A.; Ozcan, A.; Sutyemez, M.; Türemis, N. Fatty Acid, Total Phenol and Tocopherol Profiles of Some Walnut Cultivars: A Comparative Study. Food Nutr. Sci. 2017, 8, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Do Carmo, C.S.; Maia, C.; Poejo, J.; Lychko, I.; Gamito, P.; Nogueira, I.; Bronze, M.R.; Serra, A.T.; Duarte, C.M.M. Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. 2017, 7, 32065–32075. [Google Scholar] [CrossRef] [Green Version]
- Verleyen, T.; Verhe, R.; Huyghebaert, A.; Dewettinck, K.; De Greyt, W. Identification of r-Tocopherol Oxidation Products in Triolein at Elevated Temperatures. J. Agric. Food Chem. 2001, 49, 1508–1511. [Google Scholar] [CrossRef] [PubMed]
- Barden, L.; Decker, E.A. Lipid Oxidation in Low-moisture Food: A Review Lipid Oxidation in Low-moisture Food: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2467–2482. [Google Scholar] [CrossRef]
- Morales, M.T.; Rios, J.J.; Aparicio, R. Changes in the Volatile Composition of Virgin Olive Oil during Oxidation: Flavors and Off-Flavors. J. Agric. Food Chem. 1997, 45, 2666–2673. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F. Tree Nuts, Composition, Phytochemicals and Health Effects; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Sik Yang, D.; Shewfelt, R.L.; Lee, K.; Kays, S.J. Comparison of Odor-Active Compounds from Six Distinctly Different Rice Flavor Types. J. Agric. Food Chem. 2008, 56, 2780–2787. [Google Scholar] [CrossRef]
- Jensen, P.N.; Sørensen, G.; Engelsen, S.B.; Bertelsen, G. Evaluation of quality changes in walnut kernels (Juglans regia L.) by Vis/NIR spectroscopy. J. Agric. Food Chem. 2001, 49, 5790–5796. [Google Scholar] [CrossRef]
- Yang, J.; Pan, Z.; Takeoka, G.; Mackey, B.; Bingol, G.; Brandl, M.T.; Garcin, K.; Mchugh, T.H.; Wang, H. Shelf-life of infrared dry-roasted almonds. Food Chem. 2013, 138, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Devos, M.; van Gemert, L.J.; Patte, F.; Rouault, J. Standardized Human Olfactory Thresholds; Oxford University, Ed.; IRL Press: Oxford, UK, 1990. [Google Scholar]
- Fu, M.; Shen, X.; Peng, H.; Zhou, Q.; Yun, J.; Sun, Y.; Ho, C.T.; Cai, H.; Hou, R. Identification of rancidity markers in roasted sunflower seeds produced from raw materials stored for different periods of time. Lwt-Food Sci. Technol. 2020, 118, 108721. [Google Scholar] [CrossRef]
- Meijboom, P.W. Relationship between molecular structure and flavor perceptibility of aliphatic aldehydes. J. Am. Oil Chem. Soc. 1964, 41, 326–328. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, W.; Chu, F.; Wang, C.; Pei, D. Identification of Volatile Oxidation Compounds as Potential Markers of Walnut Oil Quality. J. Food Sci. 2018, 83, 2745–2752. [Google Scholar] [CrossRef]
- Clark, R.G.; Nursten, H.E. The sensory analysis and identification of volatiles from walnut (Juglans regia L.) headspace. J. Sci. Food Agric. 1977, 28, 69–77. [Google Scholar] [CrossRef]
- Piccirillo, P.; Fasano, P.; Mita, G.; Paolis, A.; De Santino, A. Exploring the Role of Lipoxygenases on Walnut Quality and Shelf-Life. Acta Hortic. 2006, 705, 543–545. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, N.; Peng, Y.; Zhu, C.; Pan, S. Peel oils from three Citrus species: Volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci. Technol. 2019, 56, 4492–4502. [Google Scholar] [CrossRef] [PubMed]
- Acree, T.; Arn, H. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 1 September 2020).
Cultivar | Storage (Weeks) | Moisture Content | Oil FFA | Oil PV | Oil K232 | Oil K268 | Kernel OS | Oil OS | Kernel Darkness |
---|---|---|---|---|---|---|---|---|---|
Chandler | 0 | 2.5 ± 0.25 a | 0.03 ± 0.01 | 0.9 ± 0.1 d | 0.95 ± 0.12 h | 0.07 ± 0.01 e | 13.3 ± 0.03 a | 3.3 ± 0.04 a | 1.0 ± 0.00 g |
1 | 2.4 ± 0.22 ab | 0.03 ± 0.00 | 1.2 ± 0.01 d | 1.14 ± 0.01 g | 0.09 ± 0.00 de | 13.4 ± 0.45 a | 2.7 ± 0.01 cd | 1.0 ± 0.00 g | |
2 | 2.2 ± 0.23 abc | 0.03 ± 0.00 | 1.3 ± 0.10 d | 1.33 ± 0.04f g | 0.12 ± 0.02 bc | 12.8 ± 0.12 a | 3.0 ± 0.14 b | 1.0 ± 0.00 g | |
3 | 2.3 ± 0.22 abc | 0.04 ± 0.00 | 1.3 ± 0.11 d | 1.43 ± 0.01 ef | 0.11 ± 0.01 bcd | 12.4 ± 0.64 ab | 2.8 ± 0.12 bc | 1.1 ± 0.23 g | |
4 | 2.2 ± 0.32 abc | 0.04 ± 0.01 | 1.9 ± 0.23 c | 1.40 ± 0.12 f | 0.10 ± 0.02 cd | 12.5 ± 0.47 ab | 2.9 ± 0.03 b | 1.3 ± 0.46 fg | |
8 | 1.8 ± 0.05 c | 0.04 ± 0.00 | 2.3 ± 0.36 bc | 1.60 ± 0.04 e | 0.11 ± 0.01 cd | 12.6 ± 0.13 a | 2.8 ± 0.01 bcd | 1.6 ± 0.51 ef | |
12 | 1.8 ± 0.03 bc | 0.03 ± 0.01 | 2.6 ± 0.14 b | 2.00 ± 0.21 d | 0.12 ± 0.03 c | 13.2 ± 0.19 a | 2.7 ± 0.04 bcd | 1.8 ± 0.44 de | |
16 | 1.8 ± 0.13 c | 0.03 ± 0.00 | 2.7 ± 0.48 b | 2.40 ± 0.13 c | 0.14 ± 0.01 b | 12.7 ± 1.70 a | 2.7 ± 0.21 bcd | 2.0 ± 0.23 cd | |
20 | 1.7 ± 0.15 c | 0.03 ± 0.00 | 2.6 ± 0.19 b | 2.85 ± 0.03 b | 0.21 ± 0.01 a | 10.9 ± 2.49 bc | 2.6 ± 0.08 cde | 2.1 ± 0.35 bc | |
24 | 1.1 ± 0.16 d | 0.04 ± 0.00 | 3.8 ± 0.20 a | 3.01 ± 0.07 ab | 0.21 ± 0.01 a | 10.6 ± 0.27 c | 2.4 ± 0.09 e | 2.4 ± 0.49 b | |
28 | 1.0 ± 0.03 d | 0.04 ± 0.00 | 4.4 ± 0.61 a | 3.08 ± 0.06 a | 0.23 ± 0.01 a | 6.00 ± 0.40 d | 2.5 ± 0.10 de | 2.8 ± 0.47 a | |
Howard | 0 | 3.0 ± 0.06 a | 0.03 ± 0.00 | 1.6 ± 0.32 g | 1.13 ± 0.04 f | 0.13 ± 0.04 e | 10.9 ± 0.91 a | 3.3 ± 0.56 a | 1.0 ± 0.00 g |
1 | 1.3 ± 0.43 b | 0.03 ± 0.00 | 1.7 ± 0.17 fg | 1.38 ± 0.03 e | 0.17 ± 0.01 c | 10.9 ± 0.08 a | 3.0 ± 0.49 ab | 1.0 ± 0.00 g | |
2 | 1.4 ± 0.18 b | 0.03 ± 0.00 | 1.7 ± 0.28 fg | 1.66 ± 0.03 d | 0.17 ± 0.02 cde | 11.1 ± 0.67 a | 2.8 ± 0.04 abc | 1.0 ± 0.00 g | |
3 | 1.3 ± 0.03 b | 0.03 ± 0.01 | 2.1 ± 0.21 ef | 1.59 ± 0.11 d | 0.12 ± 0.04 de | 11.0 ± 0.34 a | 2.5 ± 0.12 bcd | 1.1 ± 0.27 g | |
4 | 1.2 ± 0.07 b | 0.03 ± 0.00 | 2.3 ± 0.11 de | 1.64 ± 0.04 d | 0.15 ± 0.03 cde | 11.7 ± 1.09 a | 2.5 ± 0.12 bcd | 1.7 ± 0.48 f | |
8 | 1.2 ± 0.03 b | 0.04 ± 0.00 | 2.6 ± 0.46 de | 1.84 ± 0.15 c | 0.16 ± 0.03 cde | 11.7 ± 0.82 a | 2.4 ± 0.11 bcd | 2.0 ± 0.16 e | |
12 | 0.9 ± 0.07 bc | 0.04 ± 0.00 | 2.8 ± 0.36 d | 2.66 ± 0.14 b | 0.18 ± 0.01 c | 10.4 ± 0.58 a | 2.4 ± 0.04 bcd | 2.2 ± 0.37 de | |
16 | 1.1 ± 0.12 bc | 0.04 ± 0.01 | 3.4 ± 0.32 c | 2.56 ± 0.03 b | 0.16 ± 0.02 c | 8.20 ± 1.86 b | 2.4 ± 0.08 bcd | 2.4 ± 0.48 cd | |
20 | 0.9 ± 0.03 bc | 0.03 ± 0.00 | 3.8 ± 0.18 bc | 3.11 ± 0.06 a | 0.24 ± 0.01 b | 7.60 ± 1.05 b | 2.0 ± 0.10 cd | 2.6 ± 0.51 c | |
24 | 0.5 ± 0.06 c | 0.04 ± 0.01 | 4.0 ± 0.01 b | 3.04 ± 0.11 a | 0.25 ± 0.01 b | 4.80 ± 1.31 c | 2.2 ± 0.16 cd | 2.9 ± 0.37 b | |
28 | 0.5 ± 0.17 c | 0.04 ± 0.01 | 6.4 ± 0.20 a | 3.21 ± 0.06 a | 0.29 ± 0.05 a | 2.50 ± 0.24 d | 2.2 ± 0.01 d | 3.5 ± 0.51 a | |
Chandler | 1.9 ± 0.50 a | 0.03 ± 0.01 | 2.2 ± 1.10b | 1.85 ± 0.13 b | 0.07 ± 0.70 b | 11.9 ± 2.23 a | 2.8 ± 0.25 a | 1.8 ± 0.67 a | |
Howard | 1.3 ± 0.72 b | 0.03 ± 0.01 | 2.9 ± 1.35 a | 2.11 ± 0.18 a | 0.09 ± 0.73 a | 9.11 ± 3.07 b | 2.5 ± 0.41 b | 2.3 ± 0.79 b |
Cultivar | Storage (Weeks) | Kernel Phenols | Oil Phenols | δ-t | γ-t | α-t | ∑Tocopherols | SFA | MUFA | PUFA | O6/O3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Chandler | 0 | 12402 ± 502.8 a | 102 ± 1.1 a | 59 ± 0.2 a | 411 ± 12.3 a | 24 ± 0.5 a | 494 ± 11.6 a | 7.4 ± 1.1 | 20.7 ± 0.3 | 72 ± 0.8 | 3.91 ± 0.00 |
1 | 12081 ± 511.0 a | 100 ± 3.2 a | 58 ± 0.1 a | 387 ± 17.3 a | 19 ± 0.6 b | 464 ± 18 a | 7.4 ± 0.3 | 19.9 ± 0.5 | 72.7 ± 0.1 | 3.99 ± 0.01 | |
2 | 12316 ± 569.4 a | 105 ± 1.4 a | 58 ± 0.0 a | 387 ± 1.20 abc | 17 ± 1.3 b | 462 ± 2.5 ab | 6.7 ± 0.1 | 20.6 ± 0.1 | 72.7 ± 0.0 | 3.97 ± 0.00 | |
3 | 11929 ± 172.4 ab | 98 ± 3.0 a | 59 ± 3.6 ab | 379 ± 10.7 abcd | 10 ± 1.1 c | 447 ± 13.2 abc | 6.3 ± 0.3 | 20.7 ± 0.1 | 73.1 ± 0.2 | 4.02 ± 0.00 | |
4 | 10973 ± 369.0 bc | 90 ± 1.0 b | 63 ± 2.4 ab | 400 ± 15.5 ab | 9 ± 0.3 c | 472 ± 18.2 ab | 7.1 ± 0.9 | 21.1 ± 0.3 | 71.8 ± 0.6 | 3.99 ± 0.00 | |
8 | 10986 ± 147.1 bc | 83 ± 1.9 c | 63 ± 0.6 ab | 383 ± 10.7 ab | 7 ± 0.2 d | 453 ± 11.1 ab | 6.0 ± 0.6 | 20.9 ± 0.1 | 73.2 ± 0.5 | 3.97 ± 0.01 | |
12 | 10870 ± 162.7 bc | 84 ± 2.5 bc | 59 ± 0.6 ab | 348 ± 5.7 bcde | 4 ± 0.5 e | 411 ± 6.8 bcd | 5.9 ± 0.4 | 20.9 ± 0.0 | 73.2 ± 0.4 | 3.97 ± 0.01 | |
16 | 10564 ± 337.0 c | 87 ± 2.1 bc | 56 ± 1.3 ab | 336 ± 8.1 cde | 0 ± 0.0 f | 392 ± 9.3 cd | 7.9 ± 1.6 | 20.4 ± 0.4 | 71.6 ± 1.2 | 3.98 ± 0.00 | |
20 | 10006 ± 546.4 c | 83 ± 2.5 c | 58 ± 5.5 ab | 334 ± 10.7 de | 0 ± 0.0 f | 392 ± 16.2 cd | 6.4 ± 0.7 | 21.2 ± 0.1 | 72.4 ± 0.6 | 3.91 ± 0.01 | |
24 | 10218 ± 238.2 c | 69 ± 3.0 d | 52 ± 5.1 b | 328 ± 20.1 e | 0 ± 0.0 f | 380 ± 25.2 d | 7.0 ± 0.2 | 20.5 ± 0.1 | 72.4 ± 0.2 | 4.03 ± 0.01 | |
28 | 10466 ± 146.6 c | 67 ± 0.9 d | 53 ± 0.5 ab | 337 ± 11.2 cde | 0 ± 0.0 f | 391 ± 11.7 d | 6.3 ± 0.1 | 21 ± 0.1 | 72.7 ± 0.1 | 3.95 ± 0.01 | |
Howard | 0 | 11511 ± 1101.4 a | 143 ± 1.9 a | 56 ± 2.1 a | 309 ± 5.5 a | 21 ± 0.6 a | 386 ± 8.20 a | 10 ± 0.9 | 18.5 ± 0.9 | 71.2 ± 0 | 4.21 ± 0.11 |
1 | 10880 ± 321.6 ab | 142 ± 1.2 a | 51 ± 1.2 a | 308 ± 20 a | 15 ± 1.9 b | 375 ± 23.2 a | 6.1 ± 0.1 | 20.3 ± 0.0 | 73.6 ± 0.1 | 4.04 ± 0.00 | |
2 | 10830 ± 264.7 ab | 123 ± 1.1 b | 56 ± 2.1 ab | 318 ± 11.5 ab | 12 ± 1.1 c | 385 ± 12.6 a | 6.2 ± 0.2 | 20.4 ± 0.1 | 73.5 ± 0.2 | 4.03 ± 0.01 | |
3 | 10694 ± 523.6 abc | 92 ± 6.2 c | 51 ± 0.9 ab | 281 ± 5.4 abc | 11 ± 1.1 cd | 343 ± 7.4 ab | 4.3 ± 0.8 | 20.6 ± 0.2 | 75.1 ± 0.6 | 4.01 ± 0.02 | |
4 | 10150 ± 483.4 abcd | 88 ± 6.0 cd | 47 ± 0.9 abc | 265 ± 8.3 cd | 8 ± 1.1 d | 321 ± 8.5 bc | 11 ± 0.2 | 19.3 ± 0.2 | 70.1 ± 0.0 | 4.09 ± 0.07 | |
8 | 10592 ± 319.5 abc | 81 ± 1.3 d | 49 ± 2.0 abc | 268 ± 6.3 bcd | n.d. | 317 ± 8.2 bc | 7.5 ± 0.1 | 20.2 ± 0.1 | 72.3 ± 0.1 | 4.03 ± 0.01 | |
12 | 10237 ± 693.3 abcd | 44 ± 2.3 e | 43 ± 5.8 bc | 232 ± 11.9 d | n.d. | 275 ± 17.7 c | 8.4 ± 0.2 | 19.8 ± 0.0 | 71.8 ± 0.2 | 4.07 ± 0.01 | |
16 | 9699 ± 166.0 bcde | 40 ± 2.6 e | 39 ± 1.9 c | 238 ± 13.5 d | n.d. | 277 ± 15.4 c | 6.2 ± 0.2 | 20.3 ± 0.1 | 73.5 ± 0.3 | 4.24 ± 0.00 | |
20 | 9280 ± 492.8 cde | 39 ± 1.2 e | 42 ± 4.6 bc | 254 ± 6.0 cd | n.d. | 296 ± 10.6 bc | 7.1 ± 0.2 | 20.3 ± 0.0 | 72.7 ± 0.2 | 4.22 ± 0.00 | |
24 | 9055 ± 268.6 de | 25 ± 1.3 f | 38 ± 2.9 c | 246 ± 7.0 cd | n.d. | 284 ± 10.0 c | 6.2 ± 0.2 | 20.6 ± 0.0 | 73.2 ± 0.1 | 4.21 ± 0.01 | |
28 | 8325 ± 258.4 e | 14 ± 3.2 g | 40 ± 1.6 bc | 248 ± 6.3 cd | n.d. | 289 ± 7.9 c | 5.4 ± 0.7 | 20.6 ± 0.3 | 74.0 ± 0.3 | 4.21 ± 0.00 | |
Chandler | 11165 ± 895.4 a | 88 ± 12.4 | 58 ± 3.9 a | 366 ± 30.6 a | 8 ± 8.3 | 432 ± 40.5 a | 6.7 ± 0.8 | 20.7 ± 0.4 a | 72.5 ± 0.7 | 3.97 ± 0.04 b | |
Howard | 10114 ± 1003.7 b | 76 ± 45.2 | 47 ± 6.6 b | 270 ± 30.5 b | 6 ± 7.5 | 322 ± 43.3 b | 7.1 ± 1.9 | 20.1 ± 0.7 b | 72.8 ± 1.4 | 4.12 ± 0.10 a |
Volatile Compound | Function 1 | Function 2 |
---|---|---|
2-methylpropanal | 0.634 | 0.872 |
Pentanal | 2.199 | 6.332 |
Hexanal | −3.435 | −9.647 |
(E)-2-pentenal | 1.807 | −3.127 |
3-octanone | 3.205 | 0.49 |
Octanal | 12.014 | −5.081 |
(Z)-2-penten-1-ol | 4.284 | 1.278 |
Hexanol | −2.248 | 0.14 |
(E)-2-octenal | 2.8 | −6.16 |
1-octen-3-ol | −16.793 | 13.871 |
Benzaldehyde | −1.068 | 0.667 |
(E,E)-2,4-nonadienal | −2.105 | 0.867 |
Hexanoic acid | 1.294 | −0.491 |
Groups | Predicted Group Membership | Total | ||
---|---|---|---|---|
A1 | A2 | B | ||
A1 | 30 (100%) | 0 | 0 | 30 (100%) |
A2 | 2 (7.4%) | 25 (92.6%) | 0 | 27 (100%) |
B | 0 | 0 | 9 (100%) | 9 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grilo, F.S.; Wang, S.C. Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation. Foods 2021, 10, 329. https://doi.org/10.3390/foods10020329
Grilo FS, Wang SC. Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation. Foods. 2021; 10(2):329. https://doi.org/10.3390/foods10020329
Chicago/Turabian StyleGrilo, Filipa S., and Selina C. Wang. 2021. "Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation" Foods 10, no. 2: 329. https://doi.org/10.3390/foods10020329
APA StyleGrilo, F. S., & Wang, S. C. (2021). Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation. Foods, 10(2), 329. https://doi.org/10.3390/foods10020329