Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Materials
2.2. Baijiu Samples
2.3. Quantification of Pyrazines
2.4. Sensory Analyses
2.4.1. Sensory Panels
2.4.2. Determination of Odor Thresholds and Calculation of OAVs
2.4.3. SSAB Sample Evaluation
2.4.4. Discriminative Testing Methods
2.4.5. Determination of the Perceptual Interactions between Pyrazines
2.5. Statistical Analysis
3. Results
3.1. Quantitation of Pyrazines by UPLC–MS/MS Approach
3.2. Quantitation of Pyrazines and OAV Analysis
3.3. Relationships between Pyrazine Concentrations and Roasted Aroma.
3.4. Organoleptic Impact of Pyrazines on SSAB Aroma Perception
3.5. Olfactory Properties of Pyrazines Present at Sub-Threshold Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, G.Y.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food. Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef]
- Wang, X.X.; Fan, W.L.; Xu, Y. Comparison on aroma compounds in Chinese soy sauce and strong aroma type liquors by gas chromatography-olfactometry, chemical quantitative and odor activity values analysis. Eur. Food Res. Technol. 2014, 239, 813–825. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, X.; Ji, K.; Guo, K.; Li, Y.; Wu, C.; Xu, G. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta 2007, 597, 340–348. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y.; Qian, M.C. Identification of Aroma Compounds in Chinese “Moutai” and “Langjiu” Liquors by Normal Phase Liquid Chromatography Fractionation Followed by Gas Chromatography/Olfactometry. Flavor Chem. Wine Other Alcohol. Beverages 2012, 1104, 303–338. [Google Scholar]
- Chen, S.; Wang, C.; Qian, M.; Li, Z.; Xu, Y. Characterization of the Key Aroma Compounds in Aged Chinese Rice Wine by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food. Chem. 2019, 67, 4876–4884. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Chen, S.; Qian, M.; Wang, C.; Xu, Y. Characterization of the Typical Potent Odorants in Chinese Roasted Sesame-like Flavor Type Liquor by Headspace Solid Phase Microextraction-Aroma Extract Dilution Analysis, with Special Emphasis on Sulfur-Containing Odorants. J. Agric. Food. Chem. 2017, 65, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Feng, Y.; Hadiatullah, H.; Zheng, F.; Yao, Y. Chemical Characteristics of Three Kinds of Japanese Soy Sauce Based on Electronic Senses and GC-MS Analyses. Frontiers in Microbiology 2021, 11, 579808. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food. Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, C.; Li, S.; Wang, X.; Yao, Y. Exploring the flavor formation mechanism under osmotic conditions during soy sauce fermentation in Aspergillus oryzae by proteomic analysis. Food Funct. 2020, 11, 640–648. [Google Scholar] [CrossRef]
- Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.C. Study of Sensory Interactions among Red Wine Fruity Esters in a Model Solution. J. Agric. Food. Chem. 2013, 61, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
- Lytra, G.; Tempere, S.; de Revel, G.; Barbe, J.C. Impact of perceptive interactions on red wine fruity aroma. J. Agric. Food. Chem. 2012, 60, 12260–12269. [Google Scholar] [CrossRef] [PubMed]
- Tempere, S.; Schaaper, M.H.; Cuzange, E.; de Lescar, R.; de Revel, G.; Sicard, G. The olfactory masking effect of ethylphenols: Characterization and elucidation of its origin. Food Quality and Preference 2016, 50, 135–144. [Google Scholar] [CrossRef]
- Masuo, S.; Tsuda, Y.; Namai, T.; Minakawa, H.; Shigemoto, R.; Takaya, N. Enzymatic Cascade in Pseudomonas that Produces Pyrazine from alpha-Amino Acids. ChemBioChem 2020, 21, 353–359. [Google Scholar] [CrossRef]
- Gama, A.P.; Adhikari, K. Sensory Characterization of Dominant Malawi Peanut Varieties After Roasting. J. Food Sci. 2019, 84, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Manzano, P.; Diego, J.C.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Comprehensive two-dimensional gas chromatography coupled with static headspace sampling to analyze volatile compounds: Application to almonds. J. Sep. Sci. 2014, 37, 675–683. [Google Scholar] [CrossRef]
- Nicolotti, L.; Cordero, C.; Bicchi, C.; Rubiolo, P.; Sgorbini, B.; Liberto, E. Volatile profiling of high quality hazelnuts (Corylus avellana L.): Chemical indices of roasting. Food Chem. 2013, 138, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Kerrihard, A.L.; Pegg, R.B. Characterization of the Volatile Compounds in Raw and Roasted Georgia Pecans by HS-SPME-GC-MS. J. Food Sci. 2018, 83, 2753–2760. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, S.; He, Y.; Nie, Y.; Xu, Y. Quantitation of pyrazines in Baijiu and during production process by a rapid and sensitive direct injection UPLC-MS/MS approach. LWT-Food Sci. Technol. 2020, 128, 109371. [Google Scholar] [CrossRef]
- Lytra, G.; Cameleyre, M.; Tempere, S.; Barbe, J.C. Distribution and Organoleptic Impact of Ethyl 3-Hydroxybutanoate Enantiomers in Wine. J. Agric. Food. Chem. 2015, 63, 10484–10491. [Google Scholar] [CrossRef]
- Zhao, T.; Ni, D.; Hu, G.; Wang, L.; Chen, S.; Xu, Y. 6-(2-Formyl-5-methyl-1 H-pyrrol-1-yl)hexanoic Acid as a Novel Retronasal Burnt Aroma Compound in Soy Sauce Aroma-Type Chinese Baijiu. J. Agric. Food. Chem. 2019, 67, 1666–1677. [Google Scholar] [CrossRef]
- Cometto-Muniz, J.E.; Cain, W.S.; Abraham, M.H. Odor detection of single chemicals and binary mixtures. Behav. Brain Res. 2005, 156, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC × GC-TOFMS, organoleptic impact evaluation, and multivariate data analysis. Food Res. Int. 2020, 131, 109043. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; Qian, M.; Yu, X.; Xu, Y.; Chen, S. Unraveling the chemosensory characteristics of strong-aroma type Baijiu from different regions using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and descriptive sensory analysis. Food Chem. 2020, 331, 127335. [Google Scholar] [CrossRef] [PubMed]
- Etaio, I.; Elortondo, F.J.P.; Albisu, M.; Gaston, E.; Ojeda, M.; Schlich, P. Development of a quantitative sensory method for the description of young red wines from Rioja Alavesa. J. Sens. Stud. 2008, 23, 631–655. [Google Scholar] [CrossRef]
- Tomic, O.; Luciano, G.; Nilsen, A.; Hyldig, G.; Lorensen, K.; Naes, T. Analysing sensory panel performance in a proficiency test using the PanelCheck software. Eur. Food Res. Technol. 2010, 230, 497–511. [Google Scholar] [CrossRef]
- Krop, E.M.; Hetherington, M.M.; Holmes, M.; Miquel, S.; Sarkar, A. On relating rheology and oral tribology to sensory properties in hydrogels. Food Hydrocolloids 2019, 88, 101–113. [Google Scholar] [CrossRef]
- Miyazawa, T.; Gallagher, M.; Preti, G.; Wise, P.M. Synergistic mixture interactions in detection of perithreshold odors by humans. Chem. Senses 2008, 33, 363–369. [Google Scholar] [CrossRef]
- Wei, J.; Du, H.; Zhang, H.; Nie, Y.; Xu, Y. Mannitol and erythritol reduce the ethanol yield during Chinese Baijiu production. Int. J. Food Microbiol. 2021, 337, 108933. [Google Scholar] [CrossRef]
- Scalone, G.L.L.; Lamichhane, P.; Cucu, T.; De Kimpe, N.; De Meulenaer, B. Impact of different enzymatic hydrolysates of whey protein on the formation of pyrazines in Maillard model systems. Food Chem. 2019, 278, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Rajini, K.S.; Aparna, P.; Sasikala, C.; Ramana, C.V. Microbial metabolism of pyrazines. Crit. Rev. Microbiol. 2011, 37, 99–112. [Google Scholar] [CrossRef]
- Zhu, B.F.; Xu, Y.; Fan, W.L. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp using an endogenous precursor approach. J. Ind. Microbiol. Biotechnol. 2010, 37, 179–186. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, J.; Sun, X.; Li, H. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food. Chem. 2016, 64, 5367–5374. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Chen, X.; Xiao, Z.; Ma, N.; Zhu, J. Characterization of aroma-active compounds in three Chinese Moutai liquors by gas chromatography-olfactometry, gas chromatography-mass spectrometry and sensory evaluation. Nat. Prod. Res. 2016, 31, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.J.; Zhao, Y.Y.; Xu, Y.R.; Gong, C.T.; Jiao, S.S. Effects of hot air-assisted radio frequency roasting on nutritional quality and aroma composition of cashew nut kernels. LWT-Food Sci. Technol. 2019, 116, 108551. [Google Scholar] [CrossRef]
- Baker, G.L.; Cornell, J.A.; Gorbet, D.W.; O’Keefe, S.F.; Sims, C.A.; Talcott, S.T. Determination of pyrazine and flavor variations in peanut genotypes during roasting. J. Food Sci. 2003, 68, 394–400. [Google Scholar] [CrossRef]
- ISO-8586:2012. Sensory Analysis-General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization (ISO): Geneva, Switzerland, 2012. [Google Scholar]
- Guadagni, D.G.; Buttery, R.G.; Okano, S.; Burr, H.K. Additive effect of sub-threshold concentrations of some organic compounds associated with food aromas. Nature 1963, 200, 1288–1289. [Google Scholar] [CrossRef] [PubMed]
Reconstitution | Pyrazines Reconstitution Diluted in 15 mL of Matrix (mL) | Matrix |
---|---|---|
26DM + 2E6M + 235TM + 2E35DM | 0.039/0.077/0.154/0.307/ 0.614/1.228/2.456/4.912/9.824 | 53% ethanol/water solution |
23DM + 23DE + 23DE5M + 2A3M in 53% ethanol/water solution |
No. | Compounds | Retention Time (min) ± Standard Deviation | Precursor Ion (m/z) | Quantification Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) | Confirmation Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|---|---|---|
1 | Pyrazine | 1.77 ± 0.03 | 80.7 | 54.1 | 35 | 14 | 41.2 | 37 | 16 |
2 | 2M | 3.35 ± 0.03 | 94.7 | 68.0 | 33 | 14 | 54.3 | 33 | 16 |
3 | 26DM | 6.45 ± 0.05 | 108.9 | 41.5 | 31 | 19 | 67.7 | 33 | 18 |
4 | TM2YM | 7.05 ± 0.04 | 152.7 | 53.2 | 7 | 22 | 94.1 | 9 | 22 |
5 | 23DM | 7.41 ± 0.06 | 108.9 | 41.5 | 31 | 19 | 67.7 | 33 | 18 |
6 | 2356TTM | 8.41 ± 0.04 | 137.0 | 55.3 | 31 | 21 | 42.1 | 31 | 24 |
7 | 235TM | 9.75 ± 0.03 | 123.0 | 82.2 | 33 | 17 | 42.0 | 33 | 20 |
8 | 2A3M | 14.00 ± 0.07 | 136.8 | 109.1 | 17 | 16 | 94.5 | 17 | 18 |
9 | 2E6M | 15.43 ± 0.06 | 123.0 | 108.2 | 27 | 19 | 81.5 | 29 | 19 |
10 | 2E3M | 16.29 ± 0.08 | 123.0 | 108.2 | 27 | 19 | 81.5 | 29 | 19 |
11 | 2E35DM | 18.76 ± 0.04 | 137.0 | 121.4 | 29 | 17 | 80.4 | 30 | 19 |
12 | 5E35DM | 19.49 ± 0.06 | 137.0 | 121.4 | 29 | 17 | 80.4 | 30 | 19 |
13 | 26DE | 25.48 ± 0.06 | 136.8 | 121.8 | 33 | 20 | 108.4 | 33 | 22 |
14 | 23DE | 26.26 ± 0.09 | 136.8 | 121.8 | 33 | 20 | 108.4 | 33 | 22 |
15 | 23DE5M | 29.43 ± 0.04 | 150.8 | 136.0 | 35 | 16 | 122.5 | 35 | 18 |
16 | 2I3M | 32.64 ± 0.03 | 151.0 | 108.0 | 29 | 26 | 135.8 | 28 | 23 |
17 | 2-Propylpyrazine (IS) | 20.73 ± 0.05 | 122.7 | 108.0 | 23 | 16 | 61.1 | 23 | 18 |
No. | Compounds | Threshold (μg·L−1) | GT d | WZJ | ZY | QHZ | DYT | XJ | LJ | ZJ | WL | FM | ZZY | Mean Value of All Samples |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (μg·L−1) | ||||||||||||||
1 | Pyrazine a | 300,000 b | 82.11 ± 4.08 | 192.41 ± 2.1 | 85.25 ± 3.66 | 176.21 ± 5.02 | 196.79 ± 1.45 | 193.92 ± 1.06 | 71.14 ± 0.67 | 117.55 ± 2.23 | 99.8 ± 4.11 | 73.08 ± 3.8 | 29.81 ± 4.5 | 119.82 |
2 | 2M a | 30,000 b | 135.21 ± 1.17 | 110.54 ± 3.64 | 148.2 ± 0.65 | 195.29 ± 0.59 | 159.41 ± 1.97 | 115.33 ± 2.2 | 62.15 ± 5.41 | 36.02 ± 3.41 | 71.56 ± 3.09 | 56.88 ± 2.16 | 51.06 ± 1.97 | 103.79 |
3 | 26DM | 791 [3] | 1257.48 ± 3.24 (1.6) | 992.28 ± 1.97 (1.3) | 1497.57 ± 3.96 (1.9) | 1116.28 ± 6.09 (1.4) | 1054.61 ± 0.88 (1.3) | 951.06 ± 1.28 (1.2) | 735.28 ± 0.69 (0.9) | 1589.16 ± 0.47 (2.0) | 878.3 ± 2.78 (1.1) | 459.48 ± 4.6 (0.6) | 618.19 ± 1.06 (0.8) | 1013.61 |
4 | TM2YM a | 267,946 c | 6.51 ± 1.76 | 74.7 ± 2.89 | 53.07 ± 3.37 | 54.1 ± 1.92 | 25.4 ± 6.17 | 39.28 ± 3.06 | 7.05 ± 2.71 | 17.33 ± 4.32 | 10.54 ± 3.66 | 18.14 ± 2.79 | 10.92 ± 1.78 | 28.82 |
5 | 23DM | 965 c | 312.01 ± 3.96 (0.3) | 175.8 ± 2.24 (0.2) | 682.51 ± 2.09 (0.7) | 290.8 ± 1.88 (0.3) | 195.26 ± 3.62 (0.2) | 315.7 ± 3.84 (0.3) | 112.66 ± 0.77 (0.1) | 295.3 ± 2.6 (0.3) | 237.4 ± 4.78 (0.2) | 125.89 ± 3.5 (0.1) | 167.2 ± 0.88 (0.2) | 264.59 |
6 | 2356TTM a | 80,100 [3] | 1861.98 ± 7.09 | 1634.52 ± 1.02 | 805.19 ± 0.56 | 1208.3 ± 1.70 | 895.22 ± 0.79 | 1183.12 ± 4.41 | 474.99 ± 4.27 | 1609.47 ± 2.28 | 601.51 ± 4.04 | 693.42 ± 2.19 | 886.07 ± 4.78 | 1077.62 |
7 | 235TM | 730 [3] | 1086.25 ± 0.71 (1.5) | 1328.06 ± 1.37 (1.8) | 866.33 ± 1.05 (1.2) | 950.19 ± 1.36 (1.3) | 760.57 ± 5.81 (1.0) | 906.55 ± 5.52 (1.2) | 440.1 ± 0.83 (0.6) | 1754.48 ± 1.27 (2.4) | 497.11 ± 3.74 (0.7) | 316.52 ± 1.53 (0.4) | 513.97 ± 4.24 (0.7) | 856.38 |
8 | 2A3M | 415 c | 236.75 ± 3.5 (0.6) | 156.34 ± 0.57 (0.4) | 79.26 ± 2.97 (0.2) | 125.41 ± 4.43 (0.3) | 196.22 ± 5.09 (0.5) | 261.07 ± 1.76 (0.6) | 78.15 ± 1.69 (0.2) | 56.12 ± 3.56 (0.1) | 65.4 ± 1.86 (0.2) | 72.3 ± 3.71 (0.2) | 49.49 ± 3.55 (0.1) | 125.13 |
9 | 2E6M | 40 [33] | 428.24 ± 2.04 (10.7) | 330.72 ± 1.45 (8.3) | 502.11 ± 0.54 (12.6) | 255.9 ± 4.15 (6.4) | 420.85 ± 6.20 (10.5) | 369.26 ± 0.63 (9.2) | 361.98 ± 6.02 (9.0) | 690.69 ± 0.57 (17.3) | 400.24 ± 7.64 (10.0) | 336.76 ± 2.3 (8.4) | 293.25 ± 5.29 (7.3) | 399.10 |
10 | 2E3M a | 297 c | 8.19 ± 0.74 | 19.33 ± 0.62 | 6.49 ± 2.51 | 23.1 ± 4.28 | 19.84 ± 4.2 | 7.11 ± 3.79 | 6.19 ± 2.09 | 46.19 ± 4.92 | 5.1 ± 0.79 | 6.71 ± 0.33 | 2.65 ± 2.81 | 13.72 |
11 | 2E35DM | 7.5 [33] | 389.85 ± 2.04 (52.0) | 294.45 ± 2.55 (39.3) | 240.44 ± 0.76 (32.1) | 153.61 ± 1.68 (20.5) | 486.49 ± 3.96 (64.9) | 251.42 ± 4.65 (33.5) | 100.23 ± 0.77 (13.4) | 521.57 ± 2.14 (69.5) | 112.3 ± 3.01 (15.0) | 83.75 ± 4.18 (11.2) | 95.1 ± 4.21 (12.7) | 248.11 |
12 | 5E23DM a | 530 b | 1.83 ± 4.22 | 6.42 ± 1.09 | 1.64 ± 0.41 | 2.04 ± 1.56 | 5.68 ± 2.8 | 12.52 ± 4.55 | 1.01 ± 3.09 | 1.64 ± 2.47 | 0.83 ± 0.85 | 1.75 ± 2.76 | 1.23 ± 3.09 | 3.33 |
13 | 26DE | 296 c | 25.33 ± 2.19 (<0.1) | 39.57 ± 3.44 (0.1) | 31.09 ± 1.09 (0.1) | 11.75 ± 0.77 (<0.1) | 43.21 ± 2.59 (0.1) | 52.41 ± 6.78 (0.2) | 75.21 ± 4.58 (0.3) | 17.08 ± 3.92 (<0.1) | 12 ± 2.06 (<0.1) | 17.63 ± 3.9 (<0.1) | 15.33 ± 2.77 (<0.1) | 30.96 |
14 | 23DE | 172 [3] | 159.15 ± 3.9 (0.9) | 240.14 ± 4.83 (1.4) | 125.61± 5.24 (0.7) | 107.55 ± 2.88 (0.6) | 167.61 ± 1.89 (1.0) | 110.9 ± 3.06 (0.6) | 64.8 ± 4.71 (0.4) | 97.14 ± 2.09 (0.6) | 62.4 ± 5.11 (0.4) | 78.6 ± 4.3 (0.5) | 28.08 ± 3.11 (0.2) | 112.91 |
15 | 23DE5M | 18 c | 13.76 ± 2.81 (0.8) | 10.54 ± 1.97 (0.6) | 15.47 ± 3.35 (0.9) | 11.86 ± 6.09 (0.7) | 4.5 ± 1.44 (0.3) | 6.69 ± 3.79 (0.4) | 4.39 ± 4.29 (0.2) | 2.71 ± 3.09 (0.2) | 4.16 ± 6.5 (0.2) | 1.7 ± 3.72 (0.1) | 1.09 ± 1.03 (0.1) | 6.99 |
16 | 2I3M a | 130 b | 2.31 ± 5.09 | 5.87 ± 2.78 | 4.25 ± 1.83 | 4.25 ± 1.09 | 1.33 ± 4.62 | 1.41 ± 3.7 | 3.82 ± 2.88 | 0.96 ± 6.47 | 1.14 ± 4.55 | 1.92 ± 3.29 | 3.18 ± 2.74 | 2.77 |
Compounds | 23DM | 2A3M | 23DE | 23DE5M | 26DM | 235TM | 2E6M | 2E35DM | Difference Observed |
---|---|---|---|---|---|---|---|---|---|
Concn (μg·L−1) | 180 | 160 | 80 | 12 | 800 | 770 | 90 | 300 | |
OAV | 0.19 | 0.39 | 0.46 | 0.67 | 1.00 | 1.10 | 2.25 | 40.00 | |
test 1 | √ | × | × | × | × | × | × | × | ns |
test 2 | × | √ | × | × | × | × | × | × | ns |
test 3 | × | × | √ | × | × | × | × | × | ns |
test 4 | × | × | × | √ | × | × | × | × | ns |
test 5 | × | × | × | × | √ | × | × | × | ns |
test 6 | × | × | × | × | × | √ | × | × | ns |
test 7 | × | × | × | × | × | × | √ | × | ns |
test 8 | × | × | × | × | × | × | × | √ | ns |
test 9 | × | × | × | × | √ | √ | √ | √ | ** |
test 10 | √ | √ | √ | √ | √ | √ | √ | √ | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu. Foods 2021, 10, 441. https://doi.org/10.3390/foods10020441
Yan Y, Chen S, Nie Y, Xu Y. Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu. Foods. 2021; 10(2):441. https://doi.org/10.3390/foods10020441
Chicago/Turabian StyleYan, Yan, Shuang Chen, Yao Nie, and Yan Xu. 2021. "Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu" Foods 10, no. 2: 441. https://doi.org/10.3390/foods10020441
APA StyleYan, Y., Chen, S., Nie, Y., & Xu, Y. (2021). Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu. Foods, 10(2), 441. https://doi.org/10.3390/foods10020441