Impact of Preharvest and Postharvest on Color Changes during Convective Drying of Mangoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Mango Ripening and Drying
2.3. Quality Analysis (Color, Total Soluble Solids, pH, Titratable Acidity)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in Quality Criteria of Raw Material According to Variety, Harvest Stage, Ripening Time, and Storage Temperatures
3.2. Changes in Color Characteristics of Dried Mango Slices According to Variety, Harvest Stage, Ripening Time, and Storage Temperatures
3.3. Relationships between Color Characteristics of Fresh and Dried Mango Slices According to Variety, Harvest Stage, Ripening Time, and Storage Temperatures
3.3.1. Luminance (L*)
3.3.2. Hue Angle (H*)
3.3.3. Chroma (C*)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, P.; Adiletta, G.; Di Matteo, M. The influence of drying air temperature on the physical properties of dried and rehydrated eggplant. Food Bioprod. Process. 2013, 91, 249–256. [Google Scholar] [CrossRef]
- Bonneau, A.; Boulanger, R.; Lebrun, M.; Maraval, I.; Gunata, Z. Aroma compounds in fresh and dried mango fruit (Mangifera indica L. cv. Kent): Impact of drying on volatile composition. Int. J. Food Sci. Technol. 2016, 51, 789–800. [Google Scholar] [CrossRef]
- Kwaśnica, A.; Pachura, N.; Masztalerz, K.; Figiel, A.; Zimmer, A.; Kupczyński, R.; Wujcikowska, K.; Carbonell-Barrachina, A.A.; Szumny, A.; Różański, H. Volatile Composition and Sensory Properties as Quality Attributes of Fresh and Dried Hemp Flowers (Cannabis sativa L.). Foods 2020, 9, 1118. [Google Scholar] [CrossRef]
- Mahayothee, B.; Neidhart, S.; Carle, R.; Mühlbauer, W. Effects of variety, ripening condition and ripening stage on the quality of sulphite-free dried mango slices. Eur. Food Res. Technol. 2006, 225, 723–732. [Google Scholar] [CrossRef]
- Stamenković, Z.; Pavkov, I.; Radojčin, M.; Horecki, A.T.; Kešelj, K.; Kovačević, D.B.; Putnik, P. Convective Drying of Fresh and Frozen Raspberries and Change of Their Physical and Nutritive Properties. Foods 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çelen, S. Effect of Microwave Drying on the Drying Characteristics, Color, Microstructure, and Thermal Properties of Trabzon Persimmon. Foods 2019, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izli, N.; Izli, G.; Taskin, O. Influence of different drying techniques on drying parameters of mango. Food Sci. Technol. 2017, 37, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Link, J.V.; Tribuzi, G.; Laurindo, J.B. Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT 2017, 84, 717–725. [Google Scholar] [CrossRef]
- Weil, M.; Sing, A.S.C.; Méot, J.-M.; Boulanger, R.; Bohuon, P. Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper borbonense. Food Chem. 2017, 219, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Arnoldus, M.; Van der Pol, F.; Kima, B.; Nana, V.; Soufountera, M. Amélioration des Performances de la Filière des Produits Transformés de la Mangue au Burkina Faso et au Mali; Une étude pour la Banque Mondiale, le PCDA et le PAFASP, financée par l’Union Européenne; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Ndiaye, C.; Xu, S.-Y.; Wang, Z. Steam blanching effect on polyphenoloxidase, peroxidase and colour of mango (Mangifera indica L.) slices. Food Chem. 2009, 113, 92–95. [Google Scholar] [CrossRef]
- Korbel, E.; Attal, E.-H.; Grabulos, J.; Lluberas, E.; Durand, N.; Morel, G.; Goli, T.; Brat, P. Impact of temperature and water activity on enzymatic and non-enzymatic reactions in reconstituted dried mango model system. Eur. Food Res. Technol. 2013, 237, 39–46. [Google Scholar] [CrossRef]
- Tamanna, N.; Mahmood, N. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition. Int. J. Food Sci. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tai, C.; Chen, B. Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.). Food Chem. 2007, 100, 1005–1010. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Dolan, K.D. Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT 2015, 62, 564–568. [Google Scholar] [CrossRef]
- Sehrawat, R.; Nema, P.K.; Kaur, B.P. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT 2018, 92, 548–555. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Ooi, K.L. Polyphenolic and Vitamin C Contents and Antioxidant Activities of Aqueous Extracts from Mature-Green and Ripe Fruit Fleshes of Mangifera sp. J. Agric. Food Chem. 2012, 60, 11832–11838. [Google Scholar] [CrossRef]
- Hossain, A.; Rana, M.; Kimura, Y.; Roslan, H.A. Changes in Biochemical Characteristics and Activities of Ripening Associated Enzymes in Mango Fruit during the Storage at Different Temperatures. BioMed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Dars, A.G.; Liu, Q.; Xie, B.; Sun, Z. Phytochemical profiling of the ripening of Chinese mango (Mangifera indica L.) cultivars by real-time monitoring using UPLC-ESI-QTOF-MS and its potential benefits as prebiotic ingredients. Food Chem. 2018, 256, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Carlos, H.; Yahia, E.; Islas-Osuna, M.; Gutierrez-Martinez, P.; Robles-Sánchez, M.; González-Aguilar, G. Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Sci. Hortic. 2012, 135, 7–13. [Google Scholar] [CrossRef]
- Liu, F.-X.; Fu, S.-F.; Bi, X.-F.; Chen, F.; Liao, X.-J.; Hu, X.-S.; Wu, J.-H. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Baloch, M.K.; Bibi, F. Effect of harvesting and storage conditions on the post harvest quality and shelf life of mango (Mangifera indica L.) fruit. S. Afr. J. Bot. 2012, 83, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Rosalie, R.; Léchaudel, M.; Dhuique-Mayer, C.; Dufossé, L.; Joas, J. Antioxidant and enzymatic responses to oxidative stress induced by cold temperature storage and ripening in mango (Mangifera indica L. cv. ‘Cogshall’) in relation to carotenoid content. J. Plant Physiol. 2018, 75–85. [Google Scholar] [CrossRef]
- Yashoda, H.M.; Prabha, T.N.; Tharanathan, R.N. Mango ripening: Changes in cell wall constituents in relation to textural softening. J. Sci. Food Agric. 2006, 86, 713–721. [Google Scholar] [CrossRef]
- Germain, K.; Benoit, B.K.; Israël, M.L.; Kansci, G.; Koubala, B.B.; Lape, I.M. Effect of ripening on the composition and the suitability for jam processing of different varieties of mango (Mangifera indica). Afr. J. Biotechnol. 2003, 2, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Ibrahima, B.; Mouhamadou, F.; Moussoukhoye, D. Study of the Variation in Total and Reducing Sugars Contents According to the Variety and According to the Position Where the Fruit (Mango) Was Harvested from Five Mango Varieties Exploited in Senegal. J. Biosci. Med. 2020, 8, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Razzaq, K.; Khan, A.S.; Malik, A.U.; Shahid, M. Ripening period influences fruit softening and antioxidative system of ‘Samar Bahisht Chaunsa’ mango. Sci. Hortic. 2013, 160, 108–114. [Google Scholar] [CrossRef]
- De Medeiros, R.A.B.; Barros, Z.M.P.; De Carvalho, C.B.O.; Neta, E.G.F.; Maciel, M.I.S.; Azoubel, P.M. Influence of dual-stage sugar substitution pretreatment on drying kinetics and quality parameters of mango. LWT 2016, 67, 167–173. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Sun, D.-W. Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosyst. Eng. 2017, 156, 108–119. [Google Scholar] [CrossRef]
- Méndez-Calderón, E.K.; Ocampo-Castaño, J.C.; Orrego, C.E. Optimization of convective drying assisted by ultrasound for Mango Tommy (Mangifera indica L.). J. Food Process. Eng. 2017, 41, e12634. [Google Scholar] [CrossRef]
- Gill, P.P.S.; Jawandha, S.K.; Kaur, N. Transitions in mesocarp colour of mango fruits kept under variable temperatures. J. Food Sci. Technol. 2017, 54, 4251–4256. [Google Scholar] [CrossRef] [PubMed]
- Nambi, V.; Thangavel, K.; Jesudas, D. Scientific classification of ripening period and development of colour grade chart for Indian mangoes (Mangifera indica L.) using multivariate cluster analysis. Sci. Hortic. 2015, 193, 90–98. [Google Scholar] [CrossRef]
- Penchaiya, P.; Tijskens, L.M.; Uthairatanakij, A.; Srilaong, V.; Tansakul, A.; Kanlayanarat, S. Modelling quality and maturity of ‘Namdokmai Sithong’ mango and their variation during storage. Postharvest Biol. Technol. 2020, 159, 111000. [Google Scholar] [CrossRef]
- Zhen, O.P.; Hashim, N.; Maringgal, B. Quality evaluation of mango using non-destructive approaches: A review. J. Agric. Food Eng. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Ihns, R.; Savage, G.P.; Diamante, L.M.; Vanhanen, L. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Int. J. Food Sci. Technol. 2011, 46, 275–283. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Michalska-Ciechanowska, A.; Turkiewicz, I.P.; Lech, K.; Nowicka, P. Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020, 25, 3801. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Zhao, M.; O’Donnell, C.; Sun, D.-W. Nondestructive quality evaluation of banana slices during microwave vacuum drying using spectral and imaging techniques. Dry. Technol. 2018, 36, 1542–1553. [Google Scholar] [CrossRef]
- Zheng, H. A Least-Squares Support Vector Machine (LS-SVM) Based on Fractal Analysis and CIELab Param-eters for the Detection of Browning Degree on Mango (Mangifera Indica L.). Comput. Electron. Agric. 2012, 83, 47–51. [Google Scholar] [CrossRef]
- Sturm, B.; Hofacker, W.C.; Hensel, O. Optimizing the Drying Parameters for Hot-Air–Dried Apples. Dry. Technol. 2012, 30, 1570–1582. [Google Scholar] [CrossRef]
- Rumainum, I.M.; Worarad, K.; Srilaong, V.; Yamane, K. Fruit quality and antioxidant capacity of six Thai mango cultivars. Agric. Nat. Resour. 2018, 52, 208–214. [Google Scholar] [CrossRef]
- Léchaudel, M.; Urban, L.; Joas, J. Chlorophyll Fluorescence, a Nondestructive Method To Assess Maturity of Mango Fruits (Cv. ‘Cogshall’) without Growth Conditions Bias. J. Agric. Food Chem. 2010, 58, 7532–7538. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 25 February 2021).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Statistics and Computing; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95457-8. [Google Scholar]
- Lebrun, M.; Plotto, A.; Goodner, K.; Ducamp, M.-N.; Baldwin, E. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol. Technol. 2008, 48, 122–131. [Google Scholar] [CrossRef]
- Léchaudel, M.; Joas, J. Quality and maturation of mango fruits of cv. Cogshall in relation to harvest date and carbon supply. Aust. J. Agric. Res. 2006, 57, 419–426. [Google Scholar] [CrossRef]
- Lalel, H.J.D.; Singh, Z.; Tan, S.C.; Agustí, M. Maturity stage at harvest affects fruit ripening, quality and biosynthesis of aroma volatile compounds in ‘Kensington Pride’ mango. J. Hortic. Sci. Biotechnol. 2003, 78, 225–233. [Google Scholar] [CrossRef]
- Bally, I.S.E.; Lu, P.; Johnson, P.R. Mango Breeding. In Breeding Plantation Tree Crops: Tropical Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2009; pp. 51–82. ISBN 978-0-387-71201-7. [Google Scholar]
- Joas, J.; Caro, Y.; Léchaudel, M. Comparison of postharvest changes in mango (cv Cogshall) using a Ripening class index (Rci) for different carbon supplies and harvest dates. Postharvest Biol. Technol. 2009, 54, 25–31. [Google Scholar] [CrossRef]
- Nordey, T.; Léchaudel, M.; Génard, M.; Joas, J. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. J. Plant Physiol. 2014, 171, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Ornelas-Paz, J.D.J.; Yahia, E.M.; Gardea, A.A. Changes in external and internal color during postharvest ripening of ‘Manila’ and ‘Ataulfo’ mango fruit and relationship with carotenoid content determined by liquid chromatography–APcI+-time-of-flight mass spectrometry. Postharvest Biol. Technol. 2008, 50, 145–152. [Google Scholar] [CrossRef]
- Maskan, M. Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 2001, 48, 169–175. [Google Scholar] [CrossRef]
- Vilhena, N.Q.; Gil, R.; Llorca, E.; Moraga, G.; Salvador, A. Physico-Chemical and Microstructural Changes during the Drying of Persimmon Fruit cv. Rojo Brillante Harvested in Two Maturity Stages. Foods 2020, 9, 870. [Google Scholar] [CrossRef]
- Corzo, O.; Alvarez, C. Color Change Kinetics of Mango at Different Maturity Stages during Air Drying. J. Food Process. Preserv. 2012, 38, 508–517. [Google Scholar] [CrossRef]
- Joas, J.; Vulcain, E.; Léchaudel, M. Effect of fruit position in the canopy on physiological age and physicochemical composition of mango ‘cogshall’. Acta Hortic. 2013, 123–128. [Google Scholar] [CrossRef]
- Rosalie, R.; Léchaudel, M.; Chillet, M.; Dufossé, L.; Joas, J. Could the reliability of classical descriptors of fruit quality be influenced by irrigation and cold storage? The case of mango, a climacteric fruit. J. Sci. Food Agric. 2019, 99, 3792–3802. [Google Scholar] [CrossRef]
- Nordey, T.; Davrieux, F.; Léchaudel, M. Predictions of fruit shelf life and quality after ripening: Are quality traits measured at harvest reliable indicators? Postharvest Biol. Technol. 2019, 153, 52–60. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B.; Khuwijitjaru, P.; Nagle, M.; Müller, J. Non-destructive determination of β-carotene content in mango by near-infrared spectroscopy compared with colorimetric measurements. J. Food Compos. Anal. 2015, 38, 32–41. [Google Scholar] [CrossRef]
Variety | Cogshall | Kent | |||||||
---|---|---|---|---|---|---|---|---|---|
Harvest Location | Saint-Pierre, Réunion, France | Mboro, Senegal | |||||||
Batch Number | Batch 1 | Batch 2 | Batch 3 | Batch 4 | |||||
Harvest date | 21 December 2018 | 1 January 2019 | 20 June 2019 | 22 July 2019 | |||||
Maturity stage at harvest | Green-Mature (1) | Yellow-point (1) | Green-Mature (2) | Green-Mature (2) | |||||
Harvest stage | Early harvest | Late harvest | Early harvest | Late harvest | |||||
Number of mangoes: at harvest/ripening | 6/41 | 4/47 | 7/75 | 7/76 | |||||
Mass at harvest (g) | 446 (7.3) c | 453 (7.5) c | 547 (8.1) b | 652 (12.7) a | |||||
TSS (°Brix) | At harvest | 8.4 (0.5) b | 13.7 (2.4) a | 6.0 (0.2) b | 6.8 (0.1) b | ||||
Ripening | 16.5 (0.3) b | 18.2 (0.2) a | 14.7 (0.3) c | 17 (0.5) ab | |||||
pH | At harvest | 3.0 (0.04) b | 3.5 (0.14) a | - | - | ||||
Ripening | 3.7 (0.2) b | 4.3 (0.2) a | - | - | |||||
TA (meq/100 g) | At harvest | 29.5 (1.6) a | 15.1 (1.6) b | - | - | ||||
Ripening | 11.8 (2.8) a | 6.1 (1.4) b | - | - | |||||
Ripening | Min/max | Min | Max | Min | Max | Min | Max | Min | Max |
TSS (°Brix) | 10.7 | 19.5 | 14.3 | 20.7 | 8.4 | 19.2 | 8.1 | 23.5 | |
pH | 2.85 | 4.7 | 3.51 | 5.46 | - | - | - | - | |
TA (meq/100 g) | 3.8 | 30.2 | 2.2 | 15.2 | - | - | - | - |
Varieties | Batch Numbers | Ripening Temperature (°C)/Sampling Days | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cogshall | 1 | 20 °C | x | x | x | x* | |||||||||||
35 °C | x | x | x | x | x* | ||||||||||||
2 | 20 °C | x | x | x | x | x* | |||||||||||
35 °C | x | x | x | x | x* | ||||||||||||
Kent | 3 | 20 °C | x | x | x | x | x | x* | |||||||||
35 °C | x | x | x | x | x* | ||||||||||||
4 | 20 °C | x | x | x | x | x | x* | ||||||||||
35 °C | x | x | x | x | x* |
General Mixed Model | L*Dried | H*Dried | C*Dried | ||
---|---|---|---|---|---|
(L*/H*/C*Fresh) | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** | ||
Varieties | Slope | 0.04 * | 0.09 | 3 × 10−4 *** | |
Intercept | 9 × 10−13 *** | 0.39 | 0.67 | ||
Ripening Temperature | Slope | 0.04 * | 3 × 10−3 ** | 0.007 ** | |
Intercept | 0.3 | 0.7 | 0.06 | ||
Interaction Temperature x Variety | Slope | 0.6 | 0.04 * | 2 × 10−6 *** | |
Intercept | 0.4 | 0.03 * | 0.09 | ||
Batches | 0.003 ** | 0.2 | 0.004 ** | ||
Mixed Model Per Variety | L*Dried | H*Dried | C*Dried | ||
(L*/H*/C*Fresh) | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** | ||
cv. Cogshall | Ripening Temperature | Slope | 0.1 | 0.07 | 2 × 10−4 *** |
Intercept | 0.8 | 0.001 ** | 0.2 | ||
Batches | 0.01 * | 0.005 ** | 1 | ||
cv. Kent | Ripening Temperature | Slope | 0.05 | 0.003 ** | 2 × 10−5 *** |
Intercept | 0.4 | 0.3 | 3 × 10−3 *** | ||
Batches | 0.08 | 0.98 | 0.009 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diop, A.; Méot, J.-M.; Léchaudel, M.; Chiroleu, F.; Ndiaye, N.D.; Mertz, C.; Cissé, M.; Chillet, M. Impact of Preharvest and Postharvest on Color Changes during Convective Drying of Mangoes. Foods 2021, 10, 490. https://doi.org/10.3390/foods10030490
Diop A, Méot J-M, Léchaudel M, Chiroleu F, Ndiaye ND, Mertz C, Cissé M, Chillet M. Impact of Preharvest and Postharvest on Color Changes during Convective Drying of Mangoes. Foods. 2021; 10(3):490. https://doi.org/10.3390/foods10030490
Chicago/Turabian StyleDiop, Alioune, Jean-Michel Méot, Mathieu Léchaudel, Frédéric Chiroleu, Nafissatou Diop Ndiaye, Christian Mertz, Mady Cissé, and Marc Chillet. 2021. "Impact of Preharvest and Postharvest on Color Changes during Convective Drying of Mangoes" Foods 10, no. 3: 490. https://doi.org/10.3390/foods10030490
APA StyleDiop, A., Méot, J. -M., Léchaudel, M., Chiroleu, F., Ndiaye, N. D., Mertz, C., Cissé, M., & Chillet, M. (2021). Impact of Preharvest and Postharvest on Color Changes during Convective Drying of Mangoes. Foods, 10(3), 490. https://doi.org/10.3390/foods10030490