Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Diets
2.2. Determination of Egg Yolk Fatty Acid Composition and Cholesterol Content
2.3. Statistical Analyses
3. Results
Specification | Percent (%) of Energy Requirements Recommended by FAO 1 | g/Day (for a 2000 Kcal Diet) 2 | Mean Content (g) in Egg Yolk | Percent (%) of Contribution for a 2000 Kcal Diet | ||
---|---|---|---|---|---|---|
Control | AKG | Control | AKG | |||
Total fat | 20.0–35.0 | 44.0–78.0 | 4.77 | 4.95 | 6.1–10.8 | 6.3–11.3 |
Σ SFA | <10.0 | <22.0 | 1.26 | 1.33 | ≥5.7 | ≥6.0 |
Σ MUFA | 15.0–20.0 | 33.0–44.0 | 2.03 | 2.21 | 4.6–6.2 | 5.0–6.7 |
Σ PUFA | 6.0–11.0 | 13.0–24.0 | 0.66 | 0.56 | 2.7–5.0 | 2.3–4.3 |
Σ n-6 | 2.5–9.0 | 5.6–20.0 | 0.56 | 0.49 | 2.8–9.9 | 2.4–8.7 |
Σ n-3 | 0.5–2.0 | 1.1–4.4 | 0.099 | 0.077 | 2.2–9.0 | 1.7–7.0 |
trans FA | <1.0 | <2.2 | 0.003 | 0.006 | ≥0.15 | ≥0.27 |
EPA + DHA 3 | 250 mg | 0.250 | 0.057 | 0.048 | 22.8 | 19.2 |
Cholesterol 4 | <300 mg | <0.300 | 0.19 | 0.20 | ≥65.1 | ≥67.2 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Te Morenga, L.; Montez, J.M. Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0186672. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A. What is quality and how can it be measured: From a food technology point of view. In Market Demand and Product Quality; A report of the Marketing Research Workshop (13th–21st July, 1951); Michigan State College: East Lansing, MI, USA, 1951. [Google Scholar]
- Surai, P.F.; Sparks, N.H.C. Designer eggs: From improvement of egg composition to functional food. Trends Food Sci. Technol. 2001, 12, 7–16. [Google Scholar] [CrossRef]
- Omidi, M.; Rahimi, S.; Torshizi, A.M.K. Modification of egg yolk fatty acids profile by using different oil sources. Vet. Res. Forum 2015, 6, 137–141. [Google Scholar] [PubMed]
- Fernandez, L.M.; Calle, M. Revisiting dietary cholesterol recommendations: Does the evidence support a limit of 300 mg/d? Curr. Atheroscler. Rep. 2010, 12, 377–383. [Google Scholar] [CrossRef]
- Franczyk-Żarów, M.; Szymczyk, B.; Kostogrys, R.B. Effects of dietary conjugated linoleic acid and selected vegetable oils or vitamin E on fatty acid composition of hen egg yolks. Ann. Anim. Sci. 2019, 19, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Szczurek, W.; Calik, J.; Bederska-Łojewska, D.; Orczewska-Dudek, S.; Muszyński, S.; Tomaszewska, E.; Józefiak, D. Algal oil as source of polyunsaturated fatty acids in laying hens nutrition: Effect on egg performance, egg quality indices and fatty acid composition of egg yolk lipids. Ann. Anim. Sci. 2020, 20, 961–973. [Google Scholar] [CrossRef]
- Orczewska-Dudek, S.; Pietras, M.; Puchała, M.; Nowak, J. Camelina sativa oil and camelina cake as sources of polyunsaturated fatty acids in the diets of laying hens: Effect on hen performance, fatty acid profile of yolk lipids, and egg sensory quality. Ann. Anim. Sci. 2020, 20, 1365–1377. [Google Scholar] [CrossRef]
- Batkowska, J.; Drabik, K.; Brodacki, A.; Czech, A.; Adamczuk, A. Fatty acids profile, cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil. Food Chem. 2021, 334, 127612. [Google Scholar] [CrossRef] [PubMed]
- Walczak, J.; Bocian, S.; Kowalkowski, T.; Trziszka, T.; Buszewski, B. Determination of omega fatty acid profiles in egg yolk by HILIC-LC-MS and GC-MS. Food Anal. Methods 2017, 10, 1264–1272. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.G.; Costa, F.G.P.; Queiroga, R.C.R.E.; Silva, J.H.V.; Schuler, A.R.P.; Goulart, C.C. Fatty acid profile of eggs of semi-heavy layers fed feeds containing linseed oil. Braz. J. Poult. Sci. 2008, 10, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.B.; Li, L.; Wen, Z.G.; Yan, H.J.; Yang, P.L.; Tang, J.; Xie, M.; Hou, S.S. Dual functions of eicosapentaenoic acid-rich microalgae: Enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult. Sci. 2018, 98, 350–357. [Google Scholar] [CrossRef]
- Griffin, M.D.; Sanders, T.A.B.; Davies, I.G.; Morgan, L.M.; Millward, D.J.; Lewis, F.; Slaughter, S.; Cooper, J.A.; Miller, G.J.; Griffin, B.A. Effects of altering the ratio of dietary n6ton3 fatty acids oninsulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: The OPTILIP Study. Am. J. Clin. Nutr. 2006, 84, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Yang, M.; Gaur, U.; Xu, H.; Yao, Y.; Li, D. Alpha-ketoglutarate: Physiological functions and applications. Biomol. Ther. 2016, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, H.; Gao, H.; Kang, B.; Chen, F.; Li, Y.; Fu, C.; Yao, K. Effects of dietary supplementation of alpha-ketoglutarate in a low-protein diet on fatty acid composition and lipid metabolism related gene expression in muscles of growing pigs. Animal 2019, 9, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdzisińska, B.; Żurek, A.; Kandefer-Szerszeń, M. Alpha-ketoglutarate as a molecule with pleiotropic activity: Well-known and novel possibilities of therapeutic use. Arch. Immunol. Ther. Exp. 2017, 65, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltan, M.A. Influence of dietary glutamine supplementation on growth performance, small intestine morphology, immune response and some blood parameters of broiler chickens. Int. J. Poult. Sci. 2009, 8, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Jazideh, F.; Farhoomand, P.; Daneshyar, M.; Najafi, G. The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions. Turk. J. Vet. Anim. Sci. 2014, 38, 264–270. [Google Scholar] [CrossRef]
- Pierzynowski, S.; Sjodin, A. Perspectives of glutamine and its derivatives as feed additives for farm animals. J. Anim. Feed Sci. 1998, 7, 79–91. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Safety and efficacy of l-glutamine produced using Corynebacterium glutamicum NITE BP-02524 for all animal species. EFSA J. 2020, 18, 6075. [Google Scholar] [CrossRef]
- Chin, R.; Fu, X.; Pai, Y.M.; Vergnes, L.; Hwang, H.; Deng, G.; Diep, S.; Lomenick, B.; Meli, V.S.; Monsalve, G.V.; et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 2014, 7505, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Zeng, L.; Yao, K.; Kong, X.; Wu, G.; Yin, Y. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 2016, 48, 2067–2080. [Google Scholar] [CrossRef]
- European Parliament. 23. Commission Implementing Regulation (EU) 2018/249 of 15 February 2018 Concerning the Authorisation of Taurine, Beta-Alanine, L-alanine, L-arginine, L-aspartic acid, L-histidine, D,L-isoleucine, L-leucine, L-phenylalanine, L-proline, D,L-serine, L-tyrosine, L-methionine, L-valine, L-cysteine, Glycine, Monosodium Glutamate and L-glutamic Acid as Feed Additives for All Animal Species and L-cysteine Hydrochloride Monohydrate for All Species Except Cats and Dogs; OJ L 53, 23.2.2018; European Parliament: Brussels, Belgium, 2018; pp. 134–165. [Google Scholar]
- European Parliament. Commission Regulation (EC) 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin; OJ L 15, 20.1.2010; European Parliament: Brussels, Belgium, 2010; pp. 1–72. [Google Scholar]
- European Parliament. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004; OJ L 304, 22.11.2011; European Parliament: Brussels, Belgium, 2011; pp. 18–63. [Google Scholar]
- Bayliaka, M.M.; Lushchak, V.I. Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res. Rev. 2021, 66, 101237. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Dobrowolski, P.; Świątkiewicz, M.; Donaldson, J.; Puzio, I.; Muszyński, S. Is dietary 2-oxoglutaric acid effective in accelerating bone growth and development in experimentally induced intrauterine growth retarded gilts? Animals 2020, 10, 728. [Google Scholar] [CrossRef]
- Śliwa, E.; Kowalik, S.; Tatara, M.R.; Krupski, W.; Majcher, P.; Łuszczewska-Sierakowska, I.; Pierzynowski, S.G.; Studziński, T. Effect of alpha-ketoglutarate (AKG) given to pregnant sows on development of humerus and femur in newborns. Bull. Vet. Inst. Pulawy 2005, 49, 117–120. [Google Scholar]
- Tomaszewska, E.; Dobrowolski, P.; Kostro, K.; Jakubczak, A.; Taszkun, I.; Jaworka-Adamu, J.; Żmuda, A.; Rycerz, K.; Muszyński, S. The effect of HMB and 2-Ox administered during pregnancy on bone properties in primiparous and multiparous minks (Neivison Vison). Bull. Vet. Inst. Pulawy 2015, 59, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Tekwe, C.D.; Yao, K.; Lei, J.; Li, X.; Gupta, A.; Luan, Y.; Meininger, C.J.; Bazer, F.W.; Wu, G. Oral administration of a-ketoglutarate enhances nitric oxide synthesis by endothelial cells and whole-body insulin sensitivity in diet-induced obese rats. Exp. Biol. Med. 2019, 244, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, K.; Mulla, J.; Cao, K.; Cheng, Z.; Liu, D.; William Mueller, B.A.; Hildebrand, G.; Lu, S.; Huang, C.K. The metabolite, alpha-ketoglutarate inhibits non-alcoholic fatty liver disease progression by targeting lipid metabolism. Liver Res. 2020, 4, 94–100. [Google Scholar] [CrossRef]
- Guo, S.; Duan, R.; Wang, L.; Hou, Y.; Tan, L.; Cheng, Q.; Liao, M.; Ding, B. Dietary α-ketoglutarate supplementation improves hepatic and intestinal energy status and anti-oxidative capacity of Cherry Valley ducks. Anim. Sci. J. 2017, 88, 1753–1762. [Google Scholar] [CrossRef]
- Watson, J.A.; Lowenstein, J.M. Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria. J. Biol. Chem. 1970, 245, 5993–6002. [Google Scholar] [CrossRef]
- Scanes, C.G. (Ed.) Sturkie’s Avian Physiology, 6th ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Tomaszewska, E.; Świątkiewicz, S.; Arczewska-Włosek, A.; Wojtysiak, D.; Dobrowolski, P.; Domaradzki, P.; Świetlicka, I.; Donaldson, J.; Hułas-Stasiak, M.; Muszyński, S. Alpha-ketoglutarate: An effective feed supplement in improving bone metabolism and muscle quality of laying hens: A preliminary study. Animals 2020, 10, 2420. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. In Poultry Feeding Standards, 5th ed.; The Kielanowski Institute of Animal Physiology and Nutrition PAS: Jabłonna, Poland, 2018; pp. 66–74. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Bartell, S.M.; Batal, A.B. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult. Sci. 2007, 86, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Zavarize, K.C.; Sartori, J.R.; Pezzato, A.C.; Garcia, E.A.; Cruz, V.C. Glutamine in diet of laying hens submitted to heat stress and thermoneutrality. Rev. Ciênc. Anim. Bras. 2011, 12, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Domaradzki, P.; Florek, M.; Skałecki, P.; Litwińczuk, A.; Kędzierska-Matysek, M.; Wolanciuk, A.; Tajchman, K. Fatty acid composition, cholesterol content and lipid oxidation indices of intramuscular fat from skeletal muscles of beaver (Castor fiber L.). Meat Sci. 2019, 150, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Gąsior, R.; Pietras, M.P. Validation of a method for determining cholesterol in egg yolks. Ann. Anim. Sci. 2013, 13, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Hwang, B.S.; Wang, J.T.; Choong, Y.M. A simplified method for the quantification of total cholesterol lipids using gas chromatography. J. Food Compos. Anal. 2003, 16, 169–178. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Fats and Fatty Acids in Human Nutrition: Report of An Expert Consultation; FAO: Geneva, Switzerland, 2010; pp. 1–166. [Google Scholar]
- European Food Safety Authority. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases; WHO Technical Report Series No. 916; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Krawczyk, J. Quality of eggs from Polish native Greenleg Partridge chicken-hens maintained in organic vs. backyard production systems. Anim. Sci. Pap. Rep. 2009, 27, 227–235. [Google Scholar]
- Faitarone, A.B.G.; Garcia, E.A.; de Roça, R.O.; de Ricardo, H.A.; de Andrade, E.N.; Pelícia, K.; Vercese, F. Cholesterol levels and nutritional composition of commercial layers eggs fed diets with different vegetable oils. Braz. J. Poult. Sci. 2013, 15, 31–38. [Google Scholar] [CrossRef]
- Lawlor, J.B.; Gaudette, N.; Dickson, T.; House, J.D. Fatty acid profile and sensory characteristics of table eggs from laying hens fed diets containing microencapsulated fish oil. Anim. Feed Sci. Technol. 2010, 156, 97–103. [Google Scholar] [CrossRef]
- Kidd, P.M. Omega-3 DHA end EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Altern. Med. Rev. 2007, 12, 207–227. [Google Scholar] [PubMed]
- Venn-Watson, S.; Lumpki, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [CrossRef] [PubMed]
- Di Nicolantonio, J.J.; O’Keefe, J.H. Effects of dietary fats on blood lipids: A review of direct comparison trials. Open Heart 2018, 5, e000871. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, K.; Okumura, N.; Usui, S.; Sajiki, H.; Hirota, K.; Hirano, K. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells. Prostate 2001, 47, 59–65. [Google Scholar] [CrossRef]
- De Souza, C.O.; Vannice, G.K.; Rosa Neto, J.C.; Calder, P.C. Is palmitoleic acid a plausible nonpharmacological strategy to prevent or control chronic metabolic and inflammatory disorders? Mol. Nutr. Food Res. 2018, 62, 1700504. [Google Scholar] [CrossRef] [Green Version]
- Carballeira, N.M.; Sanabria, D.; Oyola, D. An improved synthesis for the (Z)-14-methyl-9-pentadecenoic acid and its topoisomerase I inhibitory activity. ARKIVOC 2007, 2007, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Campos-Pérez, W.; Martínez-López, E. Role of polyunsaturated fatty acids in cancer prevention. Rev. Mex. Endocrinol. Metab. Nutr. 2015, 2, 194–203. [Google Scholar]
- Brenna, J.T. Arachidonic acid needed in infant formula when docosahexaenoic acid is present. Nutr. Rev. 2016, 74, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, A.M.; Scotland, P.E.; Akopian, A.N.; Hargreaves, K.M. Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA 2009, 106, 18820–18824. [Google Scholar] [CrossRef] [Green Version]
- Kernoff, P.B.; Willis, A.L.; Stone, K.J.; Davies, J.A.; McNicol, G.P. Antithrombotic potential of dihomo-gamma-linolenic acid in man. Br. Med. J. 1977, 2, 1441–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalli, J.; Chiang, N.; Serhan, C.N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 2015, 21, 1071–1075. [Google Scholar] [CrossRef]
- Grey, A.; Bolland, M. Clinical trial evidence and use of fish oil supplements. JAMA Intern. Med. 2014, 174, 460–462. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.L. Can purified omega-3 Polyunsaturated Fatty Acids supplementation act blood pressure levels in untreated normal-high blood pressure subjects with hypertriglyceridemia? Pharmacol. Pharm. 2012, 3, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Kones, R.; Howell, S.; Rumana, U. n-3 Polyunsaturated fatty acids and cardiovascular disease: Principles, practices, pitfalls, and promises—A contemporary review. Med. Princ. Pract. 2018, 26, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.T. The slow discovery of the importance of omega 3 essential fatty acids in human health. J. Nutr. 1998, 128 (Suppl. 2), 427S–433S. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Brugiapaglia, A.; Lussiana, C.; Destefanis, G. Fatty acid profile and cholesterol content of beef at retail of Piemontese, Limousin and Friesian breeds. Meat Sci. 2014, 96, 568–573. [Google Scholar] [CrossRef]
Item | Control | AKG | p-Value |
---|---|---|---|
Total fat content, % | 28.64 ± 0.13 | 28.46 ± 0.06 | 0.238 |
Total cholesterol, mg/g of yolk | 11.73 ± 0.17 | 11.59 ± 0.11 | 0.471 |
Fatty acids | |||
C14:0 | 0.36 ± 0.02 | 0.37 ± 0.01 | 0.977 |
C16:0 | 24.55 ± 0.14 | 24.99 ± 0.23 | 0.126 |
C18:0 | 6.92 ± 0.06 | 7.01 ± 0.08 | 0.751 |
Σ SFA | 31.89 ± 0.17 | 32.37 ± 0.19 | 0.073 |
C15:0 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.757 |
C17:0 | 0.18 ± 0.01 | 0.19 ± 0.02 | 0.501 |
Σ OCFA | 0.24 ± 0.01 | 0.25 ± 0.02 | 0.627 |
C14:1c9 | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.021 |
C15:1 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.016 |
C16:1c7 | 0.91 ± 0.03 | 0.97 ± 0.03 | 0.207 |
C16:1c9 | 2.98 ± 0.08 | 3.39 ± 0.08 | 0.001 |
C17:1c9 | 0.21 ± 0.01 | 0.18 ± 0.01 | 0.042 |
C18:1c9 | 44.49 ± 0.33 | 46.16 ± 0.27 | <0.001 |
C18:1c11 | 2.24 ± 0.04 | 2.44 ± 0.03 | <0.001 |
C20:1c11 | 0.22 ± 0.01 | 0.20 ± 0.01 | 0.029 |
Σ MUFA cis | 51.23 ± 0.26 | 53.50 ± 0.29 | <0.001 |
C18:2n-6 | 11.67 ± 0.26 | 9.69 ± 0.18 | <0.001 |
C18:3n-6 | 0.09 ± 0.01 | 0.07 ± 0.01 | 0.008 |
C20:2n-6 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.047 |
C20:3n-6 | 0.13 ± 0.01 | 0.11 ± 0.01 | 0.069 |
C20:4n-6 | 1.73 ± 0.03 | 1.56 ± 0.01 | <0.001 |
C22:4n-6 | 0.14 ± 0.01 | 0.11 ± 0.01 | <0.001 |
C22:5n-6 | 0.23 ± 0.02 | 0.23 ± 0.01 | 0.751 |
Σ PUFA n-6 | 14.04 ± 0.27 | 11.84 ± 0.15 | <0.001 |
C18:3n-3 | 0.91 ± 0.03 | 0.59 ± 0.01 | <0.001 |
C22:5n-3 | 0.15 ± 0.01 | 0.12 ± 0.01 | 0.002 |
C22:6n-3 | 1.44 ± 0.03 | 1.17 ± 0.01 | <0.001 |
Σ PUFA n-3 | 2.50 ± 0.06 | 1.87 ± 0.02 | <0.001 |
Σ PUFA | 16.55 ± 0.27 | 13.71 ± 0.23 | <0.001 |
Σ LC-PUFA | 3.91 ± 0.07 | 3.36 ± 0.02 | <0.001 |
Σ LC n-6 | 2.31 ± 0.05 | 2.08 ± 0.02 | <0.001 |
Σ LC n-3 | 1.59 ± 0.03 | 1.29 ± 0.01 | <0.001 |
Σ MUFA trans | 0.08 ± 0.01 | 0.15 ± 0.01 | <0.001 |
PUFA n-6/n-3 | 5.65 ± 0.12 | 6.32 ± 0.06 | <0.001 |
PUFA/SFA | 0.52 ± 0.01 | 0.42 ± 0.01 | <0.001 |
S/P | 0.47 ± 0.01 | 0.48 ± 0.01 | 0.022 |
TI | 0.79 ± 0.01 | 0.84 ± 0.01 | <0.001 |
AI | 0.38 ± 0.01 | 0.39 ± 0.01 | 0.062 |
h/H | 2.44 ± 0.03 | 2.35 ± 0.03 | 0.036 |
NV | 0.44 ± 0.01 | 0.45 ± 0.01 | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska, E.; Muszyński, S.; Arczewska-Włosek, A.; Domaradzki, P.; Pyz-Łukasik, R.; Donaldson, J.; Świątkiewicz, S. Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation. Foods 2021, 10, 596. https://doi.org/10.3390/foods10030596
Tomaszewska E, Muszyński S, Arczewska-Włosek A, Domaradzki P, Pyz-Łukasik R, Donaldson J, Świątkiewicz S. Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation. Foods. 2021; 10(3):596. https://doi.org/10.3390/foods10030596
Chicago/Turabian StyleTomaszewska, Ewa, Siemowit Muszyński, Anna Arczewska-Włosek, Piotr Domaradzki, Renata Pyz-Łukasik, Janine Donaldson, and Sylwester Świątkiewicz. 2021. "Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation" Foods 10, no. 3: 596. https://doi.org/10.3390/foods10030596
APA StyleTomaszewska, E., Muszyński, S., Arczewska-Włosek, A., Domaradzki, P., Pyz-Łukasik, R., Donaldson, J., & Świątkiewicz, S. (2021). Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation. Foods, 10(3), 596. https://doi.org/10.3390/foods10030596