The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality
Abstract
:1. Introduction
2. Milk Composition
2.1. Milk Fat
2.1.1. Milk Fat Globule Membrane
2.1.2. Fatty Acid Profile
2.2. Protein
2.3. Lactose
2.4. Vitamins and Minerals
3. Functionality
3.1. Milk pH
3.2. Heat Coagulation Time
3.3. Gelation
3.4. Foaming Ability
3.5. Casein Micelle Size
3.6. Milk Fat Globule Size
4. Environmental Impact
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Brien, D.; Moran, B.; Shalloo, L. A national methodology to quantify the diet of grazing dairy cows. J. Dairy Sci. 2018, 101, 8595–8604. [Google Scholar] [CrossRef] [PubMed]
- ICBF. Dairy Calving Statistics (>30 Calving’s). Available online: https://www.icbf.com/wp/wp-content/uploads/2019/08/Dairy-Calving-Stats-2019-pdf.pdf (accessed on 17 April 2020).
- Dillon, P.; Roche, J.; Shalloo, L.; Horan, B. Optimising financial return from grazing in temperate pastures. In Proceedings of the Satellite Workshop of the XXth International Grassland Congress, Cork, Ireland, 26 June–1 July 2005; pp. 131–147. [Google Scholar]
- McAuliffe, S.; Gilliland, T.; Hennessy, D. Comparison of pasture-based feeding systems and a total mixed ration feeding system on dairy cow milk production. In Proceedings of the Sustainable Meat and Milk Production from Grasslands, 27th General Meeting of the European Grassland Federation, Cork, Ireland, 17–21 June 2018; pp. 289–291. [Google Scholar]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef]
- Auldist, M.J.; Walsh, B.J.; Thomson, N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998, 65, 401–411. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grassfed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.H.; Larsen, M.K.; Rehberger, B.; Stergiadis, S.; Canever, A.; Leifert, C. The effects of dairy management and processing on quality characteristics of milk and dairy products. Njas-Wagening. J. Life Sci. 2011, 58, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Couvreur, S.; Hurtaud, C.; Lopez, C.; Delaby, L.; Peyraud, J.-L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 2006, 89, 1956–1969. [Google Scholar] [CrossRef]
- White, S.; Bertrand, J.; Wade, M.; Washburn, S.; Green, J., Jr.; Jenkins, T. Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 2001, 84, 2295–2301. [Google Scholar] [CrossRef]
- Harstad, O.M.; Steinshamn, H. Cows’ diet and milk composition. In Improving the Safety and Quality of Milk; Woodhead Publishing: Cambridge, UK, 2010; pp. 223–245. [Google Scholar]
- Cameron, L.; Chagunda, M.; Roberts, D.; Lee, M. A comparison of milk yields and methane production from three contrasting high-yielding dairy cattle feeding regimes: Cut-and-carry, partial grazing and total mixed ration. Grass Forage Sci. 2018, 73, 789–797. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of Dairy Cows in Europe—An In-Depth Analysis Based on the Perception of Grassland Experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Kolver, E.; Muller, L. Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 1998, 81, 1403–1411. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Hagevoort, G.R.; Nonnenmann, M.W.; Lunner Kolstrup, C.; Reynolds, S.J.; Jakob, M.; Kinsel, M. The dairy industry: A brief description of production practices, trends, and farm characteristics around the world. J. Agromedicine 2013, 18, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Preference of dairy cows: Indoor cubicle housing with access to a total mixed ration vs. access to pasture. Appl. Anim. Behav. Sci. 2011, 130, 1–9. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M. The behaviour of housed dairy cattle with and without pasture access: A review. Appl. Anim. Behav. Sci. 2017, 192, 2–9. [Google Scholar] [CrossRef]
- O’Neill, B.; Deighton, M.; O’Loughlin, B.; Mulligan, F.; Boland, T.; O’Donovan, M.; Lewis, E. Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production. J. Dairy Sci. 2011, 94, 1941–1951. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.; Capper, J.; Garnsworthy, P.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [Google Scholar] [CrossRef] [Green Version]
- Dillon, P. Maximising profit in creamery milk production using current research and technology. Ir. Grassl. Anim. Prod. Assoc. J. 1996, 30, 2–8. [Google Scholar]
- Fox, P.F.; McSweeney, P.L.; Paul, L. Dairy Chemistry and Biochemistry; Springer: London, UK, 1998. [Google Scholar]
- Kefford, B.; Christian, M.P.; Sutherland, B.J.; Mayes, J.J.; Grainger, C. Seasonal influences on Cheddar cheese manufacture: Influence of diet quality and stage of lactation. J. Dairy Res. 1995, 62, 529–537. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system. J. Dairy Sci. 2019, 102, 7747–7759. [Google Scholar] [CrossRef]
- Keys, A. Atherosclerosis: A problem in newer public health. Atherosclerosis 1953, 1, 19. [Google Scholar]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Chiu, S.; Bergeron, N.; Krauss, R.M. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu. Rev. Nutr. 2015, 35, 517–543. [Google Scholar] [CrossRef] [Green Version]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Bo, Y.; Liu, Y. Dietary total fat, fatty acids intake, and risk of cardiovascular disease: A dose-response meta-analysis of cohort studies. Lipids Health Dis. 2019, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindmark Månsson, H. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.; McGuire, M. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 2006, 89, 1302–1310. [Google Scholar] [CrossRef]
- Gulati, A.; Galvin, N.; Lewis, E.; Hennessy, D.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. J. Dairy Sci. 2018, 101, 2710–2723. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C. Production and metabolic effects of site of starch digestion in dairy cattle. Anim. Feed Sci. Technol. 2006, 130, 78–94. [Google Scholar] [CrossRef]
- Drackley, J.K.; Beaulieu, A.; Elliott, J. Responses of milk fat composition to dietary fat or nonstructural carbohydrates in Holstein and Jersey cows. J. Dairy Sci. 2001, 84, 1231–1237. [Google Scholar] [CrossRef]
- Harris, S.; Clark, D.; Auldist, M.; Waugh, C.; Laboyrie, P. Optimum white clover content for dairy pastures. In Proceedings of the Conference-New Zealand Grassland Association, Auckland, NI, New Zealand, 1 January 1997; Volume 59, pp. 29–34. [Google Scholar]
- Stergiadis, S.; Hynes, D.N.; Thomson, A.L.; Kliem, K.E.; Berlitz, C.G.; Günal, M.; Yan, T. Effect of substituting fresh-cut perennial ryegrass with fresh-cut white clover on bovine milk fatty acid profile. J. Sci. Food Agric. 2018, 98, 3982–3993. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F.; O’Donovan, M.; Murphy, J.P.; Sugrue, K.; Mannion, D.; McCarthy, W.P.; Timlin, M.; Kilcawley, K.N.; Hickey, R.M.; Tobin, J.T. Evolution of the bovine milk fatty acid profile–From colostrum to milk five days post parturition. Int. Dairy J. 2020, 104, 104655. [Google Scholar] [CrossRef]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J. Anim. Sci. 2020, 98, skaa237. [Google Scholar] [CrossRef] [PubMed]
- Carty, C.I.; Fahey, A.G.; Sheehy, M.R.; Taylor, S.; Lean, I.J.; McAloon, C.G.; O’Grady, L.; Mulligan, F.J. The prevalence, temporal and spatial trends in bulk tank equivalent milk fat depression in Irish milk recorded herds. Ir. Vet. J. 2017, 70, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, A.; Kelly, A.; Tobin, J.; Ruegg, P.; Gleeson, D. The effect of storage conditions on the composition and functional properties of blended bulk tank milk. J. Dairy Sci. 2017, 100, 991–1003. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, T.C.; Harvatine, K.J. Lipid feeding and milk fat depression. Vet. Clin. Food Anim. Pract. 2014, 30, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Lock, A.L. Update on dietary and management effects on milk fat. In Proceedings of the Proc. Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 20–21 April 2010; pp. 15–26. [Google Scholar]
- Elgersma, A.; Ellen, G.; Van der Horst, H.; Boer, H.; Dekker, P.; Tamminga, S. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 2004, 117, 13–27. [Google Scholar] [CrossRef]
- CSO. Domestic Milk Intake Is Down by 5.7% in December 2019. Available online: https://www.cso.ie/en/releasesandpublications/er/ms/milkstatisticsdecember2019/ (accessed on 18 November 2020).
- Carroll, S.; DePeters, E.; Taylor, S.; Rosenberg, M.; Perez-Monti, H.; Capps, V. Milk composition of Holstein, Jersey, and Brown Swiss cows in response to increasing levels of dietary fat. Anim. Feed Sci. Technol. 2006, 131, 451–473. [Google Scholar] [CrossRef]
- MacGibbon, A.; Taylor, M. Composition and structure of bovine milk lipids. In Advanced Dairy Chemistry Volume 2 Lipids; Springer: Boston, MA, USA, 2006; pp. 1–42. [Google Scholar]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Gallier, S.; Ye, A.; Singh, H. Structural changes of bovine milk fat globules during in vitro digestion. J. Dairy Sci. 2012, 95, 3579–3592. [Google Scholar] [CrossRef] [Green Version]
- Walstra, P.; Walstra, P.; Wouters, J.T.; Geurts, T.J. Dairy Science and Technology; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Michalski, M.; Cariou, R.; Michel, F.; Garnier, C. Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. J. Dairy Sci. 2002, 85, 2451–2461. [Google Scholar] [CrossRef] [Green Version]
- Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; Van Camp, J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Michalski, M.-C.; Camier, B.; Briard, V.; Leconte, N.; Gassi, J.-Y.; Goudédranche, H.; Michel, F.; Fauquant, J. The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait 2004, 84, 343–358. [Google Scholar] [CrossRef]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Rousseau, F.; Pradel, P.; Besle, J.-M. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J. Agric. Food Chem. 2008, 56, 5226–5236. [Google Scholar] [CrossRef]
- Walker, G.; Wijesundera, C.; Dunshea, F.; Doyle, P. Seasonal and stage of lactation effects on milk fat composition in northern Victoria. Anim. Prod. Sci. 2013, 53, 560–572. [Google Scholar] [CrossRef]
- Liu, Z.; Logan, A.; Cocks, B.G.; Rochfort, S. Seasonal variation of polar lipid content in bovine milk. Food Chem. 2017, 237, 865–869. [Google Scholar] [CrossRef]
- Bitman, J.; Wood, D. Changes in milk fat phospholipids during lactation. J. Dairy Sci. 1990, 73, 1208–1216. [Google Scholar] [CrossRef]
- Bauman, D.; McGuire, M.; Harvatine, K.J. Mammary gland, milk biosynthesis and secretion: Milk fat. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 352–358. [Google Scholar]
- Santos, J.E.P. Feeding for milk composition. In Proceedings of the VI International Congress on Bovine Medicine; Spanish Association of Specialists in Bovine Medicine (ANEMBE): Santiago de Compostela, Spain, 2002; pp. 163–172. [Google Scholar]
- Moore, J.; Christie, W. Lipid metabolism in the mammary gland of ruminant animals. In Lipid Metabolism in Ruminant Animals; Elsevier: Amsterdam, The Netherlands, 1981; pp. 227–277. [Google Scholar]
- Parodi, P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004, 59, 3–59. [Google Scholar]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Putnam, J.; Allshouse, J.; Kantor, L.S. US per capita food supply trends: More calories, refined carbohydrates, and fats. Food Rev. 2002, 25, 2–15. [Google Scholar]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Legrand, P.; Rioux, V. Specific roles of saturated fatty acids: Beyond epidemiological data. Eur. J. Lipid Sci. Technol. 2015, 117, 1489–1499. [Google Scholar] [CrossRef]
- Ristić-Medić, D.; Vučić, V.; Takić, M.; Karadžić, I.; Glibetić, M. Polyunsaturated fatty acids in health and disease. J. Serb. Chem. Soc. 2013, 78, 1269–1289. [Google Scholar] [CrossRef]
- Hurtaud, C.; Delaby, L.; Peyraud, J.-L. The nature of preserved forage changes butter organoleptic properties. Le Lait 2007, 87, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef]
- Win, D.T. Oleic acid–the anti-breast cancer component in olive oil. Au Jt 2005, 9, 75–78. [Google Scholar]
- Stark, A.H.; Crawford, M.A.; Reifen, R. Update on alpha-linolenic acid. Nutr. Rev. 2008, 66, 326–332. [Google Scholar] [CrossRef]
- De Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef]
- Johnson, G.H.; Fritsche, K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: A systematic review of randomized controlled trials. J. Acad. Nutr. Diet. 2012, 112, 1029–1041.e1015. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition–a review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, H.; Nair, J.; Owen, R.W. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers. Carcinogenesis 1999, 20, 2209–2218. [Google Scholar] [CrossRef] [Green Version]
- Deeth, H.C. Lipoprotein lipase and lipolysis in milk. Int. Dairy J. 2006, 16, 555–562. [Google Scholar] [CrossRef]
- Ray, P.; Chatterjee, K.; Chakraborty, C.; Ghatak, P. Lipolysis of milk: A review. Int. J. Agric. Sci. Vet. Med. 2013, 1, 58–74. [Google Scholar]
- Kamath, S.; Wulandewi, A.; Deeth, H. Relationship between surface tension, free fatty acid concentration and foaming properties of milk. Food Res. Int. 2008, 41, 623–629. [Google Scholar] [CrossRef]
- McNeill, G.; O’Donoghue, A.; Connolly, J. Quantification and identification of flavour components leading to lipolytic rancidity in stored butter. Ir. J. Food Sci. Technol. 1986, 1–10. [Google Scholar]
- O’Callaghan, T.F.; Faulkner, H.; McAuliffe, S.; O’Sullivan, M.G.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; Stanton, C.; Ross, R.P. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J. Dairy Sci. 2016, 99, 9441–9460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgard, L.H.; Sangster, J.K.; Bauman, D.E. Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). J. Nutr. 2001, 131, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Cone, J.; Fievez, V.; Hendriks, W. Causes of variation in fatty acid content and composition in grass and maize silages. Anim. Feed Sci. Technol. 2012, 174, 36–45. [Google Scholar] [CrossRef]
- Tricon, S.; Burdge, G.C.; Kew, S.; Banerjee, T.; Russell, J.J.; Grimble, R.F.; Williams, C.M.; Calder, P.C.; Yaqoob, P. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on immune cell function in healthy humans. Am. J. Clin. Nutr. 2004, 80, 1626–1633. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, A.; Ross, R.; Stanton, C.; Devery, R.; Murphy, J. Development of dairy based functional foods enriched in conjugated linoleic acid with special reference to rumenic acid. In Functional Dairy Products; Elsevier: Amsterdam, The Netherlands, 2007; pp. 443–495. [Google Scholar]
- Bauman, D.; Baumgard, L.; Corl, B.; Griinari, d.J. Biosynthesis of conjugated linoleic acid in ruminants. Proc. Am. Soc. Anim. Sci. 1999, 77, 1–14. [Google Scholar] [CrossRef]
- Griinari, J.; Corl, B.; Lacy, S.; Chouinard, P.; Nurmela, K.; Bauman, D. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef]
- Elgersma, A.; Tamminga, S.; Ellen, G. Comparison of the effects of grazing and zero-grazing of grass on milk fatty acid composition of dairy cows. Grassl. Sci. Eur. 2003, 8, 271–274. [Google Scholar]
- Bär, C.; Sutter, M.; Kopp, C.; Neuhaus, P.; Portmann, R.; Egger, L.; Reidy, B.; Bisig, W. Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk. Int. Dairy J. 2020, 109, 104785. [Google Scholar] [CrossRef]
- Benbrook, C.M.; Butler, G.; Latif, M.A.; Leifert, C.; Davis, D.R. Organic production enhances milk nutritional quality by shifting fatty acid composition: A United States–wide, 18-month study. PLoS ONE 2013, 8, e82429. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Doreau, M. Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livest. Prod. Sci. 2001, 70, 31–48. [Google Scholar] [CrossRef]
- Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M.; de Theix, S. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol 2007, 109, 828–855. [Google Scholar]
- Kelly, M.; Kolver, E.; Bauman, D.; Van Amburgh, M.; Muller, L. Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. J. Dairy Sci. 1998, 81, 1630–1636. [Google Scholar] [CrossRef]
- Stanton, C.; Lawless, F.; Kjellmer, G.; Harrington, D.; Devery, R.; Connolly, J.; Murphy, J. Dietary influences on bovine milk cis-9, trans-11-conjugated linoleic acid content. J. Food Sci. 1997, 62, 1083–1086. [Google Scholar] [CrossRef]
- Lock, A.; Garnsworthy, P. Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Scollan, N.D.; Youell, S.J.; Tweed, J.K.; Humphreys, M.O. Influence of species, cutting date and cutting interval on the fatty acid composition of grasses. Grass Forage Sci. 2001, 56, 68–74. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.; Tremblay, G.; Petit, H.; Michaud, R.; Bélanger, G. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
- AlZahal, O.; Or-Rashid, M.; Greenwood, S.; Douglas, M.; McBride, B. The effect of dietary fiber level on milk fat concentration and fatty acid profile of cows fed diets containing low levels of polyunsaturated fatty acids. J. Dairy Sci. 2009, 92, 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Hurtaud, C.; Faucon, F.; Couvreur, S.; Peyraud, J.-L. Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J. Dairy Sci. 2010, 93, 1429–1443. [Google Scholar] [CrossRef]
- Peterson, D.; Baumgard, L.; Bauman, D. Milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid (CLA). J. Dairy Sci. 2002, 85, 1764–1766. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Reynolds, C.K.; Hervás, G.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. J. Dairy Sci. 2006, 89, 714–732. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.; Griinari, J. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- Beauchemin, K.; Yang, W.; Rode, L. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. J. Dairy Sci. 2003, 86, 630–643. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Videau, Y.; Nicot, M.-C.; Troegeler-Meynadier, A. Effects of induced subacute ruminal acidosis on milk fat content and milk fatty acid profile. J. Anim. Physiol. Anim. Nutr. 2008, 92, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Plaizier, J.; Krause, D.; Gozho, G.; McBride, B. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Kelsey, J.; Corl, B.; Collier, R.J.; Bauman, D. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003, 86, 2588–2597. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.; Beaulieu, A.D.; Barbano, D. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Bilal, G.; Cue, R.; Mustafa, A.; Hayes, J. Effects of parity, age at calving and stage of lactation on fatty acid composition of milk in Canadian Holsteins. Can. J. Anim. Sci. 2014, 94, 401–410. [Google Scholar] [CrossRef]
- Gross, J.J.; van Dorland, H.A.; Bruckmaier, R.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Samková, E.; Węglarz, P.Z. Seasonal variation in fatty acid composition of cow milk in relation to the feeding system. Anim. Sci. Pap. Rep. 2012, 30, 219–229. [Google Scholar]
- Storry, J.; Grandison, A.; Millard, D.; Owen, A.; Ford, G. Chemical composition and coagulating properties of renneted milks from different breeds and species of ruminant. J. Dairy Res. 1983, 50, 215–229. [Google Scholar] [CrossRef]
- Soyeurt, H.; Dardenne, P.; Gillon, A.; Croquet, C.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 2006, 89, 4858–4865. [Google Scholar] [CrossRef]
- Benjamin, S.; Spener, F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab. 2009, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Menendez, J.; Vellon, L.; Colomer, R.; Lupu, R. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses her-2/neu (erb b-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (herceptin™) in breast cancer cells with her-2/neu oncogene amplification. Ann. Oncol. 2005, 16, 359–371. [Google Scholar] [CrossRef]
- Ng-Kwai-Hang, K.; Hayes, J.; Moxley, J.; Monardes, H. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 1982, 65, 1993–1998. [Google Scholar] [CrossRef]
- Pellegrino, L.; Masotti, F.; Cattaneo, S.; Hogenboom, J.; De Noni, I. Nutritional quality of milk proteins. In Advanced Dairy Chemistry; Springer: Boston, MA, USA, 2013; pp. 515–538. [Google Scholar]
- Lucey, J.A.; Otter, D.; Horne, D.S. A 100-year review: Progress on the chemistry of milk and its components. J. Dairy Sci. 2017, 100, 9916–9932. [Google Scholar] [CrossRef] [Green Version]
- Phadungath, C. Casein micelle structure: A concise review. Songklanakarin J. Sci. Technol. 2005, 27, 201–212. [Google Scholar]
- De Kruif, C.; Huppertz, T. Casein micelles: Size distribution in milks from individual cows. J. Agric. Food Chem. 2012, 60, 4649–4655. [Google Scholar] [CrossRef] [Green Version]
- Creamer, L.K.; MacGibbon, A.K. Some recent advances in the basic chemistry of milk proteins and lipids. Int. Dairy J. 1996, 6, 539–568. [Google Scholar] [CrossRef]
- Huppertz, T.; Gazi, I.; Luyten, H.; Nieuwenhuijse, H.; Alting, A.; Schokker, E. Hydration of casein micelles and caseinates: Implications for casein micelle structure. Int. Dairy J. 2017, 74, 1–11. [Google Scholar] [CrossRef]
- Dalgleish, D.G. On the structural models of bovine casein micelles—Review and possible improvements. Soft Matter 2011, 7, 2265–2272. [Google Scholar] [CrossRef]
- Singh, H.; Fox, P.F. Heat stability of milk: Influence of colloidal and soluble salts and protein modification on the pH-dependent dissociation of micellar κ-casein. J. Dairy Res. 1987, 54, 523–534. [Google Scholar] [CrossRef]
- Glantz, M.; Devold, T.; Vegarud, G.; Månsson, H.L.; Stålhammar, H.; Paulsson, M. Importance of casein micelle size and milk composition for milk gelation. J. Dairy Sci. 2010, 93, 1444–1451. [Google Scholar] [CrossRef] [Green Version]
- Wedholm, A.; Larsen, L.B.; Lindmark-Månsson, H.; Karlsson, A.H.; Andrén, A. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. J. Dairy Sci. 2006, 89, 3296–3305. [Google Scholar] [CrossRef]
- Bijl, E.; de Vries, R.; van Valenberg, H.; Huppertz, T.; Van Hooijdonk, T. Factors influencing casein micelle size in milk of individual cows: Genetic variants and glycosylation of κ-casein. Int. Dairy J. 2014, 34, 135–141. [Google Scholar] [CrossRef]
- Bonfatti, V.; Di Martino, G.; Cecchinato, A.; Degano, L.; Carnier, P. Effects of β-κ-casein (CSN2-CSN3) haplotypes, β-lactoglobulin (BLG) genotypes, and detailed protein composition on coagulation properties of individual milk of Simmental cows. J. Dairy Sci. 2010, 93, 3809–3817. [Google Scholar] [CrossRef]
- Kübarsepp, I.; Henno, M.; Viinalass, H.; Sabre, D. Effect of κ-casein and β-lactoglobulin genotypes on the milk rennet coagulation properties. Agron. Res 2005, 3, 55–64. [Google Scholar]
- O’Mahony, J.A.; Fox, P. Milk proteins: Introduction and historical aspects. In Advanced Dairy Chemistry; Springer: Boston, MA, USA, 2013; pp. 43–85. [Google Scholar]
- Aich, R.; Batabyal, S.; Joardar, S.N. Isolation and purification of beta-lactoglobulin from cow milk. Vet. World 2015, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Creamer, L.K.; Bienvenue, E.A.; Nilsson, H.; Paulsson, M.; van Wanroij, M.; Lowe, E.K.; Anema, S.G.; Boland, M.J.; Jiménez-Flores, R. Heat-induced redistribution of disulfide bonds in milk proteins. 1. Bovine β-lactoglobulin. J. Agric. Food Chem. 2004, 52, 7660–7668. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Luck, P.; Davis, J.P. Factors determining the physical properties of protein foams. Food Hydrocoll. 2006, 20, 284–292. [Google Scholar] [CrossRef]
- Chatterton, D.E.; Smithers, G.; Roupas, P.; Brodkorb, A. Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing. Int. Dairy J. 2006, 16, 1229–1240. [Google Scholar] [CrossRef]
- Pepe, G.; Tenore, G.C.; Mastrocinque, R.; Stusio, P.; Campiglia, P. Potential anticarcinogenic peptides from bovine milk. J. Amino Acids 2013, 2013. [Google Scholar] [CrossRef]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, N.; Kane, M.; Joshi, L.; Hickey, R.M. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 2014, 24, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Recio, I.; Moreno, F.J.; López-Fandiño, R. Glycosylated dairy components: Their roles in nature and ways to make use of their biofunctionality in dairy products. In Dairy-Derived Ingredients; Elsevier: Amsterdam, The Netherlands, 2009; pp. 170–211. [Google Scholar]
- Kumar, J.; Weber, W.; Münchau, S.; Yadav, S.; Singh, S.B.; Saravanan, K.; Paramasivam, M.; Sharma, S.; Kaur, P.; Bhushan, A. Crystal structure of human seminal diferric lactoferrin at 3.4 Å resolution. Indian J. Biochem. Biophys. 2003, 40, 14–21. [Google Scholar]
- Legrand, D.; Mazurier, J.; Colavizza, D.; Montreuil, J.; Spik, G. Properties of the iron-binding site of the N-terminal lobe of human and bovine lactotransferrins. Importance of the glycan moiety and of the non-covalent interactions between the N-and C-terminal lobes in the stability of the iron-binding site. Biochem. J. 1990, 266, 575. [Google Scholar]
- Le, T.T.; Deeth, H.C.; Larsen, L.B. Proteomics of major bovine milk proteins: Novel insights. Int. Dairy J. 2017, 67, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zheng, Y.; Wu, S.; Yang, N.; Wu, J.; Liu, B.; Ye, W.; Yang, M.; Yue, X. Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Food Funct. 2019, 10, 5046–5058. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, P.; Andersen, K.; Hammershøj, M.; Poulsen, H.; Sørensen, J.; Bakman, M.; Qvist, K.; Larsen, L. Composition and effect of blending of noncoagulating, poorly coagulating, and well-coagulating bovine milk from individual Danish Holstein cows. J. Dairy Sci. 2011, 94, 4787–4799. [Google Scholar] [CrossRef] [Green Version]
- DePeters, E.; Ferguson, J. Nonprotein nitrogen and protein distribution in the milk of cows. J. Dairy Sci. 1992, 75, 3192–3209. [Google Scholar] [CrossRef]
- Alichanidis, E.; Moatsou, G.; Polychroniadou, A. Composition and properties of non-cow milk and products. In Non-Bovine Milk and Milk Products; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–116. [Google Scholar]
- Broderick, G.A.; Clayton, M.K. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Hoekstra, N.; Schulte, R.; Struik, P.; Lantinga, E. Pathways to improving the N efficiency of grazing bovines. Eur. J. Agron. 2007, 26, 363–374. [Google Scholar] [CrossRef]
- Schepers, A.; Meijer, R. Evaluation of the utilization of dietary nitrogen by dairy cows based on urea concentration in milk. J. Dairy Sci. 1998, 81, 579–584. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.; Krizsan, S.; Shingfield, K. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. J. Dairy Sci. 2015, 98, 3182–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keim, J.P.; Anrique, R. Nutritional strategies to improve nitrogen use efficiency by grazing dairy cows. Chil. J. Agric. Res. 2011, 71, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Holt, C.; Muir, D.D.; Sweetsur, A.M. Seasonal changes in the heat stability of milk from creamery silos in south-west Scotland. J. Dairy Res. 1978, 45, 183–190. [Google Scholar] [CrossRef]
- O’Callaghan, T.; Vázquez-Fresno, R.; Serra-Cayuela, A.; Dong, E.; Mandal, R.; Hennessy, D.; McAuliffe, S.; Dillon, P.; Wishart, D.; Stanton, C. Pasture feeding changes the bovine rumen and milk metabolome. Metabolites 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.E.A.; Gorgulu, M.; Goncu, S. The Effects of Total Mixed Ration and Separate Feeding on Lactational Performance of Dairy Cows. Asian Res. J. Agric. 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Spek, J.; Dijkstra, J.; Van Duinkerken, G.; Bannink, A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Wolfschoon-Pombo, A.; Klostermeyer, H. Die NPN-Fraktion der Kuhmilch. I. Menge und Zusammensetzung. Milchwissenschaft 1981, 36, 598–600. [Google Scholar]
- Harris, S.L.; Auldist, M.J.; Clark, D.A.; Jansen, E.B. Effects of white clover content in the diet on herbage intake, milk production and milk composition of New Zealand dairy cows housed indoors. J. Dairy Res. 1998, 65, 389–400. [Google Scholar] [CrossRef]
- Auldist, M.; Napper, A.; Kolver, E. Contribution of nutrition to seasonal variation of milk composition in New Zealand Friesian and US Holstein dairy cows. Asian Australas. J. Anim. Sci. 2000, 13, 513–516. [Google Scholar]
- Schroeder, G.; Delahoy, J.; Vidaurreta, I.; Bargo, F.; Gagliostro, G.; Muller, L. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrates replacing corn with fat. J. Dairy Sci. 2003, 86, 3237–3248. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Ronchi, B.; Nardone, A. Effects of the hot season on milk protein fractions in Holstein cows. Anim. Res. 2002, 51, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Kroeker, E.; Ng-Kwai-Hang, K.; Hayes, J.; Moxley, J. Effects of environmental factors and milk protein polymorphism on composition of casein fraction in bovine milk. J. Dairy Sci. 1985, 68, 1752–1757. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Cappelli, F.P.; Calamari, L. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef] [Green Version]
- Ostersen, S.; Foldager, J.; Hermansen, J.E. Effects of stage of lactation, milk protein genotype and body condition at calving on protein composition and renneting properties of bovine milk. J. Dairy Res. 1997, 64, 207–219. [Google Scholar] [CrossRef]
- O’Riordan, N.; Gerlach, J.Q.; Kilcoyne, M.; O’Callaghan, J.; Kane, M.; Hickey, R.M.; Joshi, L. Profiling temporal changes in bovine milk lactoferrin glycosylation using lectin microarrays. Food Chem. 2014, 165, 388–396. [Google Scholar] [CrossRef]
- Feeney, S.; Gerlach, J.Q.; Slattery, H.; Kilcoyne, M.; Hickey, R.M.; Joshi, L. Lectin microarray profiling and monosaccharide analysis of bovine milk immunoglobulin G oligosaccharides during the first 10 days of lactation. Food Sci. Nutr. 2019, 7, 1564–1572. [Google Scholar] [CrossRef] [PubMed]
- Takimori, S.; Shimaoka, H.; Furukawa, J.I.; Yamashita, T.; Amano, M.; Fujitani, N.; Takegawa, Y.; Hammarström, L.; Kacskovics, I.; Shinohara, Y. Alteration of the N-glycome of bovine milk glycoproteins during early lactation. FEBS J. 2011, 278, 3769–3781. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Jensen, H.B.; Larsen, L.B. Factors influencing degree of glycosylation and phosphorylation of caseins in individual cow milk samples. J. Dairy Sci. 2016, 99, 3325–3333. [Google Scholar] [CrossRef] [Green Version]
- Fox, P. Lactose: Chemistry and properties. In Advanced Dairy Chemistry; Springer: New York, NY, USA, 2009; pp. 1–15. [Google Scholar]
- Jenness, R.; Holt, C. Casein and lactose concentrations in milk of 31 species are negatively correlated. Experientia 1987, 43, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Phelan, J.; O’keeffe, A.; Keogh, M.; Kelly, P. Studies of milk composition and its relationship to some processing criteria: 1. Seasonal changes in the composition of Irish milk. Ir. J. Food Sci. Technol. 1982, 6, 1–11. [Google Scholar]
- Ogola, H.; Shitandi, A.; Nanua, J. Effect of mastitis on raw milk compositional quality. J. Vet. Sci. 2007, 8, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Hettinga, K.A. Lactose in the dairy production chain. In Lactose; Elsevier: Amsterdam, The Netherlands, 2019; pp. 231–266. [Google Scholar]
- Sneddon, N.; Lopez-Villalobos, N.; Davis, S.; Hickson, R.; Shalloo, L.; Garrick, D. Supply curves for yields of dairy products from first-lactation Holstein Friesian, Jersey and Holstein Friesian-Jersey crossbred cows accounting for seasonality of milk composition and production. In Proceedings of the International Conference on Inventions & Innovations for Sustainable Agriculture 2016, Bangkok, Thailand, 7–9 July 2016. [Google Scholar]
- Argamentería, A.; Vicente, F.; Martínez-Fernández, A.; Cueto, M.; Roza-Delgado, B. Influence of partial Total Mixed Rations amount on the grass voluntary intake by dairy cows. Influ. Part. Total Mix. Rations Amount Grass Volunt. Intake Dairy Cows. 2006, 11, 161–163. [Google Scholar]
- Vicente, F.; Santiago, C.; Jiménez-Calderón, J.D.; Martínez-Fernández, A. Capacity of milk composition to identify the feeding system used to feed dairy cows. J. Dairy Res. 2017, 84, 254–263. [Google Scholar] [CrossRef]
- Öste, R.; Jägerstad, M.; Andersson, I. Vitamins in milk and milk products. In Advanced Dairy Chemistry Volume 3; Springer: Boston, MA, USA, 1997; pp. 347–402. [Google Scholar]
- Porter, J. Milk as a source of lactose, vitamins and minerals. Proc. Nutr. Soc. 1978, 37, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Osorio, J.; Wallace, R.; Tomlinson, D.; Earleywine, T.; Socha, M.; Drackley, J.K. Effects of source of trace minerals and plane of nutrition on growth and health of transported neonatal dairy calves. J. Dairy Sci. 2012, 95, 5831–5844. [Google Scholar] [CrossRef] [PubMed]
- Vahčić, N.; Hruškar, M.; Marković, K.; Banović, M.; Barić, I.C. Essential minerals in milk and their daily intake through milk consumption. Mljekarstvo/Dairy 2010, 60, 77–85. [Google Scholar]
- Gaucheron, F. The minerals of milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef]
- Holt, C. The milk salts and their interaction with casein. In Advanced Dairy Chemistry Volume 3; Springer: Boston, MA, USA, 1997; pp. 233–256. [Google Scholar]
- Roach, A.; Harte, F. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innov. Food Sci. Emerg. Technol. 2008, 9, 1–8. [Google Scholar] [CrossRef]
- Holt, C.; Muir, D.D. Inorganic constituents of milk: I. Correlation of soluble calcium with citrate in bovine milk. J. Dairy Res. 1979, 46, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Woodrow, J.P.; Sharpe, C.J.; Fudge, N.J.; Hoff, A.O.; Gagel, R.F.; Kovacs, C.S. Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation. Endocrinology 2006, 147, 4010–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liesegang, A.; Eicher, R.; Sassi, M.-L.; Risteli, J.; Kraenzlin, M.; Riond, J.-L.; Wanner, M. Biochemical markers of bone formation and resorption around parturition and during lactation in dairy cows with high and low standard milk yields. J. Dairy Sci. 2000, 83, 1773–1781. [Google Scholar] [CrossRef]
- Castro, S.B.; Lacasse, P.; Fouquet, A.; Beraldin, F.; Robichaud, A.; Berthiaume, R. Feed iodine concentrations on farms with contrasting levels of iodine in milk. J. Dairy Sci. 2011, 94, 4684–4689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, J. Iodine concentrations in US milk: Variation due to time, season, and region. J. Dairy Sci. 1990, 73, 3421–3427. [Google Scholar] [CrossRef]
- Keogh, M.; Kelly, P.; O’keeffe, A.; Phelan, J. Studies of milk composition and its relationship to some processing criteria: II. Seasonal variation in the mineral levels of milk. Ir. J. Food Sci. Technol. 1982, 6, 13–27. [Google Scholar]
- Lucey, J.; Horne, D. Milk salts: Technological significance. In Advanced Dairy Chemistry; Springer: New York, NY, USA, 2009; pp. 351–389. [Google Scholar]
- Banks, W.; Clapperton, J.L.; Girdler, A.K.; Steele, W. Effect of inclusion of different forms of dietary fatty acid on the yield and composition of cow’s milk. J. Dairy Res. 1984, 51, 387–395. [Google Scholar] [CrossRef]
- Martin, B.; Fedele, V.; Ferlay, A.; Grolier, P.; Rock, E.; Gruffat, D.; Chilliard, Y. Effects of grass-based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products. In Proceedings of the Land Use Systems in Grassland Dominated Regions, 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004; pp. 876–886. [Google Scholar]
- Calderón, F.; Chauveau-Duriot, B.; Pradel, P.; Martin, B.; Graulet, B.; Doreau, M.; Nozière, P. Variations in carotenoids, vitamins A and E, and color in cow’s plasma and milk following a shift from hay diet to diets containing increasing levels of carotenoids and vitamin E. J. Dairy Sci. 2007, 90, 5651–5664. [Google Scholar] [CrossRef]
- Graulet, B. Improving the level of vitamins in milk. In Improving the Safety and Quality of Milk; Elsevier: Amsterdam, The Netherlands, 2010; pp. 229–251. [Google Scholar]
- Nozière, P.; Grolier, P.; Durand, D.; Ferlay, A.; Pradel, P.; Martin, B. Variations in carotenoids, fat-soluble micronutrients, and color in cows’ plasma and milk following changes in forage and feeding level. J. Dairy Sci. 2006, 89, 2634–2648. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P. Animal Nutrition; Pearson Education: London, UK, 2002. [Google Scholar]
- Magan, J.; O’Callaghan, T.; Zheng, J.; Zhang, L.; Mandal, R.; Hennessy, D.; Fenelon, M.; Wishart, D.; Kelly, A.; McCarthy, N. Effect of Diet on the Vitamin B Profile of Bovine Milk-Based Protein Ingredients. Foods 2020, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Gomez, C. Effect of varying hay/barley proportions on microbial biotin metabolism in the rumen simulating fermenter Rusitec. In Proceedings of the Society for Nutrition and Physiology, Göttingen, Germany, 3 March 1998; p. 30. [Google Scholar]
- Pan, X.; Nan, X.; Yang, L.; Jiang, L.; Xiong, B. Thiamine status, metabolism and application in dairy cows: A review. Br. J. Nutr. 2018, 120, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maekawa, M.; Beauchemin, K.; Christensen, D. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci. 2002, 85, 1165–1175. [Google Scholar] [CrossRef]
- Niehoff, I.-D.; Hüther, L.; Lebzien, P. Niacin for dairy cattle: A review. Br. J. Nutr. 2008, 101, 5–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guetouache, M.; Guessas, B.; Medjekal, S. Composition and nutritional value of raw milk. J. Issues Issn 2014, 2350, 1588. [Google Scholar]
- Kurmann, A.; Indyk, H. The endogenous vitamin D content of bovine milk: Influence of season. Food Chem 1994, 50, 75–81. [Google Scholar] [CrossRef]
- Calderón, F.; Chauveau-Duriot, B.; Martin, B.; Graulet, B.; Doreau, M.; Nozière, P. Variations in carotenoids, vitamins A and E, and color in cow’s plasma and milk during late pregnancy and the first three months of lactation. J. Dairy Sci. 2007, 90, 2335–2346. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R.; Walker, G.P.; Williams, R.; Doyle, P.T. Mineral and Citrate Concentrations in Milk Are Affected by Seasons, Stage of Lactation and Management Practices. Agriculture 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Linzell, J.; Mepham, T.; Peaker, M. The secretion of citrate into milk. J. Physiol. 1976, 260, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Garnsworthy, P.; Masson, L.; Lock, A.; Mottram, T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006, 89, 1604–1612. [Google Scholar] [CrossRef] [Green Version]
- Flachowsky, G.; Franke, K.; Meyer, U.; Leiterer, M.; Schöne, F. Influencing factors on iodine content of cow milk. Eur. J. Nutr. 2014, 53, 351–365. [Google Scholar] [CrossRef]
- Sloth, K.H.M.N.; Friggens, N.; Løvendahl, P.; Andersen, P.; Jensen, J.; Ingvartsen, K.L. Potential for improving description of bovine udder health status by combined analysis of milk parameters. J. Dairy Sci. 2003, 86, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Lewis, M.J.; Grandison, A.S. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chem. 2014, 158, 216–223. [Google Scholar] [CrossRef]
- McSweeney, P.L.; Fox, P.F. Advanced Dairy Chemistry; Springer: Boston, MA, USA, 2003; Volume 1. [Google Scholar]
- Aleandri, R.; Schneider, J.; Buttazzoni, L. Evaluation of milk for cheese production based on milk characteristics and Formagraph measures. J. Dairy Sci. 1989, 72, 1967–1975. [Google Scholar] [CrossRef]
- Harzia, H.; Kilk, K.; Jõudu, I.; Henno, M.; Kärt, O.; Soomets, U. Comparison of the metabolic profiles of noncoagulating and coagulating bovine milk. J. Dairy Sci. 2012, 95, 533–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okigbo, L.; Richardson, G.; Brown, R.; Ernstrom, C. Interactions of calcium, pH, temperature, and chymosin during milk coagulation. J. Dairy Sci. 1985, 68, 3135–3142. [Google Scholar] [CrossRef]
- Harmon, R. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 1994, 77, 2103–2112. [Google Scholar] [CrossRef]
- Tsioulpas, A.; Lewis, M.J.; Grandison, A.S. Effect of minerals on casein micelle stability of cows’ milk. J. Dairy Res. 2007, 74, 167–173. [Google Scholar] [CrossRef]
- Singh, H. Heat stability of milk. Int. J. Dairy Technol. 2004, 57, 111–119. [Google Scholar] [CrossRef]
- Huppertz, T. Heat stability of milk. In Advanced Dairy Chemistry; Springer: New York, NY, USA, 2016; pp. 179–196. [Google Scholar]
- Pyne, G.; McHenry, K.A. 572. The heat coagulation of milk. J. Dairy Res. 1955, 22, 60–68. [Google Scholar] [CrossRef]
- McMahon, D.J.; Brown, R.; Richardson, G.; Ernstrom, C. Effects of calcium, phosphate, and bulk culture media on milk coagulation properties. J. Dairy Sci. 1984, 67, 930–938. [Google Scholar] [CrossRef]
- Kelly, P.; O’Keeffe, A.; Keogh, M.; Phelan, J. Studies of milk composition and its relationship to some processing criteria: III: Seasonal variation in heat stability of milk. Ir. J. Food Sci. Technol. 1982, 6, 29–38. [Google Scholar]
- Pyne, G. 737. The heat coagulation of milk: II. variations in sensitivity of casein to calcium ions. J. Dairy Res. 1958, 25, 467–474. [Google Scholar] [CrossRef]
- De Kort, E.; Minor, M.; Snoeren, T.; van Hooijdonk, T.; van der Linden, E. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity. Int. Dairy J. 2012, 26, 112–119. [Google Scholar] [CrossRef]
- Singh, H.; Fox, P.F. Heat stability of milk: pH-dependent dissociation of micellar κ-casein on heating milk at ultra high temperatures. J. Dairy Res. 1985, 52, 529–538. [Google Scholar] [CrossRef]
- Lin, Y.; O’Mahony, J.A.; Kelly, A.L.; Guinee, T.P. Seasonal variation in the composition and processing characteristics of herd milk with varying proportions of milk from spring-calving and autumn-calving cows. J. Dairy Res. 2017, 84, 444–452. [Google Scholar] [CrossRef]
- Muir, D.; Sweetsur, A. Effect of urea on the heat coagulation of the caseinate complex in skim-milk. J. Dairy Res. 1977, 44, 249–257. [Google Scholar] [CrossRef]
- Alexander, M.; Dalgleish, D.G. Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet. Colloids Surf. B: Biointerfaces 2004, 38, 83–90. [Google Scholar] [CrossRef]
- Kelly, P.; O’Kennedy, B. The effect of casein/whey protein ratio and minerals on the rheology of fresh cheese gels using a model system. Int. Dairy J. 2001, 11, 525–532. [Google Scholar] [CrossRef]
- Roefs, S.; Van Vliet, T. Structure of acid casein gels 2. Dynamic measurements and type of interaction forces. Colloids Surf. 1990, 50, 161–175. [Google Scholar] [CrossRef]
- Schkoda, P.; Hechler, A.; Kessler, H. Effect of minerals and pH on rheological properties and syneresis of milk-based acid gels. Int. Dairy J. 1999, 9, 269–274. [Google Scholar] [CrossRef]
- Augustin, M.A.; Udabage, P. Influence of processing on functionality of milk and dairy proteins. Adv. Food Nutr. Res. 2007, 53, 1–38. [Google Scholar]
- Guyomarc’h, F.; Queguiner, C.; Law, A.J.; Horne, D.S.; Dalgleish, D.G. Role of the soluble and micelle-bound heat-induced protein aggregates on network formation in acid skim milk gels. J. Agric. Food Chem. 2003, 51, 7743–7750. [Google Scholar] [CrossRef]
- Sinaga, H.; Bansal, N.; Bhandari, B. Gelation properties of partially renneted milk. Int. J. Food Prop. 2017, 20, 1700–1714. [Google Scholar] [CrossRef] [Green Version]
- Udabage, P.; McKinnon, I.R.; Augustin, M.-A. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. J. Dairy Sci. 2001, 84, 1569–1575. [Google Scholar] [CrossRef]
- Horne, D.S. Casein Interactions: Casting Light on the Black Boxes, the Structure in Dairy Products. Int. Dairy J. 1998, 8, 171–177. [Google Scholar] [CrossRef]
- Hallén, E.; Allmere, T.; Näslund, J.; Andrén, A.; Lundén, A. Effect of genetic polymorphism of milk proteins on rheology of chymosin-induced milk gels. Int. Dairy J. 2007, 17, 791–799. [Google Scholar] [CrossRef]
- Guinee, T.P.; Gorry, C.B.; O’Callaghan, D.J.; O’Kennedy, B.T.; O’Brie, N.; Fenelon, M.A. The effects of composition and some processing treatments on the rennet coagulation properties of milk. Int. J. Dairy Technol. 1997, 50, 99–106. [Google Scholar] [CrossRef]
- Daviau, C.; Famelart, M.-H.; Pierre, A.; Goudédranche, H.; Maubois, J.-L. Rennet coagulation of skim milk and curd drainage: Effect of pH, casein concentration, ionic strength and heat treatment. Le Lait 2000, 80, 397–415. [Google Scholar] [CrossRef] [Green Version]
- Logan, A.; Leis, A.; Day, L.; Øiseth, S.K.; Puvanenthiran, A.; Augustin, M.A. Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. Int. Dairy J. 2015, 46, 71–77. [Google Scholar] [CrossRef]
- Chapman, H.; Burnett, J. Seasonal changes in the physical properties of milk for cheesemaking. In Proceedings of the XVIII International Dairy Congress, Sydney, NSW, Australia, 12–16 October 1970. [Google Scholar]
- Grimley, H.; Grandison, A.; Lewis, M. Changes in milk composition and processing properties during the spring flush period. Dairy Sci. Technol. 2009, 89, 405–416. [Google Scholar] [CrossRef]
- Grandison, A.S.; Ford, G.D.; Owen, A.J.; Millard, D. Chemical composition and coagulating properties of renneted Friesian milk during the transition from winter rations to spring grazing. J. Dairy Res. 1984, 51, 69–78. [Google Scholar] [CrossRef]
- Green, M.L.; Grandison, A.S. Secondary (non-enzymatic) phase of rennet coagulation and post-coagulation phenomena. In Cheese: Chemistry, Physics and Microbiology; Springer: Boston, MA, USA, 1993; pp. 101–140. [Google Scholar]
- O’Callaghan, T.F.; Mannion, D.T.; Hennessy, D.; McAuliffe, S.; O’Sullivan, M.G.; Leeuwendaal, N.; Beresford, T.P.; Dillon, P.; Kilcawley, K.N.; Sheehan, J.J. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. J. Dairy Sci. 2017, 100, 6053–6073. [Google Scholar] [CrossRef]
- O’Keeffe, A. Seasonal and lactational influences on moisture content of Cheddar cheese. Ir. J. Food Sci. Technol. 1984, 27–37. [Google Scholar]
- Banks, J.M.; Tamime, A. Seasonal trends in the efficiency of recovery of milk fat and casein in cheese manufacture. Int. J. Dairy Technol. 1987, 40, 64–66. [Google Scholar] [CrossRef]
- Auldist, M.J.; Coats, S.; Sutherland, B.J.; Mayes, J.J.; McDowell, G.H.; Rogers, G.L. Effects of somatic cell count and stage of lactation on raw milk composition and the yield and quality of Cheddar cheese. J. Dairy Res. 1996, 63, 269–280. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Effect of seasonal variations on the acid gelation of milk. J. Dairy Sci. 2020. [Google Scholar] [CrossRef]
- Guinee, T.P.; O’Brien, B.; Mulholland, E.O. The suitability of milk from a spring-calved dairy herd during the transition from normal to very late lactation for the manufacture of low-moisture Mozzarella cheese. Int. Dairy J. 2007, 17, 133–142. [Google Scholar] [CrossRef]
- Hill, J. The relationship between β-lactoglobulin phenotypes and milk composition in New Zealand dairy cattle. J. Dairy Sci. 1993, 76, 281–286. [Google Scholar] [CrossRef]
- McLean, D.M.; Graham, E.B.; Ponzoni, R.W.; McKenzie, H.A. Effects of milk protein genetic variants on milk yield and composition. J. Dairy Res. 1984, 51, 531–546. [Google Scholar] [CrossRef]
- Auldist, M.; Thomson, N.; Mackle, T.; Hill, J.; Prosser, C. Effects of pasture allowance on the yield and composition of milk from cows of different β-lactoglobulin phenotypes. J. Dairy Sci. 2000, 83, 2069–2074. [Google Scholar] [CrossRef]
- Marinova, K.G.; Basheva, E.S.; Nenova, B.; Temelska, M.; Mirarefi, A.Y.; Campbell, B.; Ivanov, I.B. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocoll. 2009, 23, 1864–1876. [Google Scholar] [CrossRef]
- MacRitchie, F. Proteins at interfaces. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1978; Volume 32, pp. 283–326. [Google Scholar]
- Bos, M.A.; van Vliet, T. Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv. Colloid Interface Sci. 2001, 91, 437–471. [Google Scholar] [CrossRef]
- Holden, T.; Aceto, N.; Schoppet, E. Effects of viscosity and temperature on the foaming characteristics of concentrated whole milk. J. Dairy Sci. 1964, 47, 359–364. [Google Scholar] [CrossRef]
- Zhang, Z.; Dalgleish, D.; Goff, H. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids Surf. B Biointerfaces 2004, 34, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.A.; Clarke, P.T. Skim milk powders with enhanced foaming and steam-frothing properties. Dairy Sci. Technol. 2008, 88, 149–161. [Google Scholar] [CrossRef]
- Mackie, A.; Wilde, P. The role of interactions in defining the structure of mixed protein–surfactant interfaces. Adv. Colloid Interface Sci. 2005, 117, 3–13. [Google Scholar] [CrossRef]
- Sarker, D.K.; Wilde, P.J.; Clark, D.C. Control of surfactant-induced destabilization of foams through polyphenol-mediated protein-protein interactions. J. Agric. Food Chem. 1995, 43, 295–300. [Google Scholar] [CrossRef]
- Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V. Proteins and emulsifiers at liquid interfaces. Adv. Colloid Interface Sci. 2004, 108, 63–71. [Google Scholar] [CrossRef]
- Gambini, G.; Castagnetti, G.; Losi, G. Influence of somatic cell count and heat treatments on milk foam formation and stability. Ind. Aliment. 1995, 34, 247–252. [Google Scholar]
- Devold, T.G.; Brovold, M.J.; Langsrud, T.; Vegarud, G.E. Size of native and heated casein micelles, content of protein and minerals in milk from Norwegian Red Cattle—Effect of milk protein polymorphism and different feeding regimes. Int. Dairy J. 2000, 10, 313–323. [Google Scholar] [CrossRef]
- Auldist, M.; Greenwood, J.; Wright, M.; Hannah, M.; Williams, R.; Moate, P.; Wales, W. Incorporating mixed rations and formulated grain mixes into the diet of grazing cows: Effects on milk composition and coagulation properties, and the yield and quality of Cheddar cheese. J. Dairy Sci. 2016, 99, 4196–4205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, C.; Muir, D.D. Natural variations in the average size of bovine casein micelles: II. Milk samples from creamery bulk silos in south west Scotland. J. Dairy Res. 1978, 45, 347–353. [Google Scholar] [CrossRef]
- Wiking, L.; Björck, L.; Nielsen, J.H. Influence of feed composition on stability of fat globules during pumping of raw milk. Int. Dairy J. 2003, 13, 797–803. [Google Scholar] [CrossRef]
- Michalski, M.-C.; Gassi, J.-Y.; Famelart, M.-H.; Leconte, N.; Camier, B.; Michel, F.; Briard, V. The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait 2003, 83, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Wiking, L.; Stagsted, J.; Björck, L.; Nielsen, J.H. Milk fat globule size is affected by fat production in dairy cows. Int. Dairy J. 2004, 14, 909–913. [Google Scholar] [CrossRef]
- St-Gelais, D.; Passey, C.A.; Haché, S.; Roy, P. Production of low-fat Cheddar cheese from low and high mineral retentate powders and different fractions of milkfat globules. Int. Dairy J. 1997, 7, 733–741. [Google Scholar] [CrossRef]
- Couvreur, S.; Hurtaud, C.; Delaby, L.; Peyraud, J. Effect of haylage or maize silage based diets with or without energy restriction on milk fat properties. In Proceedings of the Land use systems in grassland dominated regions, 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004; pp. 1142–1144. [Google Scholar]
- Couvreur, S.; Hurtaud, C.; Marnet, P.; Faverdin, P.; Peyraud, J. Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. J. Dairy Sci. 2007, 90, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Logan, A.; Auldist, M.; Greenwood, J.; Day, L. Natural variation of bovine milk fat globule size within a herd. J. Dairy Sci. 2014, 97, 4072–4082. [Google Scholar] [CrossRef]
- Hagemann, M.; Ndambi, A.; Hemme, T.; Latacz-Lohmann, U. Contribution of milk production to global greenhouse gas emissions. Environ. Sci. Pollut. Res. 2012, 19, 390–402. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO and GDP. Climate Change and the Global Dairy Sector—The Role of the Dairy Sector in a Low-Carbon Future; FAO: Rome, Italy, 2018. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Flysjö, A.; Henriksson, M.; Cederberg, C.; Ledgard, S.; Englund, J.-E. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric. Syst. 2011, 104, 459–469. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.; Passos-Fonseca, T.; Reinemann, D.; Larson, R. Grazing intensity affects the environmental impact of dairy systems. J. Dairy Sci. 2017, 100, 6804–6821. [Google Scholar] [CrossRef]
- Hristov, A.; Oh, J.; Firkins, J.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.; Adesogan, A.; Yang, W.; Lee, C. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Žurovec, O.; Wall, D.P.; Brennan, F.P.; Krol, D.J.; Forrestal, P.J.; Richards, K.G. Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agric. Ecosyst. Environ. 2021, 311, 107319. [Google Scholar] [CrossRef]
- Li, D.; Lanigan, G.; Humphreys, J. Measured and simulated nitrous oxide emissions from ryegrass-and ryegrass/white clover-based grasslands in a moist temperate climate. PLoS ONE 2011, 6, e26176. [Google Scholar] [CrossRef] [Green Version]
- Salami, S.A.; Moran, C.A.; Warren, H.E.; Taylor-Pickard, J. Meta-analysis and sustainability of feeding slow-release urea in dairy production. PLoS ONE 2021, 16, e0246922. [Google Scholar] [CrossRef]
- Schulte, R.; Crosson, P.; Donnellan, T.; Farelly, N.; Finnan, J.; Lalor, S.; Lanigan, G.; O’Brien, D.; O’Kiely, P.; Shalloo, L. A Marginal Abatement Cost Curve for Irish Agriculture: Food Harvest 2020–and Beyond; Irish Agriculture and Food Development Authority, Teagasc: Co.: Dublin/Cork, Ireland, 2012. [Google Scholar]
- Danish Ministry of Climate Energy and Utilities. Denmark’s Integrated National Energy and Climate Plan under the Regulation of the European Parliament and of the Council on the Governance of the Energy Union and Climate Action; Danish Ministry of Climate Energy and Utilities: Copenhagen, Denmark, 2019.
- European Commission. Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timlin, M.; Tobin, J.T.; Brodkorb, A.; Murphy, E.G.; Dillon, P.; Hennessy, D.; O’Donovan, M.; Pierce, K.M.; O’Callaghan, T.F. The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality. Foods 2021, 10, 607. https://doi.org/10.3390/foods10030607
Timlin M, Tobin JT, Brodkorb A, Murphy EG, Dillon P, Hennessy D, O’Donovan M, Pierce KM, O’Callaghan TF. The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality. Foods. 2021; 10(3):607. https://doi.org/10.3390/foods10030607
Chicago/Turabian StyleTimlin, Mark, John T. Tobin, André Brodkorb, Eoin G. Murphy, Pat Dillon, Deirdre Hennessy, Michael O’Donovan, Karina M. Pierce, and Tom F. O’Callaghan. 2021. "The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality" Foods 10, no. 3: 607. https://doi.org/10.3390/foods10030607
APA StyleTimlin, M., Tobin, J. T., Brodkorb, A., Murphy, E. G., Dillon, P., Hennessy, D., O’Donovan, M., Pierce, K. M., & O’Callaghan, T. F. (2021). The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality. Foods, 10(3), 607. https://doi.org/10.3390/foods10030607