Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Kernel Quality Traits
2.2.3. Scanning Electron Microscopy (SEM) Images of the Transverse Section of the Wheat Kernel, Endosperm, and Bran Layers
2.2.4. Proximate Composition of Whole Wheat Flour
2.2.5. Fatty Acid Composition of Whole Wheat Flour
2.2.6. Dietary Fiber Content of Whole Wheat Flour
2.3. Statistical Analysis
3. Results and Discussion
3.1. Kernel Quality of Hulled Wheat
3.2. Microstructure of Hulled Wheat Kernels by Scanning Electron Microscopy (SEM)
3.3. Chemical Composition of Whole Wheat Flour of Hulled Wheats
3.4. Fatty Acid Composition of Whole Wheat Flour of Hulled Wheats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frølich, W.; Åman, P.; Tetens, I. Whole grain foods and health—A Scandinavian perspective. Food Nutr. Res. 2013, 57, 18503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Marconi, M.; Cubadda, R. Emmer wheat. In Specialty Grains for Food and Feed; Abdel-Aal, E.S.M., Wood, P., Eds.; American Assn. of Cereal Chemists, Inc.: St. Paul, MN, USA, 2005; pp. 63–108. [Google Scholar]
- Zaharieva, M.; Ayana, N.G.; Hakimi, A.A.; Misra, S.C.; Monneveux, P. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: A review. Genet. Resour. Crop Evol. 2010, 57, 937–962. [Google Scholar] [CrossRef]
- Dvoracek, V.; Curn, V.; Moudry, J. Evaluation of amino acid content and composition in spelt wheat varieties. Cereal Res. Commun. 2002, 30, 187–193. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Würschum, T. Back to the future—Tapping into ancient grains for food diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Rabalski, I. Effect of baking on nutritional properties of starch in organic spelt whole grain products. Food Chem. 2008, 111, 150–156. [Google Scholar] [CrossRef]
- Arzani, A. Emmer (Triticum turgidum spp. dicoccum) flour and breads. Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 69–78. [Google Scholar]
- Shewry, P.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Racho, n.L.; Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A. Hulled wheat productivity and quality in modern agriculture against conventional wheat Species. Agriculture 2020, 10, 275. [Google Scholar] [CrossRef]
- Geisslitz, S.; Wieser, H.; Scherf, K.A.; Koehler, P. Gluten protein composition and aggregation properties as predictors for bread volume of common wheat, spelt, durum wheat, emmer and einkorn. J. Cereal Sci. 2018, 83, 204–212. [Google Scholar] [CrossRef]
- Ohm, J.; Chung, O.; Deyoe, C. Single-kernel characteristics of hard winter wheats in relation to milling and baking quality. Cereal Chem. 1998, 75, 156–161. [Google Scholar] [CrossRef]
- Kleijer, G.; Levy, L.; Schwaerzel, R.; Fossati, D. Relationship between test weight and several quality parameters in wheat. Rev. Suisse Agric. 2007, 39, 305–309. [Google Scholar]
- Dziki, D.; Laskowski, J. Wheat kernel physical properties and milling process. Acta Agrophys. 2005, 6, 59–71. [Google Scholar]
- Brandolini, A.; Hidalgo, A.; Moscaritolo, S. Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cereal Sci. 2008, 47, 599–609. [Google Scholar] [CrossRef]
- Abdel-Aal, E.; Hucl, P.; Sosulski, F.W.; Bhirud, P.R. Kernel, milling and baking properties of spring-type spelt and einkorn wheats. J. Cereal Sci. 1997, 26, 363–370. [Google Scholar] [CrossRef]
- Lùje, H.; Mùller, B.; Laustsen, A.M.; Hansen, A. Chemical composition, functional properties, and sensory profiling of einkorn (Triticum monococcum L.). J. Cereal Sci. 2003, 37, 231–240. [Google Scholar] [CrossRef]
- Stagnari, F.; Codianni, P.; Pisante, M. Agronomic and kernel quality of ancient wheats grown in central and southern Italy. Cereal Res. Commun. 2008, 36, 313–326. [Google Scholar] [CrossRef]
- Marconi, E.; Carcea, M.; Graziano, M.; Cubadda, R. Kernel properties and pasta-making quality of five European spelt wheat (Triticum spelta L.) cultivars. Cereal Chem. 1999, 76, 25–29. [Google Scholar] [CrossRef]
- Greffeuille, V.; Abecassis, J.; Barouh, N.; Villeneuve, P.; Mabille, F.; L’Helgouac, C.B.; Lullien Pellerin, V.; Benet, J.C. Analysis of the milling reduction of bread wheat farina: Physical and biochemical characterization. J. Cereal Sci. 2007, 45, 97–105. [Google Scholar] [CrossRef]
- Greffeuille, V.; Abecassis, J.; Rousset, M.; Oury, F.X.; Faye, A.; L’Helgouac’h, C.B.; Lullien, V. Grain characterization and milling behaviour of near-isogenic lines differing by hardness. Theor. Appl. Genet. 2006, 114, 1–12. [Google Scholar] [CrossRef]
- Campbell, K.G.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Hareland, G.; Fulcher, R.G.; Sorrells, M.E.; Finney, P.L. Quantitative trait loci associated with kernel traits in a soft 9 hard wheat cross. Crop Sci. 1999, 39, 1184–1195. [Google Scholar] [CrossRef]
- Chiotelli, E.; Meste, M.L. Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem. 2002, 79, 286–293. [Google Scholar] [CrossRef]
- Szymanski, R.M.; Morris, C.F. Internal structure of carbonized wheat (Triticum spp.) grains: Relationships to kernel texture and ploidy. Veget. Hist. Archaeobot. 2015, 24, 503–515. [Google Scholar] [CrossRef]
- Ninfali, P.; Panato, A.; Bortolotti, F.; Valentini, L.; Gobbi, P. Microscopy techniques for investigating nutritional properties of cereals and their transformation into food stuffs. In Lombardo—Academy of Sciences and Letters—Study Meetings; PAGEPress®: Pavia, Italy, 2018; pp. 21–39. [Google Scholar]
- Geisslitz, S.; Longin, C.F.H.; Scherf, K.A.; Koehler, P. Comparative Study on Gluten Protein Composition of Ancient (Einkorn, Emmer and Spelt) and Modern Wheat Species (Durum and Common Wheat). Foods 2019, 8, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, E.; Prieto-Linde, M.L.; Jonsson, J.O. Effects of wheat cultivar and nitrogen application on storage protein composition and bread making quality. Cereal Chem. 2001, 78, 19–25. [Google Scholar] [CrossRef]
- Peña, R.; Hernandez, E.; Jones, J.N.; Guzmán, C.; Braun, H. CIMMYT Series on Carbohydrates, Wheat, Grains, and Health: Wheat-Based Foods: Their Global and Regional Importance in the Food Supply, Nutrition, and Health. Cereal Foods World 2017, 62, 231–249. [Google Scholar] [CrossRef]
- Haghayegh, G.; Schoenlechner, R. Comparison of functional properties of isolated emmer and einkorn wheat starches. J. Sci. Food Agric. 2010, 8, 239–243. [Google Scholar]
- Hidalgo, A.; Brandolini, A.; Ratti, S. Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. J. Agric. Food Chem. 2009, 57, 6342–6348. [Google Scholar] [CrossRef]
- Konopka, I.; Rotkiewicz, D. Skład Chemiczny Ziarna Pszenicy—Lipidy. In Pszenica. Chemiai Technologia; Gąsiorowski, H., Ed.; PWRiL: Poznań, Poland, 2004; pp. 188–204. [Google Scholar]
- Jovanovic-Malinovska, R.; Kuzmanova, S.; Winkelhausen, E. Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. Int. J. Food Prop. 2014, 17, 949–965. [Google Scholar] [CrossRef]
- Suchowilska, E.; Wiwart, M.; Borejszo, Z.; Packa, D.; Kandler, W.; Krska, R. Discriminant analysis of selected yield components and fatty acid composition of chosen Triticum monococcum, Triticum dicoccum and Triticum spelta accessions. J. Cereal Sci. 2009, 49, 310–315. [Google Scholar] [CrossRef]
Wheat Species | Genotype | Test Weight (kg/hL) | Average | 1000 Kernel Weight (g) | Average | Large Kernel Content (%) | Average | Medium Kernel Content (%) | Average | Small Kernel Content (%) | Average | Hardness Index | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Einkorn | TM 23 | 72.4 | 73.2 ± 1.1 b | 30.9 | 29.2 ± 1.5 c | 2.8 | 3.8 ± 2.8 c | 92.4 | 92.9 ± 3.9 a | 4.0 | 3.0 ± 1.1 b | 1.8 | 2.2 ± 0.4 c |
WB Apline | 74.5 | 28.8 | 1.7 | 97.0 | 1.8 | 2.4 | |||||||
PI 538722 | 72.7 | 28.0 | 7.0 | 89.3 | 3.1 | 2.5 | |||||||
Emmer | Vernal | 71.3 | 70.4 ± 1.3 c | 33.8 | 33.6 ± 0.5 b | 3.4 | 2.7 ± 0.8 c | 91.4 | 91.9 ± 1.2 a | 4.9 | 5.2 ± 2.4 a | 73.8 | 74.4 ± 0.8 a |
Lucille | 71.4 | 34.0 | 3.1 | 93.4 | 3.4 | 75.6 | |||||||
ND common | 70.2 | 32.9 | 2.8 | 90.7 | 6.0 | 74.4 | |||||||
Yaroslav | 68.7 | 33.6 | 1.6 | 92.1 | 6.3 | 73.8 | |||||||
Spelt | CDC Zorba | 70.5 | 72.9 ± 2.3 b | 35.1 | 38.3 ± 4.9 a | 44.0 | 52.9 ± 23.3 a | 54.2 | 34.85 ± 22.6 c | 1.7 | 0.9 ± 0.8 c | 24.4 | 32.7 ± 20.4 b |
94-288 | 75.0 | 35.8 | 35.4 | 64.2 | 0.8 | 56.0 | |||||||
SK3P | 73.2 | 44.0 | 79.3 | 21.0 | 0.1 | 17.8 | |||||||
HRS | Sy Ingmar | 79.8 | 81.0 ± 1.0 a | 33.9 | 33.9 ± 1.5 b | 31.9 | 33.7 ± 2.6 b | 67.0 | 65.2 ± 2.4 b | 1.2 | 1.1 ± 0.4 c | 68.3 | 74.9 ± 5.3 a |
Barlow | 81.3 | 32.8 | 31.4 | 67.4 | 0.9 | 79.8 | |||||||
Elgin-ND | 79.4 | 33.7 | 33.9 | 64.4 | 1.7 | 75.3 | |||||||
Linkert | 80.6 | 36.6 | 38.4 | 61.0 | 0.6 | 66.1 | |||||||
Glenn | 82.1 | 34.3 | 32.7 | 66.0 | 1.4 | 77.4 | |||||||
Rollag | 81.2 | 34.3 | 36.6 | 62.2 | 1.2 | 78.0 | |||||||
ND Vitpro | 81.9 | 34.4 | 33.3 | 66.2 | 0.4 | 73.1 | |||||||
Lang-MN | 81.8 | 31.5 | 31.4 | 67.1 | 1.5 | 80.8 |
Species | Genotype | Moisture (%) | Average | Ash (%) | Average | Protein (%) | Average | Total Starch (%) | Average | Crude Fat (%) | Average | Total Dietary Fiber Content (%) | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Einkorn | TM 23 | 9.0 | 9.0 ± 0.1 c | 2.2 | 2.2 ± 0.1 a | 15.4 | 14.6 ± 0.8 c | 62.1 | 62.2 ± 0.6 b | 2.3 | 2.3 ± 0.2 a | 13.0 | 15.1 ± 2.3 c |
WB Apline | 9.0 | 2.2 | 13.9 | 62.8 | 2.5 | 14.8 | |||||||
PI 538722 | 9.1 | 2.1 | 14.5 | 61.7 | 2.1 | 17.5 | |||||||
Emmer | Vernal | 9.4 | 9.4 ± 0.1 b | 2.3 | 2.2 ± 0.1 a | 15.2 | 14.5 ± 0.7 c | 64.3 | 65.9 ± 1.2 a | 2.0 | 2.1 ± 0.2 a | 15.0 | 19.1 ± 3.1 a |
Lucille | 9.5 | 2.3 | 15.0 | 66.9 | 2.0 | 20.7 | |||||||
ND common | 9.5 | 2.1 | 14.2 | 66.6 | 2.0 | 18.4 | |||||||
Yaroslav | 9.3 | 2.1 | 13.6 | 65.8 | 2.3 | 22.2 | |||||||
Spelt | CDC Zorba | 8.8 | 8.9 ± 0.2 c | 2.2 | 2.1 ± 0.1 a | 14.6 | 15.2 ± 0.6 b | 61.2 | 61.6 ± 0.4 b | 1.7 | 1.6 ± 0.3 b | 15.6 | 17.3 ± 1.5 ac |
94-288 | 9.1 | 2.0 | 15.1 | 61.8 | 1.3 | 17.8 | |||||||
SK3P | 8.9 | 2.1 | 15.8 | 61.9 | 1.9 | 18.5 | |||||||
HRS | Sy Ingmar | 10.5 | 10.4 ± 0.2 a | 2.1 | 2.2 ± 0.1 a | 18.4 | 17.3 ± 0.8 a | 61.4 | 62.3 ± 1.7 b | 1.0 | 1.1 ± 0.3 c | 18.8 | 19.2 ± 1.8 a |
Barlow | 10.4 | 2.1 | 16.6 | 65.1 | 0.7 | 17.6 | |||||||
Elgin-ND | 10.3 | 2.2 | 16.9 | 60.5 | 1.2 | 20.7 | |||||||
Linkert | 10.0 | 2.2 | 17.5 | 62.9 | 1.4 | 21.3 | |||||||
Glenn | 10.4 | 2.2 | 17.3 | 64.3 | 1.3 | 19.1 | |||||||
Rollag | 10.3 | 2.1 | 17.6 | 61.5 | 1.4 | 21.6 | |||||||
ND Vitpro | 10.4 | 2.3 | 17.9 | 62.0 | 0.9 | 17.4 | |||||||
Lang-MN | 10.8 | 2.0 | 15.9 | 60.5 | 0.6 | 17.4 |
Wheat Species | Genotype | PAL | AVG | PAO | AVG | MAR | AVG | STE | AVG | OLE | AVG | VAC | AVG |
Einkorn | TM 23 | 15.0 | 15.4 ± 0.4 c | 0.2 | 0.2 ± 0.0 a | 0.3 | 0.2 ± 0.1 a | 1.2 | 1.1 ± 0.1 a | 28.0 | 27.8 ± 0.2 a | 1.1 | 1.1 ± 0.1 a |
WB Apline | 15.4 | 0.2 | 0.2 | 1.0 | 27.8 | 1.2 | |||||||
PI 538722 | 15.7 | 0.2 | 0.2 | 1.2 | 27.6 | 1.1 | |||||||
Emmer | Vernal | 17.6 | 17.6 ± 0.1 b | 0.2 | 0.2 ± 0.1 a | 0.2 | 0.2 ± 0.0 a | 1.6 | 1.5 ± 0.1 a | 27.1 | 25.8 ± 1.2 b | 0.9 | 1.0 ± 0.1 a |
Lucille | 17.7 | 0.2 | 0.2 | 1.6 | 26.4 | 0.9 | |||||||
ND common | 17.6 | 0.3 | 0.2 | 1.5 | 24.7 | 1.0 | |||||||
Yaroslav | 17.6 | 0.2 | 0.2 | 1.3 | 24.9 | 1.1 | |||||||
Spelt | CDC Zorba | 16.9 | 17.5 ± 1.0 b | 0.2 | 0.3 ± 0.1 a | 0.2 | 0.2 ± 0.1 a | 0.6 | 1.0 ± 0.4 a | 25.1 | 21.4 ± 4.3 c | 1.1 | 1.1 ± 0.0 a |
94-288 | 18.7 | 0.3 | 0.3 | 1.2 | 16.7 | 1.1 | |||||||
SK3P | 16.9 | 0.3 | 0.2 | 1.3 | 22.3 | 1.1 | |||||||
HRS | Sy Ingmar | 19.9 | 19.4 ± 0.5 a | 0.2 | 0.2 ± 0.0 a | 0.2 | 0.2 ± 0.0 a | 1.2 | 1.2 ± 0.0 a | 16.2 | 15.0 ± 1.0 d | 1.0 | 1.0 ± 0.0 a |
Barlow | 20.5 | 0.2 | 0.2 | 1.1 | 12.7 | 1.0 | |||||||
Elgin-ND | 18.9 | 0.2 | 0.2 | 1.2 | 15.8 | 1.0 | |||||||
Linkert | 19.2 | 0.2 | 0.2 | 1.2 | 14.8 | 1.0 | |||||||
Glenn | 19.1 | 0.2 | 0.2 | 1.2 | 15.3 | 1.0 | |||||||
Rollag | 19.1 | 0.2 | 0.2 | 1.2 | 15.1 | 1.0 | |||||||
ND Vitpro | 19.1 | 0.2 | 0.2 | 1.2 | 15.2 | 1.0 | |||||||
Lang-MN | 19.1 | 0.2 | 0.2 | 1.2 | 15.1 | 1.0 | |||||||
Wheat Species | Genotype | LIO | AVG | LIN | AVG | GON | AVG | EDA | AVG | HAL | AVG | NER | AVG |
Einkorn | TM 23 | 54.0 | 54.2 ± 0.4 c | 3.6 | 3.3 ± 0.3 b | 1.5 | 1.5 ± 0.1 a | 0.1 | 0.1 ± 0.0 b | 0.1 | 0.0 ± 0.1 a | 0.2 | 0.2 ± 0.0 a |
WB Apline | 54.7 | 3.2 | 1.6 | 0.1 | 0.0 | 0.2 | |||||||
PI 538722 | 54.0 | 3.1 | 1.4 | 0.1 | 0.0 | 0.2 | |||||||
Emmer | Vernal | 53.0 | 54.4 ± 1.4 c | 3.4 | 3.3 ± 0.1 b | 1.4 | 1.3 ± 0.1 b | 0.1 | 0.1 ± 0.0 b | 0.1 | 0.1 ± 0.1 a | 0.2 | 0.2 ± 0.1 a |
Lucille | 53.3 | 3.4 | 1.3 | 0.1 | 0.1 | 0.1 | |||||||
ND common | 55.2 | 3.2 | 1.3 | 0.1 | 0.1 | 0.1 | |||||||
Yaroslav | 55.9 | 3.3 | 1.3 | 0.1 | 0.0 | 0.2 | |||||||
Spelt | CDC Zorba | 56.6 | 59.5 ± 3.0 b | 2.5 | 2.9 ± 0.4 c | 1.2 | 0.9 ± 0.3 c | 0.1 | 0.1 ± 0.0 b | 0.0 | 0.1 ± 0.1 a | 0.1 | 0.1 ± 0.0 b |
94-288 | 62.5 | 3.2 | 0.7 | 0.1 | 0.1 | 0.1 | |||||||
SK3P | 59.4 | 3.0 | 0.7 | 0.1 | 0.1 | 0.1 | |||||||
HRS | Sy Ingmar | 61.8 | 62.4 ± 0.6 a | 3.9 | 3.8 ± 0.1 a | 0.7 | 0.7 ± 0.1 d | 0.2 | 0.2 ± 0.0 a | 0.1 | 0.1 ± 0.0 a | 0.1 | 0.2 ± 0.2 a |
Barlow | 63.1 | 4.0 | 0.7 | 0.2 | 0.1 | 0.2 | |||||||
Elgin-ND | 61.4 | 3.8 | 0.7 | 0.2 | 0.1 | 0.1 | |||||||
Linkert | 63.1 | 3.7 | 0.6 | 0.2 | 0.1 | 0.2 | |||||||
Glenn | 62.3 | 3.8 | 0.7 | 0.2 | 0.1 | 0.2 | |||||||
Rollag | 62.7 | 3.7 | 0.6 | 0.2 | 0.1 | 0.2 | |||||||
ND Vitpro | 62.5 | 3.7 | 0.7 | 0.2 | 0.1 | 0.2 | |||||||
Lang-MN | 62.6 | 3.7 | 0.6 | 0.2 | 0.1 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulathunga, J.; Reuhs, B.L.; Zwinger, S.; Simsek, S. Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat. Foods 2021, 10, 761. https://doi.org/10.3390/foods10040761
Kulathunga J, Reuhs BL, Zwinger S, Simsek S. Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat. Foods. 2021; 10(4):761. https://doi.org/10.3390/foods10040761
Chicago/Turabian StyleKulathunga, Jayani, Bradley L. Reuhs, Steve Zwinger, and Senay Simsek. 2021. "Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat" Foods 10, no. 4: 761. https://doi.org/10.3390/foods10040761
APA StyleKulathunga, J., Reuhs, B. L., Zwinger, S., & Simsek, S. (2021). Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat. Foods, 10(4), 761. https://doi.org/10.3390/foods10040761