The Use of Ultrasound for Preventing Honey Crystallization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Ultrasound Treatment
2.2.2. Water Content
2.2.3. Sugars
2.2.4. Acidity
2.2.5. Diastase Activity and Hydroxymethylfurfural Concentration
2.2.6. Water Activity
2.2.7. Color Measurement
2.2.8. Texture Profile Analysis
2.2.9. Microbiological Analysis
2.2.10. Crystals Analysis
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Water Content
3.2. Sugars
3.3. Acidity
3.4. Diastase Activity
3.5. Hydroxymethylfurfural Determination
3.6. Color Analysis
3.7. Texture Analysis
3.8. Microscopic Crystals Analysis
3.9. Microbiological Analysis
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Commun. 2002, L.10, 47–52. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0110 (accessed on 31 January 2021).
- Kňazovická, V.; Gábor, M.; Miluchová, M.; Bobko, M.; Medo, J. Diversity of bacteria in Slovak and foreign honey, with assessment of its physico-chemical quality and counts of cultivable microorganisms. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 414–421. [Google Scholar] [CrossRef]
- Pohl, P.; Stecka, H.; Sergiel, I.; Jamroz, P. Different aspects of the elemental analysis of honey by flame atomic absorption and emission spectrometry: A review. Food Anal. Methods 2012, 5, 737–751. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Turumtay, A.E.; Silici, S.; Kolayli, S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Baloš, M. Ž.; Jakšić, S.; Popov, N.; Knežević, S.V.; Pelić, D.L.; Pelić, M.; Milanov, D. Physicochemical characteristics of Serbian honeydew honey. Arch. Vet. Med. 2019, 212, 49–61. [Google Scholar] [CrossRef]
- Laos, K.; Kirs, E.; Pall, R.; Martverk, K. The crystallization behaviour of Estonian honeys. Agron. Res. 2011, 9, 427–432. [Google Scholar]
- Escuredo, O.; Dobre, I.; Fernández-Gonzálezs, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, B.; Li, H.; Li, Y.; Hu, J.; Li, J.; Wang, H.; Deng, Z. Chemical and molecular dynamics analysis of crystallization properties of honey. Int. J. Food Prop. 2017, 20, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Amariei, S.; Norocel, L.; Scripcă, L.A. An innovative method for preventing honey crystallization. Innov. Food Sci. Emerg. Technol. 2020, 66, 102481. [Google Scholar] [CrossRef]
- Dobre, I.; Georgescu, I.A.; Alexe, P.; Escuredo, O.; Seijo, M.C. Rheological behavior of different honey types from Romania. Food Res. Int. 2012, 49, 126–132. [Google Scholar] [CrossRef]
- Scripca, L.; Amariei, S. Research on Honey Crystalization. Rev. De Chim. 2018, 69, 2953–2957. [Google Scholar] [CrossRef]
- Živkov Baloš, M.; Jakšić, S.; Popov, N.; Mihaljev, Ž.; Ljubojević Pelić, D. Comparative study of water content in honey produced in different years. Arch. Vet. Med. 2019, 12, 43–53. [Google Scholar] [CrossRef]
- Tanleque-Alberto, F.; Juan-Borras, M.; Escriche, I. Quality parameters, pollen and volatile profiles of honey from North and Central Mozambique. Food Chem. 2019, 277, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Braghini, F.; Biluca, F.C.; Gonzaga, L.V.; Vitali, L.; Costa, A.C.O.; Fett, R. Effect thermal processing in the honey of Tetragonisca angustula: Profile physicochemical, individual phenolic compounds and antioxidant capacity. J. Apic. Res. 2021, 60, 290–296. [Google Scholar] [CrossRef]
- Majid, I.; Nayik, G.A.; Nanda, V. Ultrasonication and food technology: A review. Cogent Food Agric. 2015, 1, 1071022. [Google Scholar] [CrossRef]
- Joseph, A.K. Antibacterial activity of honey against bacteria isolated from wound at the Tamale teaching Hospital A Thesis submitted in partial fulfillment of the requirements for the degree of bachelor of science in the department of biomedical laboratory sciences. In School of Allied Health Science; University for Development Studies: Tamale, Ghana, 2017. [Google Scholar]
- Chaikham, P.; Kemsawasd, V.; Apichartsrangkoon, A. Effects of conventional and ultrasound treatments on physicochemical properties and antioxidant capacity of floral honeys from Northern Thailand. Food Biosci. 2016, 15, 19–26. [Google Scholar] [CrossRef]
- Stojković, M.; Cvetković, D.; Savić, A.; Topalić-Trivunović, L.; Velemir, A.; Papuga, S.; Žabić, M. Changes in the physicochemical, antioxidant and antibacterial properties of honeydew honey subjected to heat and ultrasound pretreatments. J. Food Sci. Technol. 2020, 1–12. [Google Scholar] [CrossRef]
- Mahnot, N.K.; Saikia, S.; Mahanta, C.L. Quality characterization and effect of sonication time on bioactive properties of honey from North East India. J. Food Sci. Technol. 2019, 56, 724–736. [Google Scholar] [CrossRef]
- Önür, İ.; Misra, N.N.; Barba, F.J.; Putnik, P.; Lorenzo, J.M.; Gökmen, V.; Alpas, H. Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types. J. Food Eng. 2018, 219, 129–136. [Google Scholar] [CrossRef]
- Quintero-Lira, A.; Ángeles Santos, A.; Aguirre-Álvarez, G.; Reyes-Munguía, A.; Almaraz-Buendía, I.; Campos-Montiel, R.G. Effects of liquefying crystallized honey by ultrasound on crystal size, 5-hydroxymethylfurfural, colour, phenolic compounds and antioxidant activity. Eur. Food Res. Technol. 2017, 243, 619–626. [Google Scholar] [CrossRef]
- Phawatwiangnak, K.; Intipunya, P. Melting of crystallized sunflower honey by high power ultrasonic method. Food Appl. Biosci. J. 2013, 1, 24–33. [Google Scholar]
- Janghu, S.; Bera, M.B.; Nanda, V.; Rawson, A. Study on power ultrasound optimization and its comparison with conventional thermal processing for treatment of raw honey. J. Food Technol. Biotechnol. 2017, 55, 570–579. [Google Scholar]
- Basmaci, I. Effect of Ultrasound and High Hydrostatic Pressure (HHP) on Liquefaction and Quality Parameters of Selected Honey Varieties. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2010. [Google Scholar]
- Solis-Silva, R.; de Hidalgo, A.D.E.; Figueira, A.C.; Almaraz-Buendia, I.; Quintero-Lira, A.; Rodríguez, O.D.R.; Campos-Montiel, R.G. Effect of ultrasound in bioactive compounds and antioxidant activity in during the storage of a monofloral honey. Book Proc. 2017, 11, 972. [Google Scholar]
- Akyol, E.; Güneşdoğdu, M. The effect of heating the honey with bein-marie method and ultrasonic bath on honey crystallization. Turk. J. Agric. Food Sci. Technol. 2019, 7, 2291–2294. [Google Scholar]
- Chaikham, P.; Prangthip, P. Alteration of antioxidative properties of longan flower-honey after high pressure, ultrasonic and thermal processing. J. Food Biosci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing–Food quality assurance and food safety. J. Food Sci. Technol. 2012, 26, 88–98. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Chemat, F. Degradation during application of ultrasound in food processing: A review. Food Control 2013, 31, 593–606. [Google Scholar] [CrossRef]
- Mortas¸, M.; Yazici, F. Application of ultrasound technology to honey. Mellifera 2013, 13, 2–5. [Google Scholar]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonised methods of the international honey commission. Swiss Bee Res. Cent. FamLiebefeld 2002, 1–62. [Google Scholar]
- Scripcă, L.A.; Norocel, L.; Amariei, S. Comparison of Physicochemical, Microbiological Properties and Bioactive Compounds Content of Grassland Honey and other Floral Origin Honeys. Molecules 2019, 24, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ***STAS 784-2009. Miere de albine.
- Kuntzler, S.G.; Costa, J.A.V.; Brizio, A.P.D.R.; Morais, M.G. Development of a colorimetric pH indicator using nanofibers containing Spirulina sp. LEB 18. Food Chem. 2020, 328, 126768. [Google Scholar] [CrossRef]
- Semjon, B.; Marcinčáková, D.; Koréneková, B.; Bartkovský, M.; Nagy, J.; Turek, P.; Marcinčák, S. Multiple factorial analysis of physicochemical and organoleptic properties of breast and thigh meat of broilers fed a diet supplemented with humic substances. Poult. Sci. 2020, 99, 1750–1760. [Google Scholar] [CrossRef]
- CIE 015:2004 Colorimetry, 3rd ed.; Commission Internationale de L’Eclairage: Vienna, Austria, 2004; pp. 16–20. Available online: https://cie.co.at/publications/colorimetry-3rd-edition (accessed on 31 January 2021).
- Pascual-Maté, A.; Osés, S.M.; Marcazzan, G.L.; Gardini, S.; Fernández Muiño, M.A.; Sancho, M.T. Sugar composition and sugar-related parameters of honeys from the northern Iberian Plateau. J. Food Comp. Anal. 2018, 74, 34–43. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Draft Revised Standard for Honey (at Step 10 of the Codex Procedure); Codex Alimentarius Commission, FAO: Rome, Italy, 2001; Volume 25, pp. 19–26. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Zaldivar-Cruz, J.M.; Kuri, V.; Fernández-López, J.; Carbonell-Barrachina, Á.A.; Pérez-Álvarez, J. Aroma profile and physico-chemical properties of artisanal honey from Tabasco, Mexico. Int. J. Food Sci. Technol. 2010, 45, 1111–1118. [Google Scholar] [CrossRef]
- Berk, B. Determination of Honey Crystallization and Adulteration by Using Time Domain NMR Relaxometry. Master’s Thesis, Middle East Technical University, Ankara, Turkey, August 2020. [Google Scholar]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef]
- Płowaś-Korus, I.; Masewicz, Ł.; Szwengiel, A.; Rachocki, A.; Baranowska, H.M.; Medycki, W. A novel method of recognizing liquefied honey. Food Chem. 2018, 245, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop. 2017, 20, S2723–S2738. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D.; Kim, L.; Sjaarda, C.; Maldonado-Alvarez, L.; Fukś, H. Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Sci. Rep. 2017, 7, 1–15. [Google Scholar]
- Al-Jouri, E.; Daher-Hjaij, N.; Alkattea, R.; Alsayed Mahmoud, K.; Saffan, A.M. Evaluation of changes in some physical and chemical properties of syrian honey, affecting honey crystallization due to the different geographical sites. Biol. Forum Int. J. 2017, 9, 185–193. [Google Scholar]
- Marghitaș, L. Al.; Dezmirean, D.; Moise, A.; Bobiș, O.; Laslo, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar]
- Abramovič, H.; Jamnik, M.; Burkan, L.; Kač, M. Water activity and water content in Slovenian honeys. Food Control 2008, 19, 1086–1090. [Google Scholar] [CrossRef]
- Maldonado, G.E.; Navarro, A.S.; Yamul, D.K. A comparative study of texture and rheology of Argentinian honeys from two regions. J. Texture Stud. 2018, 49, 424–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirife, J.; Zamora, M.C.; Motto, A. The correlation between water activity and % moisture in honey: Fundamental aspects and application to Argentine honeys. J. Food Eng. 2006, 72, 287–292. [Google Scholar] [CrossRef] [Green Version]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Chua, L.S.; Adnan, N.A. Biochemical and nutritional components of selected honey samples. Acta Sci. Pol. Technol. Aliment. 2014, 13, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Mădaş, N.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Bobiş, O.; Fauconnier, M.L.; Francis, F.; Haubruge, E.; Nguyen, K.B. Volatile profile and physico-chemical analysis of acacia honey for geographical origin and nutritional value determination. Foods 2019, 8, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łuczycka, D.; Pentoś, K.; Wysoczański, T. The influence of crystallization and temperature on electrical parameters of honey. Zesz. Probl. Postępów Nauk Rol. 2016, 586, 59–68. [Google Scholar]
- Chong, K.Y.; Chin, N.L.; Yusof, Y.A. Thermosonication and optimization of stingless bee honey processing. J. Int. Food Sci. Technol. 2017, 23, 608–622. [Google Scholar] [CrossRef]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Orfali, R.; Alrubia, S. Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharmaceut. J. 2018, 26, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, B.A.; Alshumrani, E.S.; Saeed, M.S.B.; Rawas, G.M.; Alharthi, N.T.; Baeshen, M.N.; Helmi, N.M.; Alam, M.Z.; Suhail, M. Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi J. Biol. Sci. 2020, 27, 3720–3726. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, S.; Çakıcı, N.; Mehmetoğlu, S.; Atmaca, H.; Demir, T.; Arıgül Apan, M.; Güney, F. Physicochemical quality characteristics of Southeastern Anatolia honey, Turkey. Int. J. Anal. Chem. 2020, 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Homrani, M.; Escuredo, O.; Rodríguez-Flores, M.S.; Fatiha, D.; Mohammed, B.; Homrani, A.; Seijo, M.C. Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas. Foods 2020, 9, 938. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Zielińska, S.; Wesołowska, M.; Bilek, M.; Kaniuczak, J.; Dżugan, M. The saccharide profile of Polish honeys depending on their botanical origin. J. Microbiol. Biotechnol. Food Sci. 2020, 2020, 387–390. [Google Scholar]
- Geană, E.I.; Ciucure, C.T.; Costinel, D.; Ionete, R.E. Evaluation of honey in terms of quality and authenticity based on the general physicochemical pattern, major sugar composition and δ13C signature. Food Control 2020, 109, 106919. [Google Scholar] [CrossRef]
- Roby, M.H.; Abdelaliem, Y.F.; Esmail, A.H.M.; Mohdaly, A.A.; Ramadan, M.F. Evaluation of Egyptian honeys and their floral origins: Phenolic compounds, antioxidant activities, and antimicrobial characteristics. Environ. Sci. Pollut. Res. 2020, 271, 20748–20756. [Google Scholar] [CrossRef]
- Lazarević, K.B.; Andrić, F.; Trifković, J.; Tešić, Ž.; Milojković-Opsenica, D. Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chem. 2012, 132, 2060–2064. [Google Scholar] [CrossRef]
- Baloš, M. Ž.; Popov, N.; Vidaković, S.; Pelić, D.L.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P. Effect of freezing and room temperatures storage for 18 months on quality of raw rapeseed honey (Brassica napus). J. Food Sci. Technol. 2016, 53, 3349–3355. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Fazlara, A.; Alijani, N. Evaluation of the changes in physicochemical and antioxidant properties of honey during storage. Functional Foods in Health and Disease. 2019, 9, 593–605. [Google Scholar] [CrossRef]
- Nedić, N.; Gojak, M.; Zlatanović, I.; Rudonja, N.; Lazarević, K.; Dražić, M.; Gligorević, K.B.; Pajić, M. Study of vacuum and freeze drying of bee honey. Therm. Sci. 2020, 24, 4241–4251. [Google Scholar] [CrossRef]
- Soares, S.; Pinto, D.; Rodrigues, F.; Alves, R.C.; Oliveira, M.B.P.P. Portuguese honeys from different geographical and botanical origins: A 4-year stability study regarding quality parameters and antioxidant activity. Molecules 2017, 22, 1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razali, M.F.; Fauzi, N.A.M.; Sulaiman, A.; Rahman, N.A.A. Effect of high-pressure processing (hpp) on antioxidant, diastase activity and colour for Kelulut (stingless bee) honey. J. Technol. 2019, 81, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.; Yasmin, T.; Asad, F.; Qamer, S. Changes in HMF content and diastase activity in honey after heating treatment. Pure Appl. Biol. 2019, 8, 1668–1674. [Google Scholar] [CrossRef]
- Vranić, D.; Petronijević, R.; Stojanović, J.Đ.; Korićanac, V.; Milijašević, J.B.; Milijašević, M. Physicochemical properties of honey from Serbia in the period 2014–2016. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Zlatibor, Serbia, 2017; Volume 85, p. 12058. [Google Scholar]
- Rojas, M.L.; Hellmeister Trevilin, J.; Duarte Augusto, P.E. The ultrasound technology for modifying enzyme activity. Sci. Agropecu. 2016, 7, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Behzadnia, A.; Moosavi-Nasab, M.; Ojha, S.; Tiwari, B.K. Exploitation of Ultrasound Technique for Enhancement of Microbial Metabolites Production. Molecules 2020, 25, 5473. [Google Scholar] [CrossRef]
- Mawson, R.; Gamage, M.; Terefe, N.S.; Knoerzer, K. Ultrasound in enzyme activation and inactivation. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2011; pp. 369–404. [Google Scholar]
- Patrignani, M.; Ciappini, M.C.; Tananaki, C.; Fagúndez, G.A.; Thrasyvoulou, A.; Lupano, C.E. Correlations of sensory parameters with physicochemical characteristics of Argentinean honeys by multivariate statistical techniques. Int. J. Food Sci. Technol. 2018, 53, 1176–1184. [Google Scholar] [CrossRef]
- Aypak, S.Ü.; İnci, A.; Bakırcı, S.; Fidan, E.D.; Soysal, M. Comparision of the antioxidant activity and hydroxymethylfurfural (HMF) levels in honey taken from hives and markets. Gıda 2019, 44, 86–92. [Google Scholar]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P.; Litwińczuk, A. Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. J. Food Sci. Technol. 2016, 53, 2092–2098. [Google Scholar] [CrossRef] [Green Version]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Pravcová, K.; Mikysek, T.; Česlová, L. Comparison of HPLC and electrochemical determination of 5-hydroxymethylfurfural in honey and mead samples. Sci. Pap. Univ. Pardubic. Ser. A Fac. Chem.Technol. 2020, 26, 139–146. [Google Scholar]
- Taylor, M.J.; Alabdrabalameer, H.A.; Skoulou, V. Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels. Sustainability 2019, 11, 3604. [Google Scholar] [CrossRef] [Green Version]
- Bizzi, C.A.; Santos, D.; Sieben, T.C.; Motta, G.V.; Mello, P.A.; Flores, E.M.M. Furfural production from lignocellulosic biomass by ultrasound-assisted acid hydrolysis. Ultrason. Sonochemistry 2019, 51, 332–339. [Google Scholar] [CrossRef]
- Isla, M.I.; Craig, A.; Ordoñez, R.; Zampini, C.; Sayago, J.; Bedascarrasbure, E.; Alvarez, A.; Salomon, V.; Maldonado, L. Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT Food Sci. Technol. 2011, 44, 1922–1930. [Google Scholar] [CrossRef]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef]
- Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno 2015, 83, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant activity and phenolic profile of selected organic and conventional honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT J. Food Sci. Technol. 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Stasiak, D.M.; Dolatowski, Z.J. Effect of sonication on the crystallization of honeys. Pol. J. Food Nutr. Sci. 2007, 57, 133–136. [Google Scholar]
- Kabbani, D.; Sepulcre, F.; Wedekind, J. Ultrasound-assisted liquefaction of rosemary honey: Influence on rheology and crystal content. J. Food Eng. 2011, 107, 173–178. [Google Scholar] [CrossRef]
- Yikmiş, S. Effect of ultrasound on different quality parameters of functional sirkencubin syrup. Food Sci. Technol. 2020, 40, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Starek, A.; Kobus, Z.; Sagan, A.; Chudzik, B.; Pawłat, J.; Kwiatkowski, M.; Terebun, P.; Andrejko, D. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ding, T.; Liao, X.; Chen, S.; Ye, X.; Liu, D. Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason. Sonochem. 2017, 38, 711–719. [Google Scholar] [CrossRef]
- Lee, J.J.; Eifert, J.D.; Jung, S.; Strawn, L.K. Cavitation Bubbles Remove and Inactivate Listeria and Salmonella on the Surface of Fresh Roma Tomatoes and Cantaloupes. Front. Sustain. Food Syst. 2018, 2, 61. [Google Scholar] [CrossRef]
- Zupanc, M.; Pandur, Ž.; Perdih, T.S.; Stopar, D.; Petkovšek, M.; Dular, M. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrason. Sonochem. 2019, 57, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Chaven, S. Honey, confectionery and bakery products. Food Saf. Manag. 2014, 283–299. [Google Scholar] [CrossRef]
Honey Variety | Month | Water Content, % | Glucose, g/100 g | Fructose, g/100 g | Sucrose, g/100 g | G/F | G/W | Acidity, mEq/kg | Diastase Activity, °Göthe | HMF, mg/kg | Water Activity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acacia | Control sample | 1st | 17.50 ± 0.46 | 27.24 ± 0.15 | 43.58 ± 0.17 | 0.90 ± 0.17 | 0.62 ± 0.32 | 1.55 ± 0.72 | 13.5 ± 0.47 | 18.3 ± 0.38 | 0.59 ± 0.19 | 0.56 ± 0.08 |
3rd | 17.50 ± 0.14 | 27.24 ± 0.45 | 43.56 ± 0.82 | 0.89 ± 0.21 | 0.62 ± 0.07 | 1.55 ± 0.56 | 13.5 ± 0.53 | 18.3 ± 0.20 | 0.61 ± 0.32 | 0.56 ± 0.10 | ||
5th | 17.50 ± 0.61 | 27.24 ± 0.12 | 43.57 ± 0.34 | 0.89 ± 0.09 | 0.62 ± 0.15 | 1.55 ± 0.38 | 13.5 ± 0.32 | 18.3 ± 0.57 | 0.62 ± 0.62 | 0.56 ± 0.16 | ||
7th | 17.60 ± 0.25 | 27.24 ± 0.08 | 43.56 ± 0.48 | 0.89 ± 0.16 | 0.62 ± 0.12 | 1.54 ± 0.02 | 14.5 ± 0.19 | 18.3 ± 0.42 | 0.64 ± 0.45 | 0.56 ± 0.26 | ||
9th | 17.60 ± 0.02 | 27.34 ± 0.76 | 43.56 ± 0.19 | 0.90 ± 0.04 | 0.62 ± 0.09 | 1.55 ± 0.09 | 14.6 ± 0.14 | 18.2 ± 0.24 | 0.65 ± 0.09 | 0.56 ± 0.32 | ||
Ultrasound treated sample | 1st | 17.50 ± 0.23 | 27.24 ± 0.57 | 43.58 ± 0.21 | 0.89 ± 0.16 | 0.62 ± 0.25 | 1.55 ± 0.17 | 13.9 ± 0.29 | 18.1 ± 0.07 | 0.68 ± 0.04 | 0.55 ± 0.38 | |
3rd | 17.30 ± 0.47 | 27.25 ± 0.36 | 43.64 ± 0.04 | 0.89 ± 0.04 | 0.62 ± 0.12 | 1.57 ± 0.28 | 13.7 ± 0.09 | 17.1 ± 0.11 | 1.04 ± 0.30 | 0.55 ± 0.12 | ||
5th | 17.30 ± 0.19 | 27.25 ± 0.01 | 43.64 ± 0.01 | 0.89 ± 0.64 | 0.62 ± 0.09 | 1.57 ± 0.01 | 13.8 ± 0.25 | 17.0 ± 0.23 | 1.18 ± 0.47 | 0.55 ± 0.25 | ||
7th | 17.20 ± 0.21 | 27.25 ± 0.17 | 43.64 ± 0.47 | 0.89 ± 0.25 | 0.62 ± 0.53 | 1.58 ± 0.29 | 13.7 ± 0.47 | 16.8 ± 0.25 | 1.35 ± 0.23 | 0.55 ± 0.06 | ||
9th | 17.20 ± 0.32 | 27.25 ± 0.04 | 43.64 ± 0.19 | 0.89 ± 0.38 | 0.62 ± 0.33 | 1.58 ± 0.11 | 13.7 ± 0.07 | 16.5 ± 0.12 | 1.45 ± 0.07 | 0.55 ± 0.47 | ||
Raspberry | Control sample | 1st | 16.10 ± 0.13 | 29.50 ± 0.64 | 38.52 ± 0.14 | 2.09 ± 0.12 | 0.76 ± 0.20 | 1.83 ± 0.43 | 13.0 ± 0.64 | 29.9 ± 0.09 | 0.78 ± 0.12 | 0.62 ± 0.21 |
3rd | 16.10 ± 0.42 | 29.50 ± 0.23 | 38.52 ± 0.09 | 2.09 ± 0.06 | 0.76 ± 0.19 | 1.83 ± 0.01 | 13.0 ± 0.38 | 29.9 ± 0.32 | 0.78 ± 0.01 | 0.62 ± 0.23 | ||
5th | 16.10 ± 0.01 | 29.50 ± 0.14 | 38.52 ± 0.23 | 2.09 ± 0.07 | 0.76 ± 0.45 | 1.83 ± 0.30 | 13.0 ± 0.09 | 29.9 ± 0.25 | 0.78 ± 0.07 | 0.62 ± 0.11 | ||
7th | 16.20 ± 0.47 | 29.50 ± 0.09 | 38.52 ± 0.41 | 2.09 ± 0.47 | 0.76 ± 0.06 | 1.82 ± 0.21 | 13.5 ± 0.14 | 29.9 ± 0.30 | 0.79 ± 0.09 | 0.62 ± 0.04 | ||
9th | 16.20 ± 0.10 | 29.50 ± 0.21 | 38.52 ± 0.57 | 2.09 ± 0.32 | 0.76 ± 0.07 | 1.82 ± 0.53 | 13.7 ± 0.11 | 29.8 ± 0.21 | 0.82 ± 0.12 | 0.62 ± 0.42 | ||
Ultrasound treated sample | 1st | 16.20 ± 0.47 | 29.50 ± 0.19 | 38.53 ± 0.13 | 2.10 ± 0.12 | 0.76 ± 0.29 | 1.82 ± 0.12 | 13.1 ± 0.63 | 27.8 ± 0.04 | 0.81 ± 0.30 | 0.62 ± 0.12 | |
3rd | 16.50 ± 0.09 | 29.50 ± 0.04 | 38.53 ± 0.02 | 2.10 ± 0.47 | 0.76 ± 0.30 | 1.78 ± 0.07 | 13.0 ± 0.32 | 27.9 ± 0.46 | 1.10 ± 0.21 | 0.62 ± 0.06 | ||
5th | 16.50 ± 0.53 | 29.50 ± 0.01 | 38.53 ± 0.09 | 2.10 ± 0.46 | 0.76 ± 0.07 | 1.77 ± 0.42 | 13.0 ± 0.01 | 27.6 ± 0.09 | 1.19 ± 0.47 | 0.62 ± 0.53 | ||
7th | 16.50 ± 0.64 | 29.50 ± 0.22 | 38.54 ± 0.19 | 2.10 ± 0.21 | 0.76 ± 0.32 | 1.78 ± 0.09 | 13.0 ± 0.64 | 27.5 ± 0.23 | 1.27 ± 0.19 | 0.62 ± 0.07 | ||
9th | 16.50 ± 0.15 | 29.50 ± 0.01 | 38.54 ± 0.75 | 2.10 ± 0.09 | 0.76 ± 0.64 | 1.78 ± 0.12 | 12.8 ± 0.06 | 27.1 ± 0.64 | 1.38 ± 0.63 | 0.62 ± 0.12 | ||
Tillia | Control sample | 1st | 17.20 ± 0.15 | 35.36 ± 0.23 | 30.09 ± 0.04 | 1.52 ± 0.21 | 1.17 ± 0.09 | 2.05 ± 0.30 | 20.0 ± 0.01 | 23.8 ± 0.11 | 0.36 ± 0.12 | 0.52 ± 0.06 |
3rd | 17.10 ± 0.12 | 35.36 ± 0.04 | 30.08 ± 0.61 | 1.52 ± 0.19 | 1.17 ± 0.11 | 2.06 ± 0.01 | 20.0 ± 0.29 | 23.8 ± 0.32 | 0.36 ± 0.01 | 0.52 ± 0.21 | ||
5th | 17.10 ± 0.04 | 35.36 ± 0.01 | 30.08 ± 0.42 | 1.52 ± 0.01 | 1.17 ± 0.06 | 2.06 ± 0.06 | 20.0 ± 0.12 | 23.8 ± 0.63 | 0.36 ± 0.25 | 0.52 ± 0.23 | ||
7th | 17.10 ± 0.42 | 35.36 ± 0.64 | 30.08 ± 0.53 | 1.53 ± 0.80 | 1.17 ± 0.44 | 2.06 ± 0.29 | 22.0 ± 0.21 | 23.7 ± 0.01 | 0.39 ± 0.42 | 0.52 ± 0.29 | ||
9th | 17.10 ± 0.21 | 35.36 ± 0.24 | 30.08 ± 0.01 | 1.53 ± 0.49 | 1.17 ± 0.63 | 2.06 ± 0.30 | 22.6 ± 0.14 | 23.6 ± 0.30 | 0.40 ± 0.00 | 0.52 ± 0.01 | ||
Ultrasound treated sample | 1st | 17.10 ± 0.41 | 35.35 ± 0.53 | 30.09 ± 0.04 | 1.53 ± 0.45 | 1.17 ± 0.12 | 2.06 ± 0.29 | 20.1 ± 0.42 | 22.9 ± 0.27 | 0.43 ± 0.12 | 0.52 ± 0.64 | |
3rd | 17.00 ± 0.14 | 35.35 ± 0.08 | 30.09 ± 0.09 | 1.52 ± 0.14 | 1.17 ± 0.07 | 2.07 ± 0.25 | 20.0 ± 0.30 | 22.7 ± 0.64 | 0.79 ± 0.42 | 0.52 ± 0.01 | ||
5th | 17.00 ± 0.38 | 35.35 ± 0.42 | 30.09 ± 0.23 | 1.52 ± 0.07 | 1.17 ± 0.30 | 2.07 ± 0.01 | 20.0 ± 0.11 | 22.4 ± 0.29 | 0.85 ± 0.06 | 0.52 ± 0.32 | ||
7th | 17.00 ± 0.07 | 35.33 ± 0.01 | 30.09 ± 0.42 | 1.52 ± 0.32 | 1.17 ± 0.11 | 2.07 ± 0.63 | 19.8 ± 0.38 | 22.1 ± 0.07 | 0.94 ± 0.25 | 0.52 ± 0.06 | ||
9th | 17.00 ± 0.15 | 35.33 ± 0.33 | 30.09 ± 0.06 | 1.53 ± 0.09 | 1.17 ± 0.01 | 2.07 ± 0.06 | 19.8 ± 0.64 | 21.8 ± 0.01 | 0.98 ± 0.30 | 0.52 ± 0.09 | ||
Polyfloral | Control sample | 1st | 17.10 ± 0.09 | 40.16 ± 0.15 | 28.80 ± 0.21 | 1.23 ± 0.39 | 1.39 ± 0.07 | 2.34 ± 0.09 | 27.0 ± 0.09 | 19.2 ± 0.12 | 0.95 ± 0.14 | 0.58 ± 0.07 |
3rd | 17.20 ± 0.10 | 40.16 ± 0.27 | 28.80 ± 0.38 | 1.23 ± 0.36 | 1.39 ± 0.07 | 2.33 ± 0.53 | 27.0 ± 0.29 | 19.2 ± 0.63 | 0.96 ± 0.38 | 0.57 ± 0.21 | ||
5th | 17.10 ± 0.32 | 40.16 ± 0.64 | 28.80 ± 0.14 | 1.23 ± 0.21 | 1.39 ± 0.06 | 2.34 ± 0.04 | 27.0 ± 0.01 | 19.2 ± 0.32 | 0.97 ± 0.29 | 0.57 ± 0.11 | ||
7th | 17.10 ± 0.53 | 40.16 ± 0.12 | 28.80 ± 0.29 | 1.23 ± 0.17 | 1.39 ± 0.07 | 2.34 ± 0.12 | 29.2 ± 0.11 | 19.0 ± 0.07 | 0.99 ± 0.42 | 0.57 ± 0.29 | ||
9th | 17.10 ± 0.02 | 40.16 ± 0.61 | 28.80 ± 0.04 | 1.23 ± 0.08 | 1.39 ± 0.14 | 2.34 ± 0.21 | 29.4 ± 0.12 | 19.0 ± 0.29 | 1.01 ± 0.04 | 0.57 ± 0.07 | ||
Ultrasound treated sample | 1st | 17.30 ± 0.21 | 40.17 ± 0.04 | 28.80 ± 0.53 | 1.24 ± 0.25 | 1.39 ± 0.30 | 2.32 ± 0.25 | 27.0 ± 0.04 | 17.8 ± 0.22 | 1.27 ± 0.11 | 0.58 ± 0.25 | |
3rd | 17.10 ± 0.25 | 40.17 ± 0.26 | 28.80 ± 0.14 | 1.25 ± 0.21 | 1.39 ± 0.07 | 2.34 ± 0.21 | 26.9 ± 0.21 | 17.1 ± 0.53 | 1.25 ± 0.09 | 0.58 ± 0.07 | ||
5th | 17.10 ± 0.32 | 40.17 ± 0.35 | 28.80 ± 0.04 | 1.25 ± 0.29 | 1.39 ± 0.12 | 2.34 ± 0.06 | 27.0 ± 0.11 | 16.9 ± 0.11 | 1.43 ± 0.10 | 0.58 ± 0.32 | ||
7th | 17.10 ± 0.55 | 40.17 ± 0.12 | 28.80 ± 0.28 | 1.25 ± 0.06 | 1.39 ± 0.19 | 2.34 ± 0.18 | 27.0 ± 0.25 | 16.4 ± 0.63 | 1.61 ± 0.07 | 0.58 ± 0.06 | ||
9th | 17.10 ± 0.38 | 40.17 ± 0.64 | 28.80 ± 0.23 | 1.25 ± 0.25 | 1.39 ± 0.08 | 2.34 ± 0.07 | 27.0 ± 0.04 | 16.3 ± 0.23 | 1.72 ± 0.30 | 0.58 ± 0.25 | ||
Rapeseed | Control sample | 1st | 16.60 ± 0.23 | 46.30 ± 0.09 | 23.70 ± 0.21 | 0.97 ± 0.11 | 1.95 ± 0.09 | 2.78 ± 0.29 | 23.6 ± 0.25 | 18.5 ± 0.21 | 0.31 ± 0.04 | 0.61 ± 0.07 |
3rd | 16.70 ± 0.11 | 46.30 ± 0.37 | 23.70 ± 0.04 | 0.95 ± 0.07 | 1.95 ± 0.09 | 2.77 ± 0.32 | 23.6 ± 0.29 | 18.5 ± 0.29 | 0.31 ± 0.25 | 0.61 ± 0.25 | ||
5th | 16.70 ± 0.47 | 46.30 ± 0.18 | 23.70 ± 0.16 | 0.95 ± 0.29 | 1.95 ± 0.29 | 2.77 ± 0.12 | 23.8 ± 0.22 | 18.4 ± 0.63 | 0.33 ± 0.12 | 0.61 ± 0.29 | ||
7th | 16.70 ± 0.21 | 46.30 ± 0.67 | 23.70 ± 0.24 | 0.95 ± 0.21 | 1.95 ± 0.25 | 2.77 ± 0.22 | 24.3 ± 0.63 | 18.2 ± 0.04 | 0.35 ± 0.11 | 0.61 ± 0.06 | ||
9th | 16.70 ± 0.19 | 46.30 ± 0.58 | 23.70 ± 0.33 | 0.95 ± 0.01 | 1.95 ± 0.06 | 2.77 ± 0.32 | 24.7 ± 0.07 | 18.0 ± 0.25 | 0.35 ± 0.07 | 0.61 ± 0.21 | ||
Ultrasound treated sample | 1st | 16.50 ± 0.64 | 46.30 ± 0.45 | 23.60 ± 0.21 | 0.95 ± 0.17 | 1.96 ± 0.07 | 2.80 ± 0.22 | 23.6 ± 0.64 | 17.9 ± 0.21 | 0.60 ± 0.29 | 0.61 ± 0.07 | |
3rd | 16.50 ± 0.08 | 46.30 ± 0.04 | 23.60 ± 0.13 | 0.95 ± 0.41 | 1.96 ± 0.09 | 2.80 ± 0.29 | 23.6 ± 0.30 | 17.8 ± 0.12 | 0.71 ± 0.04 | 0.61 ± 0.06 | ||
5th | 16.40 ± 0.13 | 46.30 ± 0.41 | 23.60 ± 0.04 | 0.95 ± 0.21 | 1.96 ± 0.04 | 2.82 ± 0.19 | 23.6 ± 0.07 | 17.7 ± 0.53 | 0.71 ± 0.30 | 0.61 ± 0.25 | ||
7th | 16.30 ± 0.47 | 46.30 ± 0.64 | 23.60 ± 0.64 | 0.95 ± 0.47 | 1.96 ± 0.12 | 2.84 ± 0.64 | 23.4 ± 0.06 | 17.1 ± 0.09 | 0.74 ± 0.10 | 0.61 ± 0.64 | ||
9th | 16.30 ± 0.38 | 46.30 ± 0.14 | 23.60 ± 0.42 | 0.95 ± 0.01 | 1.96 ± 0.31 | 2.84 ± 0.07 | 23.4 ± 0.42 | 16.5 ± 0.38 | 0.76 ± 0.23 | 0.60 ± 0.12 | ||
Honeydew | Control sample | 1st | 16.20 ± 0.04 | 42.60 ± 0.38 | 27.70 ± 0.02 | 0.87 ± 0.38 | 1.53 ± 0.23 | 2.62 ± 0.29 | 14.0 ± 0.01 | 17.6 ± 0.25 | 0.96 ± 0.25 | 0.61 ± 0.07 |
3rd | 16.00 ± 0.12 | 42.60 ± 0.08 | 27.70 ± 0.19 | 0.87 ± 0.47 | 1.53 ± 0.30 | 2.66 ± 0.25 | 14.0 ± 0.32 | 17.6 ± 0.01 | 1.01 ± 0.06 | 0.62 ± 0.21 | ||
5th | 16.00 ± 0.28 | 42.60 ± 0.01 | 27.70 ± 0.44 | 0.87 ± 0.53 | 1.53 ± 0.04 | 2.66 ± 0.01 | 14.0 ± 0.48 | 17.6 ± 0.30 | 1.01 ± 0.47 | 0.62 ± 0.30 | ||
7th | 16.00 ± 0.32 | 42.60 ± 0.20 | 27.70 ± 0.47 | 0.87 ± 0.01 | 1.53 ± 0.12 | 2.66 ± 0.07 | 14.0 ± 0.25 | 17.5 ± 0.48 | 1.03 ± 0.29 | 0.62 ± 0.07 | ||
9th | 16.00 ± 0.19 | 42.60 ± 0.04 | 27.70 ± 0.01 | 0.87 ± 0.14 | 1.53 ± 0.07 | 2.66 ± 0.04 | 14.2 ± 0.41 | 17.4 ± 0.23 | 1.03 ± 0.38 | 0.62 ± 0.10 | ||
Ultrasound treated sample | 1st | 16.00 ± 0.42 | 42.59 ± 0.25 | 27.71 ± 0.30 | 0.87 ± 0.21 | 1.53 ± 0.07 | 2.66 ± 0.34 | 14.0 ± 0.12 | 17.5 ± 0.07 | 1.25 ± 0.22 | 0.61 ± 0.29 | |
3rd | 15.90 ± 0.01 | 42.59 ± 0.07 | 27.71 ± 0.48 | 0.87 ± 0.29 | 1.53 ± 0.30 | 2.67 ± 0.35 | 13.9 ± 0.21 | 17.1 ± 0.63 | 1.38 ± 0.10 | 0.61 ± 0.07 | ||
5th | 15.90 ± 0.54 | 42.59 ± 0.64 | 27.71 ± 0.19 | 0.87 ± 0.25 | 1.53 ± 0.29 | 2.67 ± 0.29 | 13.7 ± 0.06 | 17.0 ± 0.42 | 1.48 ± 0.38 | 0.61 ± 0.19 | ||
7th | 15.90 ± 0.04 | 42.59 ± 0.04 | 27.71 ± 0.01 | 0.87 ± 0.30 | 1.53 ± 0.06 | 2.67 ± 0.27 | 13.6 ± 0.30 | 16.2 ± 0.38 | 1.66 ± 0.12 | 0.61 ± 0.42 | ||
9th | 15.80 ± 0.12 | 42.59 ± 0.18 | 27.71 ± 0.63 | 0.87 ± 0.12 | 1.53 ± 0.14 | 2.69 ± 0.25 | 13.6 ± 0.01 | 16.0 ± 0.19 | 1.69 ± 0.14 | 0.61 ± 0.53 | ||
Grassland | Control sample | 1st | 16.10 ± 0.38 | 36.20 ± 0.43 | 38.60 ± 0.38 | 1.18 ± 0.07 | 0.93 ± 0.29 | 2.24 ± 0.63 | 17.6 ± 0.07 | 29.7 ± 0.53 | 0.55 ± 0.09 | 0.55 ± 0.25 |
3rd | 16.10 ± 0.53 | 36.20 ± 0.39 | 38.60 ± 0.21 | 1.16 ± 0.32 | 0.93 ± 0.18 | 2.24 ± 0.14 | 17.6 ± 0.09 | 29.7 ± 0.46 | 0.54 ± 0.29 | 0.55 ± 0.21 | ||
5th | 16.00 ± 0.64 | 36.20 ± 0.32 | 38.60 ± 0.42 | 1.16 ± 0.29 | 0.93 ± 0.12 | 2.26 ± 0.22 | 17.6 ± 0.32 | 29.7 ± 0.09 | 0.55 ± 0.30 | 0.55 ± 0.11 | ||
7th | 16.10 ± 0.14 | 36.20 ± 0.21 | 38.60 ± 0.01 | 1.16 ± 0.11 | 0.93 ± 0.30 | 2.24 ± 0.12 | 18.0 ± 0.47 | 29.7 ± 0.48 | 0.58 ± 0.47 | 0.55 ± 0.07 | ||
9th | 16.10 ± 0.18 | 36.20 ± 0.28 | 38.60 ± 0.23 | 1.16 ± 0.25 | 0.93 ± 0.06 | 2.24 ± 0.30 | 18.5 ± 0.07 | 29.7 ± 0.21 | 0.59 ± 0.12 | 0.55 ± 0.42 | ||
Ultrasound treated sample | 1st | 16.00 ± 0.47 | 36.19 ± 0.02 | 38.61 ± 0.07 | 1.16 ± 0.63 | 0.93 ± 0.06 | 2.26 ± 0.07 | 17.7 ± 0.23 | 28.3 ± 0.53 | 0.76 ± 0.39 | 0.55 ± 0.06 | |
3rd | 16.00 ± 0.01 | 36.20 ± 0.09 | 38.70 ± 0.47 | 1.16 ± 0.14 | 0.93 ± 0.11 | 2.26 ± 0.11 | 17.6 ± 0.47 | 29.0 ± 0.01 | 0.84 ± 0.21 | 0.55 ± 0.11 | ||
5th | 16.00 ± 0.14 | 36.20 ± 0.19 | 38.70 ± 0.63 | 1.16 ± 0.64 | 0.93 ± 0.01 | 2.26 ± 0.21 | 17.5 ± 0.32 | 25.8 ± 0.09 | 0.99 ± 0.01 | 0.55 ± 0.47 | ||
7th | 16.00 ± 0.23 | 36.20 ± 0.17 | 38.70 ± 0.53 | 1.16 ± 0.09 | 0.93 ± 0.25 | 2.26 ± 0.01 | 17.5 ± 0.63 | 24.8 ± 0.12 | 1.18 ± 0.38 | 0.55 ± 0.25 | ||
9th | 16.00 ± 0.32 | 36.20 ± 0.38 | 38.70 ± 0.21 | 1.16 ± 0.01 | 0.93 ± 0.23 | 2.26 ± 0.25 | 17.5 ± 0.19 | 24.4 ± 0.47 | 1.26 ± 0.14 | 0.55 ± 0.09 |
Honey Variety | Month | Microorganism (cfu/g) | |||||
---|---|---|---|---|---|---|---|
SPC | Bacillus Cereus | TC | Yeasts | Molds | |||
Acacia | Control sample | 1st | <10 | - | - | <10 | - |
3rd | <10 | - | - | <10 | - | ||
5th | <10 | - | - | 10 | - | ||
7th | 10 | - | - | 10 | - | ||
9th | 10 | - | - | 10 | - | ||
Ultrasound treated sample | 1st | - | - | - | - | - | |
3rd | - | - | - | - | - | ||
5th | - | - | - | - | - | ||
7th | - | - | - | - | - | ||
9th | - | - | - | - | - | ||
Raspberry | Control sample | 1st | 30 | - | - | 20 | <10 |
3rd | 30 | - | - | 20 | <10 | ||
5th | 30 | - | - | 20 | <10 | ||
7th | 30 | - | - | 30 | 10 | ||
9th | 40 | - | - | 30 | 30 | ||
Ultrasound treated sample | 1st | <10 | - | - | <10 | <10 | |
3rd | <10 | - | - | <10 | <10 | ||
5th | <10 | - | - | <10 | <10 | ||
7th | 10 | - | - | 10 | <10 | ||
9th | 10 | - | - | 10 | <10 | ||
Tillia | Control sample | 1st | 20 | - | - | 10 | 10 |
3rd | 20 | - | - | 10 | 10 | ||
5th | 20 | - | - | 20 | 20 | ||
7th | 30 | - | - | 20 | 30 | ||
9th | 30 | - | - | 30 | 40 | ||
Ultrasound treated sample | 1st | <10 | - | - | - | 10 | |
3rd | 10 | - | - | - | 10 | ||
5th | 10 | - | - | - | 10 | ||
7th | 10 | - | - | - | 10 | ||
9th | 10 | - | - | - | 10 | ||
Polyfloral | Control sample | 1st | <10 | - | - | <10 | 20 |
3rd | <10 | - | - | 20 | 20 | ||
5th | <10 | - | - | 20 | 30 | ||
7th | 10 | - | - | 30 | 30 | ||
9th | 20 | - | - | 40 | 40 | ||
Ultrasound treated sample | 1st | <10 | - | - | - | 10 | |
3rd | <10 | - | - | - | 10 | ||
5th | <10 | - | - | - | 10 | ||
7th | <10 | - | - | - | 10 | ||
9th | <10 | - | - | - | 10 | ||
Rapeseed | Control sample | 1st | 40 | - | 20 | <10 | |
3rd | 40 | - | - | 30 | <10 | ||
5th | 40 | - | - | 30 | <10 | ||
7th | 40 | - | - | 40 | 10 | ||
9th | 50 | - | - | 40 | 20 | ||
Ultrasound treated sample | 1st | 20 | - | - | - | <10 | |
3rd | 20 | - | - | - | <10 | ||
5th | 20 | - | - | - | <10 | ||
7th | 20 | - | - | - | <10 | ||
9th | 20 | - | - | - | <10 | ||
Honeydew | Control sample | 1st | <10 | - | - | <10 | <10 |
3rd | <10 | - | - | <10 | <10 | ||
5th | <10 | - | - | <10 | <10 | ||
7th | <10 | - | - | <20 | 10 | ||
9th | <10 | - | - | <20 | 10 | ||
Ultrasound treated sample | 1st | - | - | - | - | - | |
3rd | - | - | - | - | - | ||
5th | - | - | - | - | - | ||
7th | - | - | - | - | - | ||
9th | - | - | - | - | - | ||
Grassland | Control sample | 1st | <10 | - | - | <10 | <10 |
3rd | <10 | - | - | <10 | <10 | ||
5th | <10 | - | - | <10 | <10 | ||
7th | <10 | - | - | <10 | <10 | ||
9th | <10 | - | - | <20 | <10 | ||
Ultrasound treated sample | 1st | - | - | - | - | - | |
3rd | - | - | - | - | - | ||
5th | - | - | - | - | - | ||
7th | - | - | - | - | - | ||
9th | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scripcă, L.A.; Amariei, S. The Use of Ultrasound for Preventing Honey Crystallization. Foods 2021, 10, 773. https://doi.org/10.3390/foods10040773
Scripcă LA, Amariei S. The Use of Ultrasound for Preventing Honey Crystallization. Foods. 2021; 10(4):773. https://doi.org/10.3390/foods10040773
Chicago/Turabian StyleScripcă, Laura Agripina, and Sonia Amariei. 2021. "The Use of Ultrasound for Preventing Honey Crystallization" Foods 10, no. 4: 773. https://doi.org/10.3390/foods10040773
APA StyleScripcă, L. A., & Amariei, S. (2021). The Use of Ultrasound for Preventing Honey Crystallization. Foods, 10(4), 773. https://doi.org/10.3390/foods10040773