Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies
Abstract
:1. Introduction
2. Literature Review Methodology
3. Manipulating the Nutritional Value of Red Meat
3.1. Micronutrients
3.1.1. Vitamins
3.1.2. Trace Elements
3.2. Macronutrients
3.2.1. Total Protein and Amino Acids
3.2.2. Total Fat and Fatty Acid Composition
4. Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, N. Meat in the human diet: An anthropological perspective. J. Nutr. Diet. 2007, 64, S102–S107. [Google Scholar] [CrossRef]
- Stanford, C.B.; Bunn, H.T. Meat-Eating and Human Evolution; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Pereira, P.M.; Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.H.; Kim, Y.S.; Lee, J.E.; Youn, J.; Chung, G.E.; Song, J.H.; Yang, S.Y.; Kim, J.S. Dietary pattern and its association with right-colonic diverticulosis. J. Gastroenterol. Hepatol. 2021, 36, 144–150. [Google Scholar] [CrossRef]
- Al-Shaar, L.; Satija, A.; Wang, D.D.; Rimm, E.B.; Smith-Warner, S.A.; Stampfer, M.J.; Hu, F.B.; Willett, W.C. Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ 2020, 371, m4141. [Google Scholar] [CrossRef] [PubMed]
- Garam, J.; Hannah, O.; Gitanjali, M.S.; Dahyun, P.; Min-Jeong, S. Impact of dietary risk factors on cardiometabolic and cancer mortality burden among Korean adults: Results from nationally representative repeated cross-sectional surveys 1998–2016. NRP 2020, 14, 384–400. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Energy and health 5 food, livestock production, energy, climate change, and health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef]
- Celada, P.; Sánchez-Múniz, F.J. Are meat and meat product consumptions harmful? Their relationship with the risk of colorectal cancer and other degenerative diseases. J. An. Real Acad. Farm. 2016, 82, 68–90. [Google Scholar]
- Ferguson, L.R. Meat and cancer. Meat Sci. 2010, 84, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Wyness, L.; Weichselbaum, E.; O’Connor, A.; Williams, E.; Benelam, B.; Riley, H.; Stanner, S. Red meat in the diet: An update. Nutr. Bull. 2011, 36, 34–77. [Google Scholar] [CrossRef]
- Mazidi, M.; Kengne, A.P.; George, E.S.; Siervo, M. The association of red meat intake with inflammation and circulating intermediate biomarkers of type 2 diabetes is mediated by central adiposity. Br. J. Nutr. 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Iguacel, I.; Miguel-Berges, M.; Gómez-Bruton, A.; Moreno, L.; Julián, C. Veganism, vegetarianism, bone mineral density, and fracture risk: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 1–18. [Google Scholar] [CrossRef]
- Wyness, L. The role of red meat in the diet: Nutrition and health benefits. Proc. Nutr. Soc. 2016, 75, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Bouvard, V.; Loomis, D.; Guyton, K.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Grunert, K.G.; Sonntag, W.I.; Glanz-Chanos, V.; Forum, S. Consumer interest in environmental impact, safety, health and animal welfare aspects of modern pig production: Results of a cross-national choice experiment. Meat Sci. 2018, 137, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ Concerns and Perceptions of Farm Animal Welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU Science Hub. Food-Based Dietary Guidelines in Europe; Report, 2021; EU Science Hub European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Health Canada. Eating Well with Canada’s Food Guide; Health Canada: Toronto, ON, Canada, 2016. [Google Scholar]
- Ritchie, H.; Roser, M. Meat and Dairy Production; Our World Data: Oxford, UK, 2019. [Google Scholar]
- Reinhart, R. Few Americans Vegetarian or Vegan; Gallup: Washington, DC, USA, 2018. [Google Scholar]
- Massow, M. Vegan Virtue Signalling Complicates Trend Interpretation; foodFOCUS: Waalwijk, The Netherlands, 2019. [Google Scholar]
- FAO. The Future of Food and Agriculture—Trends and Challenges; Report, 2017; FAO: Rome, Italy, 2017. [Google Scholar]
- Fernandez, M.; Raheem, D.; Ramos, F.; Carrascosa, C.; Saraiva, A.; Raposo, A. Highlights of Current Dietary Guidelines in Five Continents. Int. J. Environ. Res. Public Health 2021, 18, 2814. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Vahmani, P.; Rolland, D.; Mapiye, C.; Dunne, P.; Aalhus, J.; Juárez, M.; McAllister, T.; Prieto, N.; Dugan, M. Increasing desirable polyunsaturated fatty acid concentrations in fresh beef intramuscular fat. CAB Rev. 2017, 12, 1–17. [Google Scholar] [CrossRef]
- Dugan, M.E.R.; Vahmani, P.; Turner, T.D.; Mapiye, C.; Juárez, M.; Prieto, N.; Beaulieu, A.D.; Zijlstra, R.T.; Patience, J.F.; Aalhus, J.L. Pork as a Source of Omega-3 (n-3) Fatty Acids. Clin. Med. 2015, 4, 1999–2011. [Google Scholar] [CrossRef]
- Dugan, M.; Aldai, N.; Aalhus, J.; Rolland, D.; Kramer, J. Review:Trans-forming beef to provide healthier fatty acid profiles. Can. J. Anim. Sci. 2011, 91, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Green, A.S.; Fascetti, A.J. Meeting the Vitamin A Requirement: The Efficacy and Importance of -Carotene in Animal Species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef] [Green Version]
- Radu, C.; Lobon, S.; Molino, F.; Sanz, A.; Joy, M.; Ferrer, J.; Blanco, M. The concentration of liposoluble vitamins in the milk of the ewe and the meat of the sucking lamb according to the food received. In Proceedings of the XVI Jornadas Sobre Produccion Animal, Zaragoza, Spain, 19–20 May 2015; Volume 19, pp. 170–172. [Google Scholar]
- Jin, Q.; Cheng, H.; Wan, F.; Bi, Y.; Liu, G.; Liu, X.; Zhao, H.; You, W.; Liu, Y.; Tan, X. Effects of feeding -carotene on levels of -carotene and vitamin A in blood and tissues of beef cattle and the effects on beef quality. Meat Sci. 2015, 110, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Martinez, S.; Gomez, M.; Carballo, J.; Franco, I. Fatty acids, retinol and cholesterol composition in various fatty tissues of Celta pig breed: Effect of the use of chestnuts in the finishing diet. J. Food Compos. Anal. 2015, 37, 104–111. [Google Scholar] [CrossRef]
- Duckett, S.K.; Neel, J.P.S.; Fontenot, J.P.; Clapham, W.M. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content. J. Anim. Sci. 2009, 87, 2961–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, M.T.; Zumalacárregui, J.M.; Cabeza, E.A.; Figueira, A.; Mateo, J. Effect of rearing system on some meat quality traits and volatile compounds of suckling lamb meat. Small Rumin. Res. 2008, 78, 1–12. [Google Scholar] [CrossRef]
- Blanco, M.; Lobón, S.; Bertolín, J.R.; Joy, M. Effect of the maternal feeding on the carotenoid and tocopherol content of suckling lamb tissues. Arch. Anim. Nutr. 2019, 73, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.L.; Pahnish, O.F.; Roubicek, C.B. Hepatic and Blood Concentrations of Carotene and Vitamin A in Unsupplemented Range Cattle2. J. Anim. Sci. 1968, 27, 1477–1486. [Google Scholar] [CrossRef]
- Kato, Y.; Ito, M.; Hirooka, H. Genetic parameters of serum vitamin A and total cholesterol concentrations and the genetic relationships with carcass traits in an F 1 cross between Japanese Black sires and Holstein dams. J. Anim. Sci. 2011, 89, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol. 2019, 26, 101259. [Google Scholar] [CrossRef]
- Idamokoro, E.M.; Falowo, A.B.; Oyeagu, C.E.; Afolayan, A.J. Multifunctional activity of vitamin E in animal and animal products: A review. Anim. Sci. J. 2020, 91, e13352. [Google Scholar] [CrossRef]
- Leal, L.N.; Beltrán, J.A.; Alonso, V.; Bello, J.M.; den Hartog, L.A.; Hendriks, W.H.; Martín-Tereso, J. Dietary vitamin E dosage and source affects meat quality parameters in light weight lambs. J. Sci. Food Agric. 2018, 98, 1606–1614. [Google Scholar] [CrossRef]
- Leal, L.N.; Jensen, S.K.; Bello, J.M.; Den Hartog, L.A.; Hendriks, W.H.; Martín-Tereso, J. Bioavailability of -tocopherol stereoisomers in lambs depends on dietary doses of all-rac- or RRR--tocopheryl acetate. Animal 2019, 13, 1874–1882. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Jose, C.G.; Trezona, M.; Moore, K.L.; Pluske, J.R.; Mullan, B.P. Supra-nutritional vitamin E supplementation for 28 days before slaughter maximises muscle vitamin E concentration in finisher pigs. Meat Sci. 2015, 110, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, A.; Rey, A.I.; Daza, A.; Lopez-Bote, C.J. High dietary vitamin A interferes with tissue alpha -tocopherol concentrations in fattening pigs: A study that examines administration and withdrawal times. Animal 2009, 3, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.; Óvilo, C.; Fernández, A.; Nuñez, Y.; Isabel, B.; Daza, A.; López-Bote, C.J.; Rey, A.I. Effects of dietary vitamin A supplementation or restriction and its timing on retinol and -tocopherol accumulation and gene expression in heavy pigs. JAFST 2015, 202, 62–74. [Google Scholar] [CrossRef]
- Calvo, L.; Segura, J.; Toldrá, F.; Flores, M.; Rodríguez, A.I.; López-Bote, C.J.; Rey, A.I. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium. Food Sci. Technol. Int. 2017, 23, 716–728. [Google Scholar] [CrossRef]
- Kim, H.K.; Han, S.N. Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life 2019, 71, 442–455. [Google Scholar] [CrossRef]
- Ntawubizi, M.; Raes, K.; De Smet, S. Genetic parameter estimates for plasma oxidative status traits in slaughter pigs. J. Anim. Sci. 2019, 98. [Google Scholar] [CrossRef]
- Kennady, V.; Virmani, M.; Malik, R.K.; Rajalakshmi, K.; Kasthuri, S. The Role of B Vitamins in Livestock Nutrition. J. Vet. Med. Res. 2018, 5, 1162. [Google Scholar]
- Santschi, D.; Chiquette, J.; Berthaiume, R.; Martineau, R.; Matte, J.; Mustafa, A.; Girard, C. Effects of the forage to concentrate ratio on B-vitamin concentrations in different ruminal fractions of dairy cows. Can. J. Anim. Sci. 2005, 85, 389–399. [Google Scholar] [CrossRef]
- Girard, C.L.; Santschi, D.E.; Stabler, S.P.; Allen, R.H. Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows1. J. Dairy Sci. 2009, 92, 4524–4529. [Google Scholar] [CrossRef]
- Franco-López, J.; Duplessis, M.; Bui, A.; Reymond, C.; Poisson, W.; Blais, L.; Chong, J.; Gervais, R.; Rico, D.; Cue, R.; et al. Correlations between the Composition of the Bovine Microbiota and Vitamin B 12 Abundance. mSystems 2020, 5. [Google Scholar] [CrossRef] [Green Version]
- Promeyrat, A.; Vautier, A.; Lhommeau, T.; Roux, A.l.; Biannic, O. Adding algae to pig feed: Influence on meat quality and composition of meat and offal. In Proceedings of the Journées de la Recherche Porcine, Online, 1–4 February 2020; Volume 52, p. G19. [Google Scholar]
- Rutten, M.J.; Bouwman, A.C.; Sprong, R.C.; van Arendonk, J.A.M.; Visker, M.H. Genetic Variation in Vitamin B-12 Content of Bovine Milk and Its Association with SNP along the Bovine Genome. PLoS ONE 2013, 8, e62382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duplessis, M.; Pellerin, D.; Cue, R.I.; Girard, C.L. Short communication: Factors affecting vitamin B12 concentration in milk of commercial dairy herds: An exploratory study. J. Dairy Sci. 2016, 99, 4886–4892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulsen, N.A.; Rybicka, I.; Larsen, L.B.; Buitenhuis, A.J.; Larsen, M.K. Short Communication: Genetic variation of riboflavin content in bovine milk. J. Dairy Sci. 2015, 98, 3496–3501. [Google Scholar] [CrossRef]
- Menezes, E.A.; Oliveira, A.F.; França, C.J.; Souza, G.B.; Nogueira, A.R.A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem. 2018, 240, 75–83. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Lanzi, S.; Aguzzi, A. Aspects of meat quality: Trace elements and B vitamins in raw and cooked meats. J. Food. Compos. Anal. 2005, 18, 39–46. [Google Scholar] [CrossRef]
- Flynn, A.; Cashman, K. Nutritional aspects of minerals in bovine and human milks. J. Adv. Dairy Chem. 1997, 3, 257–302. [Google Scholar]
- Rooke, J.A.; Flockhart, J.F.; Sparks, N.H. The potential for increasing the concentrations of micro-nutrients relevant to human nutrition in meat, milk and eggs. J. Agric. Sci. 2010, 148, 603–614. [Google Scholar] [CrossRef]
- Norouzian, M.A.; Ghiasi, S.E. Carcass performance and meat mineral content in Balouchi lamb fed pistachio by-products. Meat Sci. 2012, 92, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Fan, C.; Zhang, W.; Zhu, X.; Yan, X.; Wang, R.; Jia, Z. Effects of dietary copper source and level on performance, carcass characteristics and lipid metabolism in lambs. AAAP 2008, 21, 685–691. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hill, J.; Livesey, C. Accumulation of potentially toxic elements in the body tissues of sheep grazed on grassland given repeated applications of sewage sludge. Anim. Sci. 2001, 72, 179–190. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Chen, Y.P.; Du, M.F.; Chao, W.; Zhou, Y.M. Evaluation of Dietary Synbiotic Supplementation on Growth Performance, Muscle Antioxidant Ability and Mineral Accumulations, and Meat Quality in Late-finishing Pigs. Kafkas Univ. Vet. Fak. Derg. 2018, 24. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Plozza, T.; Kerr, M.G.; Linden, N.; Mitchell, M.; Bekhit, A.E.D.A.; Jacobs, J.L.; Hopkins, D.L. Interaction of diet and long ageing period on lipid oxidation and colour stability of lamb meat. Meat Sci. 2017, 129, 43–49. [Google Scholar] [CrossRef]
- Zhao, Z.; Barcus, M.; Kim, J.; Lum, K.L.; Mills, C.; Lei, X.G. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J. Nutr. 2016, 146, 1625–1633. [Google Scholar] [CrossRef]
- Tizioto, P.C.; Taylor, J.F.; Decker, J.E.; Gromboni, C.F.; Mudadu, M.A.; Schnabel, R.D.; Coutinho, L.L.; Mourão, G.B.; Oliveira, P.S.N.; Souza, M.M.; et al. Detection of quantitative trait loci for mineral content of Nelore Longissimus Dorsi Muscle. Genet. Sel. Evol. 2015, 47, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wiener, G. Review of genetic aspects of mineral metabolism with particular reference to copper in sheep. Livest. Prod. Sci. 1979, 6, 223–232. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Vahedi, V.; Giri, K.; Lewandowski, P.; Jacobs, J.L.; Dunshea, F.R. Muscle antioxidant enzymes activity and gene expression are altered by diet-induced increase in muscle essential fatty acid (-linolenic acid) concentration in sheep used as a model. Nutrients 2019, 11, 723. [Google Scholar] [CrossRef] [Green Version]
- Kessler, J.; Morel, I.; Dufey, P.A.; Gutzwiller, A.; Stern, A.; Geyer, H. Effect of organic zinc sources on performance, zinc status and carcass, meat and claw quality in fattening bulls. Livest. Prod. Sci. 2003, 81, 161–171. [Google Scholar] [CrossRef]
- Kelleher, S.L.; Lönnerdal, B. Zinc supplementation reduces iron absorption through age-dependent changes in small intestine iron transporter expression in suckling rat pups. J. Nutr. 2006, 136, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Babicz, M.; Kasprzyk, A. Comparative analysis of the mineral composition in the meat of wild boar and domestic pig. Ital. J. Anim. Sci. 2019, 18, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Ponnampalam, E.N.; Kerr, M.G.; Butler, K.L.; Cottrell, J.J.; Dunshea, F.R.; Jacobs, J.L. Filling the out of season gaps for lamb and hogget production: Diet and genetic influence on carcass yield, carcass composition and retail value of meat. Meat Sci. 2019, 148, 156–163. [Google Scholar] [CrossRef]
- López, M.A.; Martos, F.C. Iron availability: An updated review. Int. J. Food. Sci. Nutr. 2004, 55, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Navarrete, N.; Camacho, M.; Martınez-Lahuerta, J.; Martınez-Monzó, J.; Fito, P. Iron deficiency and iron fortified foods—A review. Int. Food Res. J. 2002, 35, 225–231. [Google Scholar] [CrossRef]
- Ishikawa, S.; Tamaki, S.; Ohata, M.; Arihara, K.; Itoh, M. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: A possible mechanism of heme-induced colon cancer. Mol. Nutr. Food Res. 2010, 54, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.; Wallis-Phelps, W.; Maxwell, C.; Rakes, L.; Sawyer, J.; Hutchison, S.; Fakler, T. Effect of supplemental iron on finishing swine performance, carcass characteristics, and pork quality during retail display. J. Anim. Sci. 2007, 85, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Behrendt, R.; Kerr, M.G.; Raeside, M.C.; McDonagh, M.B. The influence of the level of ewe gestation nutrition and lamb finishing diet on long-chain polyunsaturated fat concentration, antioxidant and mineral status, and colour stability of meat. Anim. Prod. Sci. 2018, 58, 1481–1487. [Google Scholar] [CrossRef]
- O’Sullivan, M.G.; Byrne, D.V.; Stagsted, J.; Andersen, H.J.; Martens, M. Sensory colour assessment of fresh meat from pigs supplemented with iron and vitamin E. Meat Sci. 2002, 60, 253–265. [Google Scholar] [CrossRef]
- Dimov, K.; Kalev, R.; Penchev, P. Effect of finishing diet with excluded silage on amino-acid, fatty-acid, and mineral composition of meat (M. Longisimus Dorsi) Calves. Bulg. J. Agric. Sci. 2012, 18, 288–295. [Google Scholar]
- Zembayashi, M.; Lunt, D.K.; Smith, S.B. Dietary tea reduces the iron content of beef. Meat Sci. 1999, 53, 221–226. [Google Scholar] [CrossRef]
- Hermesch, S.; Jones, R.M. Genetic parameters for haemoglobin levels in pigs and iron content in pork. Animal 2012, 6, 1904–1912. [Google Scholar] [CrossRef] [Green Version]
- Mateescu, R.G.; Garrick, D.J.; Tait, R.G., Jr.; Garmyn, A.J.; Duan, Q.; Liu, Q.; Mayes, M.S.; Van Eenennaam, A.L.; VanOverbeke, D.L.; Hilton, G.G.; et al. Genome-wide association study of concentrations of iron and other minerals in Longissimus Muscle Angus Cattle. J. Anim. Sci. 2013, 91, 3593–3600. [Google Scholar] [CrossRef] [PubMed]
- King, D.; Shackelford, S.; Wheeler, T. Relative contributions of animal and muscle effects to variation in beef lean color stability. J. Anim. Sci. 2011, 89, 1434–1451. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Rostami, R.; Nourooz-Zadeh, S.; Mohammadi, A.; Khalkhali, H.R.; Ferns, G.; Nourooz-Zadeh, J. Serum Selenium Status and Its Interrelationship with Serum Biomarkers of Thyroid Function and Antioxidant Defense in Hashimoto’s Thyroiditis. Antioxidants 2020, 9, 1070. [Google Scholar] [CrossRef]
- Mehdi, Y.; Dufrasne, I. Selenium in cattle: A review. Molecules 2016, 21, 545. [Google Scholar] [CrossRef] [Green Version]
- Falk, M.; Bernhoft, A.; Framstad, T.; Salbu, B.; Wisløff, H.; Kortner, T.M.; Kristoffersen, A.B.; Oropeza-Moe, M. Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J. Trace Elem. Med. Biol. 2018, 50, 527–536. [Google Scholar] [CrossRef]
- Paiva, F.A.; Saran Netto, A.; Correa, L.B.; Silva, T.H.; Guimaraes, I.C.S.B.; Del Claro, G.R.; Cunha, J.A.; Zanetti, M.A. Organic selenium supplementation increases muscle selenium content in growing lambs compared to inorganic source. Small Rumin. Res. 2019, 175, 57–64. [Google Scholar] [CrossRef]
- Flachowsky, G.; Berk, A.; Meyer, U. Iodine transfer from feed into meat and other food of animal origin. Fleischwirtschaft 2007, 87, 83–87. [Google Scholar]
- Meyer, U.; Weigel, K.; Schöne, F.; Leiterer, M.; Flachowsky, G. Effect of dietary iodine on growth and iodine status of growing fattening bulls. Livest Sci. 2008, 115, 219–225. [Google Scholar] [CrossRef]
- Schöne, F.; Zimmermann, C.; Quanz, G.; Richter, G.; Leiterer, M. A high dietary iodine increases thyroid iodine stores and iodine concentration in blood serum but has little effect on muscle iodine content in pigs. Meat Sci. 2006, 72, 365–372. [Google Scholar] [CrossRef]
- Millward, D.J. Macronutrient intakes as determinants of dietary protein and amino acid adequacy. J. Nutr. 2004, 134, 1588S–1596S. [Google Scholar] [CrossRef]
- Howard, E.E.; Pasiakos, S.M.; Fussell, M.A.; Rodriguez, N.R. Skeletal muscle disuse atrophy and the rehabilitative role of protein in recovery from musculoskeletal injury. Adv. Nutr. 2020, 11, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Prelack, K.; Dylewski, M.; Sheridan, R.L. Practical guidelines for nutritional management of burn injury and recovery. Burns 2007, 33, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Purchas, R.W.; Wilkinson, B.H.P.; Carruthers, F.; Jackson, F. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J. Food Compos. Anal. 2014, 35, 75–82. [Google Scholar] [CrossRef]
- Greenfield, H.; Arcot, J.; Barnes, J.A.; Cunningham, J.; Adorno, P.; Stobaus, T.; Tume, R.K.; Beilken, S.L.; Muller, W.J. Nutrient composition of Australian retail pork cuts 2005/2006. Food Chem. 2009, 117, 721–730. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.M.; Sivendiran, T.; Bohrer, B.M. Review: Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 2018, 58, 2673–2678. [Google Scholar] [CrossRef]
- Drazbo, A.; Sobotka, W.; Matusevicius, P. The effect of production system, dietary protein levels and amino acid supplementation on performance, carcass traits and meat quality in growing-finishing pigs. Vet. Ir. Zootech. 2012, 57, 3–9. [Google Scholar] [CrossRef]
- Jin, S.K.; Kim, I.S.; Kim, S.J.; Jeong, K.J.; Lee, J.R. Fatty Acid, Amino Acid Composition and Sensory Traits of Pork from Pigs Fed Artificial Culture Medium of Wild Ginseng. Korean J. Food Sci. Anim. Resour. 2006, 26, 349–355. [Google Scholar]
- Li, F.; Duan, Y.; Li, Y.; Tang, Y.; Geng, M.; Oladele, O.A.; Kim, S.W.; Yin, Y. Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. BJN 2015, 113, 739–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intarapichet, K.O.; Maikhunthod, B.; Thungmanee, N. Physicochemical characteristics of pork fed palm oil and conjugated linoleic acid supplements. Meat Sci. 2008, 80, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour: I. Effect of diet and breed. Meat Sci. 2008, 79, 124–130. [Google Scholar] [CrossRef]
- Chai, J.; Diao, Q.; Zhao, J.; Wang, H.; Deng, K.; Qi, M.; Nie, M.; Zhang, N. Effects of rearing system on meat quality, fatty acid and amino acid profiles of Hu lambs. Anim. Sci. 2018, 89, 1178–1186. [Google Scholar] [CrossRef]
- Mioč, B.; Pavič, V.; Vnučec, I.; Prpić, Z.; Kostelić, A.; Sušić, V. Effect of olive cake on daily gain, carcass characteristics and chemical composition of lamb meat. Czech. J. Anim. Sci. 2008, 52, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Ahlberg, C.M.; Schiermiester, L.N.; Howard, T.J.; Calkins, C.R.; Spangler, M.L. Genome wide association study of cholesterol and poly- and monounsaturated fatty acids, protein, and mineral content of beef from crossbred cattle. Meat Sci. 2014, 98, 804–814. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, H.; Saito, K.; Kohira, K.; Ohhashi, F.; Shoji, N.; Uemoto, Y. Estimates of genetic parameters for chemical traits of meat quality in Japanese black cattle. Anim. Sci. 2017, 88, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Jeong, H.; Taye, M.; Kim, H.J.; Ka, S.; Ryu, Y.C.; Cho, S. Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits. AAAP 2015, 28, 1551–1557. [Google Scholar] [CrossRef] [Green Version]
- Salejda, A.; Krasnowska, G.; Blaszczuk, M. Analysis of quality properties in raw meat and fats from fatteners breeding in Wielkopolska. Acta Sci. Pol. Technol. Aliment. 2009, 8, 11–19. [Google Scholar]
- Peraza-Mercado, G.; Jaramillo-Lopez, E.; Alarcon-Rojo, A.D. Fatty acid and amino acid composition of Pelibuey and Polypay x Rambouillet lambs. AEJAES 2010, 8, 197–205. [Google Scholar]
- Mapiye, C.; Aldai, N.; Turner, T.; Aalhus, J.; Rolland, D.; Kramer, J.; Dugan, M. The labile lipid fraction of meat: From perceived disease and waste to health and opportunity. Meat Sci. 2012, 92, 210–220. [Google Scholar] [CrossRef]
- Doreau, M.; Meynadier, A.; Fievez, V.; Ferlay, A. Chapter 19—Ruminal metabolism of fatty acids: Modulation of polyunsaturated, conjugated, and trans fatty acids in meat and milk. In Handbook of Lipids in Human Function; Elsevier: Amsterdam, The Netherlands, 2016; pp. 521–542. [Google Scholar] [CrossRef]
- Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D.C.; McAllister, T.A.; Aalhus, J.L.; Dugan, M.E.R. The scope for manipulating the polyunsaturated fatty acid content of beef: A review. J. Anim. Sci. Biotechnol. 2015, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Smith, S.B.; Lunt, D.K.; Smith, D.R.; Walzem, R.L. Producing high-oleic acid beef and the impact of ground beef consumption on risk factors for cardiovascular disease: A review. Meat Sci. 2020, 163, 108076. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Leidenz, N.O.; Cross, H.R.; Savell, J.W.; Lunt, D.K.; Baker, J.F.; Smith, S.B. Fatty acid composition of subcutaneous adipose tissue from male calves at different stages of growth. J. Anim. Sci. 1996, 74, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Aalhus, J.; Rolland, D.; McAllister, T.; Prieto, N.; Block, H.; Proctor, S.; Guan, L.; Dugan, M. Sequential feeding of lipid supplement enriches beef adipose tissues with 18: 3n-3 biohydrogenation intermediates. Lipids 2017, 52, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Rolland, D.C.; McAllister, T.A.; Block, H.C.; Proctor, S.D.; Guan, L.L.; Prieto, N.; Lopez-Campos, O.; Aalhus, J.L.; Dugan, M.E.R. Effects of feeding steers extruded flaxseed on its own before hay or mixed with hay on animal performance, carcass quality, and meat and hamburger fatty acid composition. Meat Sci. 2017, 131, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Petri, R.M.; Vahmani, P.; Yang, H.E.; Dugan, M.E.; McAllister, T.A. Changes in rumen microbial profiles and subcutaneous fat composition when feeding extruded flaxseed mixed with or before hay. Front Microbiol. 2018, 9, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahmani, P.; Meadus, W.J.; Duff, P.; Rolland, D.C.; Dugan, M.E.R. Comparing the lipogenic and cholesterolgenic effects of individual Trans-18:1 Isomers Liver Cells. Eur. J. Lipid Sci. Technol. 2017, 119, 1600162. [Google Scholar] [CrossRef]
- Rom, O.; Khoo, N.K.H.; Chen, Y.E.; Villacorta, L. Inflammatory signaling and metabolic regulation by nitro-fatty acids. Nitric Oxide 2018, 78, 140–145. [Google Scholar] [CrossRef]
- Dugan, M.E.; Mapiye, C.; Vahmani, P. Chapter 4—Polyunsaturated Fatty Acid Biosynthesis and Metabolism in Agriculturally Important Species. In Polyunsaturated Fatty Acid Metabolism; Elsevier: Amsterdam, The Netherlands, 2018; pp. 61–86. [Google Scholar] [CrossRef]
- Dugan, M.E.R.; Aalhus, J.L.; Uttaro, B. Nutritional manipulation of pork quality: Current opportunities. In Advances in Pork Production; University of Alberta: Edmonton, AB, Canada, 2004; Volume 15, pp. 237–243. [Google Scholar]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.; Mapiye, C.; Aalhus, J.; Beaulieu, A.; Patience, J.; Zijlstra, R.; Dugan, M. Flaxseed fed pork: N-3 fatty acid enrichment and contribution to dietary recommendations. Meat Sci. 2014, 96, 541–547. [Google Scholar] [CrossRef]
- Straadt, I.K.; Aaslyng, M.D.; Bertram, H.C. Sensory and consumer evaluation of pork loins from crossbreeds between Danish Landrace, Yorkshire, Duroc, Iberian and Mangalitza. Meat Sci. 2013, 95, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, T.; Joo, S.T. Characteristics and health benefit of highly marbled Wagyu and Hanwoo beef. Korean J. Food Sci. Anim. Resour. 2016, 36, 709. [Google Scholar] [CrossRef] [Green Version]
- Shackelford, S.; Koohmaraie, M.; Cundiff, L.; Gregory, K.; Rohrer, G.; Savell, J. Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. J. Anim. Sci. 1994, 72, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.D.; Greenwood, P.L.; Pethick, D.W.; Ferguson, D.M. Genetic and environmental effects on meat quality. Meat Sci. 2010, 86, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.; Richardson, R.; Nute, G.; Fisher, A.; Campo, M.; Kasapidou, E.; Sheard, P.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Pitchford, W.; Deland, M.; Siebert, B.; Malau-Aduliand, A.; Bottema, C. Genetic variation in fatness and fatty acid composition of crossbred cattle. J. Anim. Sci. 2002, 80, 2825–2832. [Google Scholar] [CrossRef] [Green Version]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Viterbo, V.S.; Lopez, B.I.M.; Kang, H.; Kim, H.; Song, C.W.; Seo, K.S. Genome wide association study of fatty acid composition in Duroc swine. AAAP 2018, 31, 1127. [Google Scholar] [CrossRef]
- Pewan, S.B.; Otto, J.R.; Huerlimann, R.; Budd, A.M.; Mwangi, F.W.; Edmunds, R.C.; Holman, B.W.B.; Henry, M.L.E.; Kinobe, R.T.; Adegboye, O.A. Genetics of omega-3 long-chain polyunsaturated fatty acid metabolism and meat eating quality in Tattykeel Australian White lambs. Genes 2020, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Cesar, A.S.; Regitano, L.C.; Mourão, G.B.; Tullio, R.R.; Lanna, D.P.; Nassu, R.T.; Mudado, M.A.; Oliveira, P.S.; do Nascimento, M.L.; Chaves, A.S. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. 2014, 15, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Cheng, D.; Chen, S.; Wang, L.; Li, Y.; Ma, X.; Song, X.; Liu, X.; Li, W.; Liang, J.; et al. Genome-wide association analysis of meat quality traits in a porcine Large White—Minzhu intercross population. Int. J. Biol. Sci. 2012, 8, 580–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, J.; Gong, H.; Cui, L.; Zhang, W.; Ma, J.; Chen, C.; Ai, H.; Xiao, S.; Huang, L. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations. Meat Sci. 2019, 150, 47–55. [Google Scholar] [CrossRef]
- Srikanth, K.; Lee, E.; Kwon, A.; Jang, G.; Chung, H. Association of a single nucleotide polymorphism in the calneuron 1 gene on meat quality and carcass traits in hanwoo (Bos Taurus Coreanae). J. Anim. Plant Sci. 2018, 28, 651–655. [Google Scholar]
- Zhang, Z.; Zhang, Z.; Oyelami, F.; Sun, H.; Xu, Z.; Ma, P.; Wang, Q.; Pan, Y. Identification of genes related to intramuscular fat independent of backfat thickness in Duroc pigs using single-step genome-wide association. Anim. Genet. 2021, 52, 108–113. [Google Scholar] [CrossRef]
- Li, C.; Aldai, N.; Vinsky, M.; Dugan, M.; McAllister, T. Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers. Anim. Genet. 2012, 43, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Kang, J.X.; Li, R.; Wang, J.; Witt, W.T.; Yong, H.Y.; Hao, Y.; Wax, D.M.; Murphy, C.N.; Rieke, A. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat. Biotechnol. 2006, 24, 435–436. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Yang, X.; Liu, D.; Zhang, X.; Huang, X.; He, X.; Shi, J.; Li, Z.; Wu, Z. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids. Transgenec Res. 2019, 28, 369–379. [Google Scholar] [CrossRef]
- Richards, M.P.; Kathirvel, P.; Gong, Y.; Lopez-Hernandez, A.; Walters, E.M.; Prather, R.S. Long chain omega-3 fatty acid levels in loin muscle from transgenic (fat-1 gene) pigs and effects on lipid oxidation during storage. Food Biotechnol. 2011, 25, 103–114. [Google Scholar] [CrossRef]
- Xin, X.B.; Yang, S.P.; Li, X.; Liu, X.F.; Zhang, L.L.; Ding, X.B.; Zhang, S.; Li, G.P.; Guo, H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen. Comp. Endocrinol. 2020, 291, 113237. [Google Scholar] [CrossRef]
- Moghadasian, M.H. Advances in dietary enrichment with N-3 fatty acids. Crit. Rev. Food Sci. Nutr. 2008, 48, 402–410. [Google Scholar] [CrossRef]
- Venegas-Calerón, M.; Sayanova, O.; Napier, J.A. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog. Lipid Res. 2010, 49, 108–119. [Google Scholar] [CrossRef]
- Ruan, J.; Xu, J.; Chen-Tsai, R.Y.; Li, K. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res. 2017, 26, 715–726. [Google Scholar] [CrossRef]
- Lamas-Toranzo, I.; Guerrero-Sánchez, J.; Miralles-Bover, H.; Alegre-Cid, G.; Pericuesta, E.; Bermejo-Alvarez, P. CRISPR is knocking on barn door. Reprod. Domest. Anim. 2017, 52, 39–47. [Google Scholar] [CrossRef]
- Eriksson, S.; Jonas, E.; Rydhmer, L.; Röcklinsberg, H. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. J. Dairy Sci. 2018, 101, 1–17. [Google Scholar] [CrossRef]
- Juárez, M.; Dugan, M.E.R.; López-Campos, Ó.; Prieto, N.; Uttaro, B.; Gariépy, C.; Aalhus, J.L. Relative contribution of breed, slaughter weight, sex, and diet to the fatty acid composition of differentiated pork. Can. J. Anim. Sci. 2017, 97, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Juárez, M.; Horcada, A.; Alcalde, M.J.; Valera, M.; Mullen, A.M.; Molina, A. Estimation of factors influencing fatty acid profiles in light lambs. Meat Sci. 2008, 79, 203–210. [Google Scholar] [CrossRef]
- Juárez, M.; Basarab, J.A.; Baron, V.S.; Valera, M.; Larsen, I.L.; Aalhus, J.L. Quantifying the relative contribution of ante- and post-mortem factors to the variability in beef texture. Animal 2012, 6, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- Krause, T.R.; Lourenco, J.M.; Welch, C.B.; Rothrock, M.J.; Callaway, T.R.; Pringle, T.D. The relationship between the rumen microbiome and carcass merit in Angus steers. J. Anim. Sci. 2020, 98, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Banhazi, T.M.; Lehr, H.; Black, J.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision livestock farming: An international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- Juárez, M. Linking livestock phenomics and precision livestock farming. J. Anim. Sci. 2020, 98, 124. [Google Scholar] [CrossRef]
- Smith, J.; Sones, K.; Grace, D.; MacMillan, S.; Tarawali, S.; Herrero, M. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. J. Anim. Front. 2013, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Leroy, F.; Cofnas, N. Should dietary guidelines recommend low red meat intake? Crit. Rev. Food Sci. Nutr. 2020, 60, 2763–2772. [Google Scholar] [CrossRef] [Green Version]
- Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Zhang, H.; Aalhus, J.L.; Gariepy, C.; Uttaro, B.; Lopez-Campos, O.; Prieto, N.; Dugan, M.E.R.; Jin, Y.; Juárez, M. Effects of pork differentiation strategies in Canada on pig performance and carcass characteristics. Can. J. Anim. Sci. 2016, 96, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Markus, S.B.; Aalhus, J.L.; Janz, J.A.M.; Larsen, I.L. A survey comparing meat quality attributes of beef from credence attribute-based production systems. Can. J. Anim. Sci. 2011, 91, 283–294. [Google Scholar] [CrossRef]
- ALMA. Canadian Consumer Retail Meat Study Final Report; Report 2016; ALMA: Edmonton, AB, Canada, 2016. [Google Scholar]
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, S.; Gatto, K.A. Consumer perception of genetically modified organisms and sources of information. Adv. Nutr. 2015, 6, 842–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez, M.; Dugan, M.E.R.; Aldai, N.; Aalhus, J.L.; Patience, J.F.; Zijlstra, R.T.; Beaulieu, A.D. Increasing omega-3 levels through dietary co-extruded flaxseed supplementation negatively affects pork palatability. Food Chem. 2011, 126, 1716–1723. [Google Scholar] [CrossRef]
- Mir, P.; Ivan, M.; He, M.; Pink, B.; Okine, E.; Goonewardene, L.; McAllister, T.; Weselake, R.; Mir, Z. Dietary manipulation to increase conjugated linoleic acids and other desirable fatty acids in beef: A review. Can. J. Anim. Sci. 2003, 83, 673–685. [Google Scholar] [CrossRef]
- Henchion, M.M.; McCarthy, M.; Resconi, V.C. Beef quality attributes: A systematic review of consumer perspectives. Meat Sci. 2017, 128, 1–7. [Google Scholar] [CrossRef] [Green Version]
Vitamins | Beef | Pork | Lamb |
---|---|---|---|
Vitamin A (μg/100 g) | 5.00–11.5 | 2.00–6.10 | 7.80–8.60 |
Vitamin E (mg/100 g) | 0.03–1.10 | 0.01–0.86 | 0.08–1.20 |
B2 (mg/100 g) | 0.09–0.80 | 0.05–1.23 | 0.11–0.25 |
B12 (μg/100 g) | 0.40–3.10 | 0.30–1.10 | 0.60–2.50 |
Trace Elements | Beef | Pork | Lamb |
---|---|---|---|
Copper (mg/100 g) | 0.04–1.40 | 0.03–0.59 | 0.03–0.13 |
Iron (mg/100 g) | 1.00–7.80 | 0.30–3.00 | 1.10–3.60 |
Zinc (mg/100 g) | 2.30–7.70 | 0.40–5.00 | 2.10–9.40 |
Selenium (mg/100 g) | 0.40–10.8 | 0.05–1.23 | 0.30–35.0 |
Iodine (μg/100 g) | 0.20–20.0 | 0.40–17.0 | 30.0–46.0 |
Lipids | Beef | Pork | Lamb |
---|---|---|---|
Total IMF (g/100 g meat) | 0.60–26.90 | 1.60–17.00 | 2.50–18.10 |
SFA (g/100 g IMF) | 33.70–49.10 | 32.80–41.00 | 46.20–50.40 |
MUFA (g/100 g IMF) | 24.70–56.10 | 39.60–49.10 | 32.10–45.30 |
Trans (g/100 g IMF) | 1.50–4.00 | – | 3.00–6.30 |
PUFA (g/100 g IMF) | 2.80–29.00 | 3.80–26.20 | 3.60–8.10 |
n-3 (g/100 g IMF) | 0.38–10.40 | 1.20–13.40 | 1.50–3.50 |
LC n-3 (g/100 g IMF) | 0.25–4.90 | 0.19–1.90 | 0.77–1.40 |
n-6 (g/100 g IMF) | 2.80–20.20 | 8.70–12.80 | 2.10–4.60 |
CLA (g/100 g IMF) | 0.10–1.80 | 0.04–3.60 | 0.57–1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.R.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods 2021, 10, 872. https://doi.org/10.3390/foods10040872
Juárez M, Lam S, Bohrer BM, Dugan MER, Vahmani P, Aalhus J, Juárez A, López-Campos O, Prieto N, Segura J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods. 2021; 10(4):872. https://doi.org/10.3390/foods10040872
Chicago/Turabian StyleJuárez, Manuel, Stephanie Lam, Benjamin M. Bohrer, Michael E. R. Dugan, Payam Vahmani, Jennifer Aalhus, Ana Juárez, Oscar López-Campos, Nuria Prieto, and Jose Segura. 2021. "Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies" Foods 10, no. 4: 872. https://doi.org/10.3390/foods10040872
APA StyleJuárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods, 10(4), 872. https://doi.org/10.3390/foods10040872