Evaluation of Immersion and Spray Applications of Antimicrobial Treatments for Reduction of Campylobacter jejuni on Chicken Wings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Inoculum Preparation
2.2. Inoculation of Chicken Wings
2.3. Antimicrobial Treatment of Chicken Wings
2.4. Microbiological Analysis
2.5. Statistical Analysis
3. Results
3.1. Untreated Chicken Wings
3.2. Chicken Wings Treated by Immersion Application of Antimicrobial Treatments
3.3. Chicken Wings Treated by Spray Application of Antimicrobial Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tack, D.M.; Ray, L.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Rissman, T.; Jervis, R.; Lathrop, S.; Muse, A.; Duwell, M.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food‑Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2016–2019. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 509–514. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Campylobacter (Campylobacteriosis). 2020. Available online: https://www.cdc.gov/campylobacter/index.html (accessed on 28 January 2020).
- Moore, J.E.; Corcoran, D.; Dooley, J.S.G.; Fanning, S.; Lucey, B.; Matsuda, M.; McDowell, D.A.; Mégraud, F.; Millar, B.C.; O’Mahony, R.; et al. Campylobacter. Veter. Res. 2005, 36, 351–382. [Google Scholar] [CrossRef] [Green Version]
- Connerton, I.F.; Connerton, P.L. Campylobacter Foodborne Disease. In Foodborne Diseases, 3rd ed.; Aldsworth, T., Stein, R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 209–221. ISBN 978-0-1238-5008-9. [Google Scholar]
- Acheson, D.; Allos, B.M. Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Arritt, F.M.; Eifert, J.D.; Pierson, M.D.; Sumner, S.S. Efficacy of Antimicrobials Against Campylobacter jejuni on Chicken Breast Skin. J. Appl. Poult. Res. 2002, 11, 358–366. [Google Scholar] [CrossRef]
- Batz, M.B.; Hoffmann, S.; Morris, J.G. Ranking the Disease Burden of 14 Pathogens in Food Sources in the United States Using Attribution Data from Outbreak Investigations and Expert Elicitation. J. Food Prot. 2012, 75, 1278–1291. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture, Food Safety and Inspection Service. Pathogen Reduction; Hazard Analysis and Critical Control Point (HACCP) Systems; Final Rule. Fed. Regist. 1996, 61, 38805–38989. [Google Scholar]
- U.S. Department of Agriculture, Food Safety and Inspection Service. Safe and Suitable Ingredients Used in the Production of Meat, Poultry and Egg Products‑Revision 55; 2021. Available online: https://www.fsis.usda.gov/policy/fsis-directives/7120.1 (accessed on 11 April 2021).
- Thames, H.T.; Sukumaran, A.T. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020, 9, 776. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Food Safety and Inspection Service. New Performance Standards for Salmonella and Campylobacter in Young Chicken and Turkey Slaughter Establishments: Response to Comments and Announcement of Implementation Schedule. Fed. Regist. 2011, 76, 15282–15290. [Google Scholar]
- U.S. Department of Agriculture, Food Safety and Inspection Service. New Performance Standards for Salmonella and Campylobacter in Not-Ready-to-Eat Comminuted Chicken and Turkey Products and Raw Chicken Parts and Changes to Related Agency Verification Procedures: Response to Comments and Announcement of Implementation Schedule. Fed. Regist. 2016, 81, 7285–7300. [Google Scholar]
- Ramírez-Hernández, A.; Brashears, M.M.; Sanchez-Plata, M.X. Efficacy of Lactic Acid, Lactic Acid–Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions. J. Food Prot. 2018, 81, 17–24. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Food Safety and Inspection Service. Changes to the Campylobacter Verification Testing Program: Revised Performance Standards for Campylobacter in Not-Ready-to-Eat Comminuted Chicken and Turkey and Related Agency Procedures. Fed. Regist. 2019, 84, 38203–38210. [Google Scholar]
- Chen, X.; Bauermeister, L.J.; Hill, G.N.; Singh, M.; Bilgili, S.F.; McKee, S.R. Efficacy of Various Antimicrobials on Reduction of Salmonella and Campylobacter and Quality Attributes of Ground Chicken Obtained from Poultry Parts Treated in a Postchill Decontamination Tank. J. Food Prot. 2014, 77, 1882–1888. [Google Scholar] [CrossRef]
- Laury, A.M.; Alvarado, M.V.; Nace, G.; Alvarado, C.Z.; Brooks, J.C.; Echeverry, A.; Brashears, M.M. Validation of a Lactic Acid– and Citric Acid–Based Antimicrobial Product for the Reduction of Escherichia coli O157:H7 and Salmonella on Beef Tips and Whole Chicken Carcasses. J. Food Prot. 2009, 72, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Yang, X.; Geornaras, I.; Delmore, R.J.; Woerner, D.R.; Reagan, J.O.; Morgan, J.B.; Belk, K.E. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings. J. Food Prot. 2015, 78, 1967–1972. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.T.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Reduction of Salmonella on Chicken Meat and Chicken Skin by Combined or Sequential Application of Lytic Bacteriophage with Chemical Antimicrobials. Int. J. Food Microbiol. 2015, 207, 8–15. [Google Scholar] [CrossRef]
- Berrang, M.E.; Gamble, G.R.; Hinton, A., Jr.; Johnston, J.J. Neutralization of Residual Antimicrobial Processing Chemicals in Broiler Carcass Rinse for Improved Detection of Campylobacter. J. Appl. Poult. Res. 2018, 27, 299–303. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2019. R Package Version 1.4.3.01. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 2 December 2019).
- Oyarzabal, O.A. Reduction of Campylobacter spp. by Commercial Antimicrobials Applied during the Processing of Broiler Chickens: A Review from the United States Perspective. J. Food Prot. 2005, 68, 1752–1760. [Google Scholar] [CrossRef] [Green Version]
- Geornaras, I.; Yang, H.; Manios, S.; Andritsos, N.; Belk, K.E.; Nightingale, K.K.; Woerner, D.R.; Smith, G.C.; Sofos, J.N. Comparison of Decontamination Efficacy of Antimicrobial Treatments for Beef Trimmings against Escherichia coli O157:H7 and 6 Non-O157 Shiga Toxin-Producing E. coli Serogroups. J. Food Sci. 2012, 77, M539–M544. [Google Scholar] [CrossRef]
- Geornaras, I.; Yang, H.; Moschonas, G.; Nunnelly, M.C.; Belk, K.E.; Nightingale, K.K.; Woerner, D.R.; Smith, G.C.; Sofos, J.N. Efficacy of Chemical Interventions against Escherichia coli O157:H7 and Multidrug-Resistant and Antibiotic-Susceptible Salmonella on Inoculated Beef Trimmings. J. Food Prot. 2012, 75, 1960–1967. [Google Scholar] [CrossRef]
- Schmidt, J.W.; Bosilevac, J.M.; Kalchayanand, N.; Wang, R.; Wheeler, T.L.; Koohmaraie, M. Immersion in Antimicrobial Solutions Reduces Salmonella enterica and Shiga Toxin–Producing Escherichia coli on Beef Cheek Meat. J. Food Prot. 2014, 77, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Acuff, J.C. Evaluation of Individual and Combined Antimicrobial Spray Treatments on Chilled Beef Subprimal Cuts to Reduce Shiga Toxin-Producing Escherichia coli Populations. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2017. Available online: https://krex.k-state.edu/dspace/handle/2097/35504 (accessed on 8 February 2020).
- Scott-Bullard, B.R.; Geornaras, I.; Delmore, R.J.; Woerner, D.R.; Reagan, J.O.; Morgan, J.B.; Belk, K.E. Efficacy of a Blend of Sulfuric Acid and Sodium Sulfate against Shiga Toxin–Producing Escherichia coli, Salmonella, and Nonpathogenic Escherichia coli Biotype I on Inoculated Prerigor Beef Surface Tissue. J. Food Prot. 2017, 80, 1987–1992. [Google Scholar] [CrossRef]
- Yang, X.; Bullard, B.R.; Geornaras, I.; Hu, S.; Woerner, D.R.; Delmore, R.J.; Morgan, J.B.; Belk, K.E. Comparison of the Efficacy of a Sulfuric Acid–Sodium Sulfate Blend and Lactic Acid for the Reduction of Salmonella on Prerigor Beef Carcass Surface Tissue. J. Food Prot. 2017, 80, 809–813. [Google Scholar] [CrossRef]
- Muriana, P.M.; Eager, J.; Wellings, B.; Morgan, B.; Nelson, J.; Kushwaha, K. Evaluation of Antimicrobial Interventions against E. coli O157:H7 on the Surface of Raw Beef to Reduce Bacterial Translocation during Blade Tenderization. Foods 2019, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Britton, B.C.; Geornaras, I.; Reagan, J.O.; Mixon, S.; Woerner, D.R.; Belk, K.E. Antimicrobial Efficacy of Acidified Peroxyacetic Acid Treatments Against Surrogates for Enteric Pathogens on Prerigor Beef. Meat Muscle Biol. 2020, 4. [Google Scholar] [CrossRef]
- Olson, E.G.; Wythe, L.A.; Dittoe, D.K.; Feye, K.M.; Ricke, S. Application of Amplon in Combination with Peroxyacetic Acid for the Reduction of Nalidixic Acid–Resistant Salmonella Typhimurium and Salmonella Reading on Skin-on, Bone-in Tom Turkey Drumsticks. Poult. Sci. 2020, 99, 6997–7003. [Google Scholar] [CrossRef]
- Kim, S.A.; Park, S.H.; Lee, S.I.; Owens, C.M.; Ricke, S.C. Assessment of Chicken Carcass Microbiome Responses During Processing in the Presence of Commercial Antimicrobials Using a Next Generation Sequencing Approach. Sci. Rep. 2017, 7, 43354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedel, C.T.; Brøndsted, L.; Rosenquist, H.; Haxgart, S.N.; Christensen, B.B. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat. J. Food Prot. 2009, 72, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, L.J.; Bowers, J.W.J.; Townsend, J.C.; McKee, S.R. The Microbial and Quality Properties of Poultry Carcasses Treated with Peracetic Acid as an Antimicrobial Treatment. Poult. Sci. 2008, 87, 2390–2398. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.M.; Bauermeister, L.J.; Bratcher, C.L.; Singh, M.; McKee, S.R. Salmonella and Campylobacter Reduction and Quality Characteristics of Poultry Carcasses Treated with Various Antimicrobials in a Post-Chill Immersion Tank. Int. J. Food Microbiol. 2013, 165, 281–286. [Google Scholar] [CrossRef]
- Purnell, G.; James, C.; James, S.J.; Howell, M.; Corry, J.E.L. Comparison of Acidified Sodium Chlorite, Chlorine Dioxide, Peroxyacetic Acid and Tri-Sodium Phosphate Spray Washes for Decontamination of Chicken Carcasses. Food Bioprocess. Technol. 2013, 7, 2093–2101. [Google Scholar] [CrossRef]
- Kataria, J.; Vaddu, S.; Rama, E.N.; Sidhu, G.; Thippareddi, H.; Singh, M. Evaluating the Efficacy of Peracetic Acid on Salmonella and Campylobacter on Chicken Wings at Various pH Levels. Poult. Sci. 2020, 99, 5137–5142. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, M.; Cosby, D.E.; Cox, N.A.; Thippareddi, H. Efficacy of Peroxyacetic Acid in Reducing Salmonella and Campylobacter spp. Populations on Chicken Breast Fillets. Poult. Sci. 2020, 99, 2655–2661. [Google Scholar] [CrossRef]
- Smith, J.; Corkran, S.; McKee, S.R.; Bilgili, S.F.; Singh, M. Evaluation of Post-Chill Applications of Antimicrobials against Campylobacter jejuni on Poultry Carcasses. J. Appl. Poult. Res. 2015, 24, 451–456. [Google Scholar] [CrossRef]
- Imlay, J.A. Pathways of Oxidative Damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Kitis, M. Disinfection of Wastewater with Peracetic Acid: A Review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic Acids as Antimicrobials to Control Salmonella in Meat and Poultry Products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Stratford, M.; Plumridge, A.; Nebe-von-Caron, G.; Archer, D.B. Inhibition of Spoilage Mould Conidia by Acetic Acid and Sorbic Acid Involves Different Modes of Action, Requiring Modification of the Classical Weak-Acid Theory. Int. J. Food Microbiol. 2009, 136, 37–43. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. GRAS Notices, GRN No. 408: Sulfuric Acid and Sodium Sulfate; 2012. Available online: https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=408 (accessed on 7 February 2020).
Strain ID | Origin | Source |
---|---|---|
FSIS21822450 | Chicken drumsticks | USDA-FSIS-OPHS a |
FSIS21822588 | Chicken drumsticks | USDA-FSIS-OPHS |
FSIS11815850 | Ground chicken | USDA-FSIS-OPHS |
CVM N55886 | Chicken wings | FDA-CVM b |
CVM N56299 | Chicken wings | FDA-CVM |
CVM N16C024 | Chicken breast | FDA-CVM |
Treatment | Mean C. jejuni Populations (log CFU/mL ± SD) | |
---|---|---|
0 h | 24 h | |
Control | 3.9 ± 0.1 a,z | 3.7 ± 0.3 a,z |
Water | 3.4 ± 0.1 b,z | 3.2 ± 0.2 b,z |
SSS (pH 1.2) | 2.2 ± 0.1 c,z | 1.6 ± 0.2 c,y |
Formic acid (1.5%) | 2.1 ± 0.2 cd,z | 1.2 ± 0.1 cd,y |
PAA (550 ppm) | 1.7 ± 0.3 d,z | 1.4 ± 0.4 c,z |
SSS-aPAA | 1.7 ± 0.3 d,z | 0.9 ± 0.2 de,y |
FA-aPAA | 1.8 ± 0.2 cd,z | <0.6 ± 0.5 e,y * |
Treatment | Mean C. jejuni Populations (log CFU/mL ± SD) | |
---|---|---|
0 h | 24 h | |
Control | 3.9 ± 0.1 a,z | 3.7 ± 0.3 a,y |
Water | 3.6 ± 0.1 b,z | 3.5 ± 0.2 ab,z |
SSS (pH 1.2) | 3.4 ± 0.2 bc,z | 3.3 ± 0.2 bc,z |
Formic acid (1.5%) | 3.2 ± 0.2 cd,z | 3.0 ± 0.2 cd,y |
PAA (550 ppm) | 3.0 ± 0.2 de,z | 2.8 ± 0.2 d,z |
SSS-aPAA | 2.8 ± 0.1 e,z | 2.4 ± 0.5 e,y |
FA-aPAA | 2.7 ± 0.1 e,z | 2.1 ± 0.4 e,y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, S.V.; Geornaras, I.; Nair, M.N.; Belk, K.E. Evaluation of Immersion and Spray Applications of Antimicrobial Treatments for Reduction of Campylobacter jejuni on Chicken Wings. Foods 2021, 10, 903. https://doi.org/10.3390/foods10040903
Gonzalez SV, Geornaras I, Nair MN, Belk KE. Evaluation of Immersion and Spray Applications of Antimicrobial Treatments for Reduction of Campylobacter jejuni on Chicken Wings. Foods. 2021; 10(4):903. https://doi.org/10.3390/foods10040903
Chicago/Turabian StyleGonzalez, Sara V., Ifigenia Geornaras, Mahesh N. Nair, and Keith E. Belk. 2021. "Evaluation of Immersion and Spray Applications of Antimicrobial Treatments for Reduction of Campylobacter jejuni on Chicken Wings" Foods 10, no. 4: 903. https://doi.org/10.3390/foods10040903
APA StyleGonzalez, S. V., Geornaras, I., Nair, M. N., & Belk, K. E. (2021). Evaluation of Immersion and Spray Applications of Antimicrobial Treatments for Reduction of Campylobacter jejuni on Chicken Wings. Foods, 10(4), 903. https://doi.org/10.3390/foods10040903