Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method
Abstract
:1. Introduction
2. Nutrient Contents
2.1. Biological Factors: Insect Species, Developmental Stage, Sex and Caste, Organ and Ecotype or Biological Variants
2.1.1. Insect Species
2.1.2. Developmental Stage
2.1.3. Sex and Caste
2.1.4. Organs
2.1.5. Ecotype or Biological Variations
2.2. Ecosystem and Insect Habitat
2.3. Insect Feed
2.3.1. Plant Material
2.3.2. Laboratory Diets
2.3.3. Plant Based by-Products
2.4. Insect Processing and Product Quality
2.4.1. Lepidoptera
2.4.2. Coleoptera
2.4.3. Orthoptera
2.4.4. Blattodea
3. Insect Quality
3.1. Content of Anti-Nutrients
3.2. Contamination with Chemical Pesticides, Inorganic Products and Infestations with Insect
3.3. Microbial Contamination
3.4. Allergenic Proteins
3.5. Food Fortification
4. Impact of Insect Quality on Consumers’ Preference and Acceptability
5. Conclusions and Suggestions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bequaert, J. Insects as food: How they have augmented the food supply of mankind in early and recent years. Nat. Hist. J. 1921, 21, 191–200. [Google Scholar]
- Bergier, E. Peuples Entomophages et Insectes Comestibles: Étude Sur les Moeurs de L’Homme et de L’Insecte; Imprimérie Rullière Frères: Avignon, France, 1941. [Google Scholar]
- Bodenheimer, F.S. Insects as human food. In Insects as Human Food: A Chapter of the Ecology of Man; Bodenheimer, F.S., Ed.; W. Junk: Hague, The Netherlands, 1951; pp. 7–38. [Google Scholar]
- Bogart, S.L.; Pruetz, J.D. Insectivory of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal. Am. J. Phys. Anthropol. 2011, 145, 11–20. [Google Scholar] [CrossRef]
- McGrew, W.C. The ‘other faunivory’ revisited: Insectivory in human and non-human primates and the evolution of human diet. J. Human Evol. 2014, 71, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. [Google Scholar]
- Gahukar, R.T. Entomophagy and human food security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Lensvelt, E.J.S.; Steenbekkers, L.P.A. Exploring consumer acceptance of entomophagy: A survey and experiment in Australia and the Netherlands. Ecol. Food Nutr. 2014, 53, 543–561. [Google Scholar] [CrossRef]
- Shouteten, J.J.; De Steur, H.; De Pelsmaeker, S.; Lagast, S.; Juvinal, J.G.; De Bourdeaudhuij, L.; Verbeke, W.; Gellynck, X. Functional and sensory profiling of insect-, plant- and meat-based burgers under blind, expected and informed conditions. Food Qual. Prefer. 2016, 52, 27–31. [Google Scholar] [CrossRef]
- Menozzi, D.; Sogari, G.; Veneziani, M.; Simoni, E.; Mora, C. Eating novel foods: An application of the theory of planned behaviour to predict the consumption of an insect-based product. Food Qual. Prefer. 2017, 59, 27–34. [Google Scholar] [CrossRef]
- Tan, H.S.G.; House, J. Consumer acceptance of insects as food: Integrating psychological and socio-cultural perspectives. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Berlin, Germany, 2018; pp. 375–386. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. What governs selection and acceptance of edible insect species? In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Berlin, Germany, 2018; pp. 331–351. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Meyer-Rochow, V.B. Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North East India). J. Ethnobiol. Ethnomed. 2011, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravorty, J.; Ghosh, S.; Meyer-Rochow, V.B. Comparative survey of entomophagy and entomotherapeutic practices in six tribes of Eastern Arunachal Pradesh (India). J. Ethnobiol. Ethnomed. 2013, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Rochow, V.B.; Nonaka, K.; Boulidam, S. More feared than revered: Insects and their impact on human societies with some specific data on the importance of entomophagy in a Laotian setting. Entomol. Heute 2008, 20, 25. [Google Scholar]
- Muafor, F.J.; Genetegha, A.A.; le Gall, P.; Levang, P. Exploitation, Trade and Farming of Palm Weevil Grubs in Cameroon; Center for International Forestry Research Content: Bogor, Indonesia, 2015. [Google Scholar]
- Gahukar, R.T. Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Glob. Food Secur. 2020, 25, 100348. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Meyer-Rochow, V.B. Chemical composition of Aspongopus nepalensis Westwood 1837 (Hemiptera; Pentatomidae), a common food insect of tribal people in Arunachal Pradesh (India). Int. J. Vitam Nutr. Res. 2011, 81, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A. Insects as food in Laos and Thailand—A case of “Westernization”? Asian J. Soc. Sci. 2019, 47, 204–223. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.G.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.J.S. Extraction and characterization of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Zhou, J.; Han, D. Proximate, amino acid and mineral composition of pupae of the silkworm, Antheraea pernyl in China. J. Food Compos. Anal. 2006, 19, 850–853. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Uyttenbroeck, R.; Hatt, S.; Malik, P.; Lebecque, S.; Hamaidia, M.; Miazek, K.; Goffin, D.; Willems, L.; et al. Grasshopper s a food resource? A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 337–352. [Google Scholar]
- Fogang Mba, A.R.; Kansci, G.; Viau, M.; Hafnaoui, N.; Meynier, A.; Demmano, G.; Genot, C. Lipid and amino acid profiles support the potential of Rhynchophorus phoenicis larvae for human food. J. Food Compos. Anal. 2017, 60, 64–73. [Google Scholar] [CrossRef]
- Gahukar, R.T. Edible insects farming: Efficiency and impact on family livelihood, food security and environment compared to livestock and crops. In Insects as Sustainable Food Ingredients: Production, Processing and Food Application; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Elsevier Inc.: New York, NY, USA, 2016; pp. 85–111. [Google Scholar]
- Sun-Waterhouse, D.; Waterhouse, G.I.N.; You, L.; Zhang, J.; Liu, J.; Liu, Y.; Ma, L.; Gao, J.; Dong, Y. Transforming insect biomass into consumer wellness foods: A review. Food Res. Int. 2016, 89, 129–151. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, P.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed insects? A comparison using two nutrient profiling models developed to combat over- and under-nutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Jung, C. Insects used as food and feed: isn’t that what we all need? Foods 2020, 9, 1003. [Google Scholar] [CrossRef] [PubMed]
- Ying, F.; Xiaoming, C.; Long, S.; Zhiyong, C. Common edible wasps in Yunnan Province, China and their nutritional value. In Forest Insects as Food: Human Bite Back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010; pp. 93–98. [Google Scholar]
- Ghosh, S.; Namin, S.M.; Meyer-Rochow, V.B.; Jung, C. Chemical composition and nutritional value of different species of Vespa hornets. Foods 2021, 10, 418. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional value and chemical composition of larvae, pupae and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia Pac. Entomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Ghosh, S.; Chuttong, B.; Burgett, M.; Meyer-Rochow, V.B.; Jung, C. Nutritional value of brood and adult workers of the Asia honeybee species Apis cerana and Apis dorsata. In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Mariod, A.A., Ed.; Springer: Cham, Switzerland, 2020; pp. 265–273. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Chuttong, B.; Burgett, M. Nutritional aspects of the dwarf honeybee (Apis florea F.) for human consumption. In The Future Role of Dwarf Honeybees in Natural and Agricultural Systems; Abrol, D.P., Ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 137–145. [Google Scholar]
- Akullo, J.; Agea, J.G.; Obaa, B.B.; Okwee-Acai, J.; Nokimbugwe, D. Nutritional composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. Int. Food Res. J. 2018, 25, 159–166. [Google Scholar]
- Omotoso, O.T. Nutrition composition, mineral analysis and antinutrient factors of Oryctes rhinoceros L. (Scarabaeidae: Coleoptea) and winged termites, Macrotermes nigeriensis Sjostedt (Termitidae: Isoptera). Br. J. Appl. Sci. Technol. 2015, 8, 97–106. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C.; Meyer-Rochow, V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2016, 19, 711–720. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Kouřimska, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional potential of selected insect species reared on the Island of Sumatra. Int. J. Environ. Res. Public Health 2017, 14, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bbosa, T.; Ndagire, C.T.; Mukisa, I.M.; Fiaboe, K.K.M.; Nakimbugwe, D. Nutritional characteristics of selected insects in Uganda for use as alternative protein sources in food and feed. J. Insect Sci. 2019, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Nyakeri, E.M.; Ogola, H.J.; Ayieko, M.A.; Amimo, F.A. An open system for farming black soldier fly larvae as a source of proteins for small scale poultry and fish production. J. Insects Food Feed 2017, 3, 51–56. [Google Scholar] [CrossRef]
- Anvo, M.P.M.; Toguyeni, A.; Otchoumou, K.; Zoungrana-Kabore, C.Y.; Kouamelan, E.P. Nutritional qualities of edible caterpillars, Cirina butyrospermi in southeastern of Burkina Faso. Int. J. Innov. Appl. Stud. 2016, 18, 639–645. [Google Scholar]
- Chakravorty, J.; Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Pérez-Ramírez, R.; Torres-Castillo, J.A.; Barrientos-Lazano, L.; Almaguee-Sierra, P.; Torres-Acosta, R.I. Schistocerca piceifrons piceifrons as a source of compounds of biotechnological and nutritional interest. J. Insect Sci. 2019, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Banjo, A.D.; Lawal, O.A.; Songonuga, E.A. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006, 5, 298–301. [Google Scholar]
- Kinyuru, J.N.; Konyole, S.O.; Roos, N.; Onyango, C.A.; Owino, V.O.; Owuor, B.O.; Estambale, B.B.; Friis, H.; Aagaard-Hansen, J.; Kenji, G.M. Nutrient composition of four species of winged termites consumed in western Kenya. J. Food Compos. Anal. 2013, 30, 120–124. [Google Scholar] [CrossRef]
- Ramos-Elorduy Blásquez, J.; Moreno, J.M.P.; Camacho, V.H.M. Could grasshoppers be a nutritive meal? Food Nutr. Sci. 2012, 3, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Onyeike, E.N.; Ayalogu, E.O.; Okaraonye, C.C. Nutritive value of the larvae of raphia palm beetle (Orytes rhinoceros) and weevil (Rhynchophorus pheonicis). J. Sci. Food Agric. 2005, 85, 1822–1828. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Correa, S.C. Edible insects of the state of Mexico and determination of their nutritive values. An. Inst. Biol. Univ. Nac. Auton. Mex. Ser. Zool. 1998, 69, 65–104. [Google Scholar]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; de Guevara, O.L. Nutritional value of edible insects from the State of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Ghosh, S.; Choi, K.C.; Kim, S.; Jung, C. Body compositional changes of fatty acid and amino acid from the queen bumblebee, Bombus terrestris during overwintering. J. Apic. 2017, 32, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Mariod, A.A.; Abdel-Wahab, S.I.; Ain, N.M. Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. Int. J. Trop. Insect Sci. 2011, 31, 145–153. [Google Scholar] [CrossRef]
- Ekpo, K.E.; Onigbinde, A.O.; Asia, I.O. Pharmaceutical potentials of the oils of some popular insects consumed in southeast Nigeria. Afr. J. Pharm. Pharmacol. 2009, 3, 51–57. [Google Scholar]
- Santos Oliveira, J.F.; Passos de Carvalho, J.; Bruno de Sousa, R.F.X.; Madalena, S.M. The nutritional value of four species of insects consumed in Angola. Ecol. Food Nutr. 1976, 5, 91–97. [Google Scholar] [CrossRef]
- Bukkens, S.G.F. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Ukhun, M.E.; Osasona, M.A. Aspects of the nutritional chemistry of Macrotermes bellicosus. Nutr. Rep. Int. 1985, 32, 1121–1130. [Google Scholar]
- Igwe, C.U.; Ujowundu, C.O.; Nwaogu, L.A.; Okwu, G.N. Chemical analysis of an edible African termite, Macrotermes nigeriensis, a potential antidote to food security problem. Biochem. Anal. Biochem. 2011, 1, 1000105. [Google Scholar] [CrossRef] [Green Version]
- Womeni, H.M.; Linder, M.; Tiencheu, B.; Mbiapo, F.T.; Villeneuve, P.; Fanni, J.; Parmentier, M. Oils of Oryctes owariensis and Homorocoryphus nitidulus consumed in Cameroon: Sources of linoleic acid. J. Food Technol. 2009, 7, 54–58. [Google Scholar]
- Ashiru, M.O. The food value of the larvae of Anaphe venata Butler (Lepidoptera: Notodontidae). Ecol. Food Nutr. 1989, 22, 313–320. [Google Scholar] [CrossRef]
- Ghosh, S.; Sohn, H.-Y.; Pyo, S.-J.; Jensen, A.B.; Meyer-Rochow, V.B.; Jung, C. Nutritional composition of Apis mellifera drones from Korea and Denmark as a potential sustainable alternative food source: Comparison between developmental stages. Foods 2020, 9, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ademolu, K.O.; Idowu, A.B.; Olatunde, G.O. Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pyrgomorphidae) during post- embryonic development. Afr. Entomol. 2010, 18, 360–364. [Google Scholar] [CrossRef]
- Kulma, M.; Plachý, V.; Kouřimská, L.; Vrabec, V.; Bubová, Y.; Adámková, A.; Hučko, B. Nutritional value of three Blattodea species used as feed for animals. J. Anim. Feed Sci. 2016, 25, 354–360. [Google Scholar] [CrossRef]
- Kipkoech, C.; Kinyuru, J.N.; Imathiu, S.; Roos, N. Use of house cricket to address food security in Kenya; nutritional and chitin composition of farmed crickets as influenced by age. Afr. J. Agric. Res. 2017, 12, 3189–3197. [Google Scholar] [CrossRef]
- Ombeni, B.J.; Munyuli, T.; Fideline, N.; Espoir, I.; Betu, M. Profile in amino acids and fatty acids of Bunaeopsis aurantiaca caterpillars eaten in South Kivu Province, eastern of the Democratic Republic of Congo. Ann. Food Sci. Technol. 2018, 19, 566–576. [Google Scholar]
- Ramos-Elorduy, J.; Gonazález, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Omotoso, O.T.; Adedire, C.O. Nutrient composition, mineral content and the solubility of the proteins of palm weevil, Rhynchophorus phoenicis. (Coleoptera: Curculionidae). J. Zhejiang Univ. Sci. B. 2007, 8, 318–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opara, M.N.; Sanyigha, F.T.; Ogbuewu, I.P.; Okoli, I.C. Studies on the production trend and quality characteristics of palm grubs in the tropical rainforest zone of Nigeria. Int. J. Agric. Technol. 2012, 8, 851–860. [Google Scholar]
- Chinweuba, A.J.; Otuokere, I.E.; Opara, M.O.; Okafor, G.U. Nutritional potentials of Rhynchophorus phoenicis (Rahia palm weevil): Implications for food security. Asian J. Res. Chem. 2011, 4, 452–454. [Google Scholar]
- Omotoso, O.T. The nutrient profile of the development stages of palm beetle, Oryctes rhinoceros. Br. J. Environ. Sci. 2018, 6, 1–11. [Google Scholar]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Mahesh, D.S.; Vidharthi, B.S.; Narayanaswamy, T.K.; Subbarayappa, C.T.; Muthuraju, R.; Shruthi, P. Bionutritional science of silkworm pupal residue to mine: New ways for utilization. Int. J. Adv. Res. Biol. Sci. 2015, 2, 135140. [Google Scholar]
- Trivedy, K.; Nirmal Kumar, S.; Mondal, M.; Bhat, A.K. Protein binding pattern and major amino acid component in de-oiled pupal powder of silkworm, Bombyx mori Linn. J. Entomol. 2008, 5, 10–16. [Google Scholar] [CrossRef]
- Trivedy, K.; Nirmal kumar, S.; Quadri, S.M.H. Comparative study of major nutritional component of defatted and normal pupal powder of silkworm, Bombyx mori. Indian J. Seric. 2011, 50, 190–199. [Google Scholar]
- Cai, J.R.; Yuan, L.M.; Liu, B.; Sun, L. Non-destructive gender identification of silkworm cocoon using x-ray imaging technology coupled with multivariate data analysis. Anal. Methods 2014, 6, 7224–7233. [Google Scholar] [CrossRef]
- Kiuchi, T.; Koga, H.; Kawamoto, M.; Shoji, K.; Sakai, H.; Arai, Y.; Tshihara, G.; Kawaoka, S.; Sugano, S.; Shimada, T.; et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 2014, 509, 633666. [Google Scholar] [CrossRef]
- Nakasone, S.; Ito, T. Fatty acid composition of the silkworm, Bombyx mori L. J. Insect Physiol. 1967, 13, 1237–1246. [Google Scholar] [CrossRef]
- Kotake-Nara, E.; Yamamoto, K.; Nozawa, M.; Miyashita, K.; Murakami, T. Lipid profiles and oxidative stability of silkworm pupal oil. J. Oleo Sci. 2002, 51, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Paul, D.; Dey, S. Nutrient content of sexual and worker forms of the subterranean termite, Reticulitermes sp. Indian J. Tradit. Knowl. 2011, 10, 505–507. [Google Scholar]
- Ntukuyoh, A.I.; Udiong, D.S.; Ikpe, E.; Akpakpan, A.E. Evaluation of nutritional value of termites (Macrotermes bellicosus), soldiers, workers and queen in the Niger Delta region of Nigeria. Int. J. Food Nutr. Saf. 2012, 1, 60–65. [Google Scholar]
- Idowu, A.B.; Ademolu, K.O.; Bamidele, J.A. Nutrition and heavy metal levels in the mound termite, Macrotermes bellicosus (Smeathman) (Isoptera: Termitidae), at three sites under varying land use in Abeokuta, southwestern Nigeria. Afr. Entomol. 2014, 22, 156–162. [Google Scholar] [CrossRef]
- Borgohain, M.; Borkotoki, A.; Mahanta, R. Total lipid, triglyceride, and cholesterol contents in Oecophylla smaragdina Fabricius consumed in upper Assam of northeast India. Int. J. Sci. Res. Publ. 2014, 4, 1–5. [Google Scholar]
- Raksakantong, P.; Meeso, N.; Kubola, J.; Sirimornpun, S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res. Int. 2010, 43, 350–355. [Google Scholar] [CrossRef]
- Dué, E.A.; Zabri, H.C.B.L.; Koudio, J.P.E.N.; Kouamé, L.P. Fatty acid compositionand properties of skin and digestive fat content oils from Rhynchophorus palmarum L. larva. Afr. J. Biochem. Res. 2009, 3, 89–94. [Google Scholar]
- Mba, A.R.F.; Kansci, G.; Viau, M.; Ribourg, L.; Genot, C. Growing conditions and morphotypes of African palm weevil (Rhynchophorus phoenicis) larvae influence their lipophilic nutrient but not their amino acid composition. J. Food Compos. Anal. 2018, 69, 87–97. [Google Scholar] [CrossRef]
- Ssepuuya, G.R.; Mukisa, J.M.; Nakimbugwe, D. Nutritional composition, quality and shelf stability of processed Ruspolia nitidula (edible grasshoppers). Food Sci. Nutr. 2017, 5, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaneto, D.; Tommaseo-Ponzetta, M.; Galli, C.; Rise, P.; Glew, R.H.; Paoletti, M.G. Difference in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr. 2011, 50, 351–367. [Google Scholar] [CrossRef]
- Williams, D.D.; Williams, S.S. Aquatic insects and their potential to contribute to the diet of the globally expanding human population. Insects 2017, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Ssepuuya, G.R.; Smets, R.; Nakimbugwe, D.; van der Borght, M.; Claes, J. Nutritional composition of long-horned grasshopper, Ruspolia differens Serville: Effect of swarming season and sourcing geographical area. Food Chem. 2019, 301, 125305. [Google Scholar] [CrossRef]
- Madibela, O.R.; Mokwena, K.K.; Nsoso, S.J.; Thema, T.F. Chemical composition of mopane worm sampled at three different sites in Botswana subjected to different processing. Trop. Anim. Health Prod. 2009, 41, 935–942. [Google Scholar] [CrossRef]
- Singh, P. Artificial Diets for Insects, Mites and Spiders; IFI/Plenum Data Company, Springer: New York, NY, USA, 1977; 594p. [Google Scholar]
- Purushothaman, S.; Muthuvelu, S.; Balasubramanian, U.; Murugesan, P. Biochemical analysis of mulberry leaves (Morus alba L.) and silkworm, Bombyx mori enriched with vermiwash. J. Entomol. 2012, 9, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Ebenebe, C.I.; Okpoko, V.O.; Ufele, A.N.; Amobi, M.I. Survivability, growth performance and nutrient composition of the African palm weevil (Rhynchophous phoenicis Fabricius) reared on four different substrates. J. Biosci. Biotechnol. Discov. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Malinga, G.M.; Valtonen, A.; Hiltunen, M.; Lehtovaara, V.J.; Nyeko, P.; Roininen, H. Performance of the African edible bush-cricket, Ruspolia differens on single and mixed diets containing inflorescences of their host plant species. Entomol. Exp. Appl. 2020, 168, 12932. [Google Scholar] [CrossRef]
- Quaye, B.; Atuahene, C.C.; Donkoh, A.; Adjei, B.M.; Opoku, O.; Amankrah, M.A. Nutritional potential and microbial status of African palm weevil (Rhynchophorus phoenicis) larvae raised on alternative feed resources. Am. Sci. Res. J. Eng. Technol. Sci. 2018, 48, 45–52. [Google Scholar]
- Oonincx, D.G.A.B.; van der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2011, 30, 9–16. [Google Scholar] [CrossRef]
- Cito, A.; Longo, S.; Mazza, G.; Dreassi, E.; Francardi, V. Chemical evaluation of the Rhynchophorus ferrugineus larvae fed on different substrates as human food source. Food Sci. Technol. Int. 2017, 23, 529–539. [Google Scholar] [CrossRef]
- Atuahene, C.C.; Adjei, M.B.; Adu, M.A.; Quaye, B.; Opare, M.B.; Benney, R. Evaluating potential of edible insects (palm weevil, Rhynchophorus phoenicis larvae) as an alternative protein source to humans. Anim. Sci. Adv. 2017, 7, 1897–1900. [Google Scholar]
- Rutaro, K.; Malinga, G.M.; Lehtovaara, V.J.; Opoke, R.; Nyeko, P.; Roininen, H.; Valtonen, A. Fatty acid content and composition in edible Ruspolia differens feeding on mixtures of natural food plants. BMC Res. Notes 2018, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Rutaro, K.; Malinga, G.M.; Lehtovaara, V.J.; Opoke, R.; Valtonen, A.; Kwetegyeka, J.; Nyeko, P.; Roininen, H. The fatty acid composition of edible grasshopper, Ruspolia differens (Serville) (Orthoptera; Tettigoniidae) feeding on diversifying diets of host plants. Entomol. Res. 2018, 48, 490–498. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Ghosh, S.; Jung, C. Farming of insects for food and feed in South Korea: Tradition and innovation. Berl. Muenchener Tieraerztliche Wochenschr. 2019, 132, 236–244. [Google Scholar] [CrossRef]
- Rutaro, K.; Malinga, G.M.; Opoke, R.; Lehtovaara, V.J.; Omujal, F.; Nyeko, P.; Valtonen, A. Artificial diets determine fatty acid composition in edible Ruspolia differens (Orthoptera; Tettigoniidae). J. Asia Pac. Entomol. 2018, 21, 1342–1349. [Google Scholar] [CrossRef]
- Ghaly, A.E. The use of insects as human food in Zambia. Online J. Biol. Sci. 2009, 9, 93–104. [Google Scholar] [CrossRef]
- Ekpo, K.E. Nutritional and biochemical evaluation of the protein quality of four popular insects consumed in southern Nigeria. Arch. Appl. Sci. Res. 2011, 3, 24–40. [Google Scholar]
- Stull, V.J.; Kersten, M.; Bergmans, R.S.; Patz, J.A.; Paskewitz, S. Crude protein, amino acid, and iron content of Tribolium molitor (Coleoptera: Tenebrionidae) reared on an agricultural byproduct from production: An exploratory study. Ann. Entomol. Soc. Am. 2019, 112, 533–543. [Google Scholar] [CrossRef]
- De Wit, L. Rearing of Bombyx mori with Vitamin D-Enriched Diet. Ph.D. Thesis, University of Applied Sciences, Almere, The Netherlands, 2017. [Google Scholar]
- Rani, A.G.; Premlatha, C.; Raj, R.S.; Ranjit Singh, A.J. Impact of supplementation of Amway protein on the economic characters and energy budget of silkworm, Bombyx mori L. Asian J. Anim. Sci. 2011, 10, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sorjonen, J.M.; Valtonen, A.; Hirvisalo, E.; Karhapaa, M.; Lindgren, J.; Nilarmila, P.; Mooney, P.; Maki, M.; Sirjander-Rasi, H.; Tapio, M.; et al. The plant-based by-product diets for the mass rearing of Acheta domesticus and Gryllus bimaculatus. PLoS ONE 2019, 14, e0218830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorjonen, J.M.; Lehtovaara, V.J.; Immmonen, J.; Karhapää, M.; Valtonen, A.; Roininn, H. Growth performance and food conversion of Ruspolia differens on plant-based by product diets. Entomol. Exp. Appl. 2020, 168, 12915. [Google Scholar] [CrossRef]
- Lehtovaara, V.J.; Valtonen, A.; Sorjonen, J.M.; Hiltunen, M.; Rutaro, K.; Malinga, G.M.; Roininen, H. The fatty acid contents of the edible grasshopper, Ruspolia differens can be manipulated using artificial diets. J. Insects Food Feed 2017, 3, 253–262. [Google Scholar] [CrossRef]
- Melghar-Lalanne, G.; Hernandez-Alvarez, A.J.; Salinas-Castro, A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kewuyemi, Y.; Kesa, H.; Chinna, C.E.; Adebo, O.A. Fermented edible insects for promoting food security in Africa. Insects 2020, 11, 283. [Google Scholar] [CrossRef]
- Son, Y.J.; Choi, S.Y.; Hwang, I.K.; Nho, C.W.; Kim, S.H. Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods 2020, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anuduang, A.; Loo, Y.Y.; Jomduang, S.; Lim, S.J.; Mustapha, W.A.W. Effect of thermal processing on physico-chemical and antioxidant propertie in mulberry silkworm (Bombyx mori L.) powder. Foods 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.P.; Williams, J.R.; Kirabo, A.; Chester, D.; Peterson, M. Nutrient content and health benefits of insects. In Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Elsevier Inc.: New York, NY, USA, 2016; pp. 61–84. [Google Scholar]
- Meyer-Rochow, V.B.; Chakravorty, J. Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Appl. Entomol. Zool. 2013, 48, 105–112. [Google Scholar] [CrossRef]
- Sabolová, M.; Adámková, A.; Kouřimská, L.; Chrpová, D.; Pánek, J. Minor lipophilic compounds in edible insects. Potravinarsmt 2016, 10, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Nyangena, D.N.; Mutungi, C.; Imathiu, S.; Kinyuru, J.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods 2020, 9, 574. [Google Scholar] [CrossRef]
- Winitchai, S.; Manoishori, T.; Abe, M.; Boonpisuttinant, K.; Manosroi, A. Free radical scavenging activity, tyrosinase inhibition activity and fatty acids composition of oils from pupae of native Thai silkworm (Bombyx mori L.). Kasetsart J. Nat. Sci. 2011, 45, 404–412. [Google Scholar]
- Sangavi, M.; Sarath, S. Byproducts of seri-industry and their applications. Kisan World 2017, 44, 21–23. [Google Scholar]
- Chavan, S.; Chinnaswamy, K.P.; Changalerayappa. Influence of mulberry varieties and silkworm breeds on biochemical constituent of oiled and de-oiled pupal powder. In Proceedings of the National Seminar on Tropical Sericulture, Bangalore, India, 28–30 December 1999; p. 57. [Google Scholar]
- Rao, P.U. Chemical composition and nutritional evaluation of spent silkworm pupae. J. Agric. Food Chem. 1994, 42, 2201–2203. [Google Scholar] [CrossRef]
- Pereira, N.R.; Ferrarese-Filho, O.; Matsushita, M.; de Souza, N.E. Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. J. Food Compos. Anal. 2003, 16, 451–457. [Google Scholar] [CrossRef]
- Ji, S.-D.; Nguyen, P.; Yoon, S.-M.; Kim, K.-Y.; Son, J.G.; Kweon, H.-Y.; Koh, Y.H. Comparison of nutrient composition and pharmacological effects of steamed and freeze-dried mature silkworm powders generated by four silkworm varieties. J. Asia Pac. Entomol. 2017, 20, 1410–1418. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Osabutey, A.F.; Nguyen, P.; Kim, S.B.; Jo, Y.-Y.; Kweon, H.Y.; Lee, H.-T.; Ji, S.-D.; Koh, Y.H. The experimental evidences of steamed amd freeze dried mature silkworm powder as the calorie restriction mimetics. Int. J. Indust. Entomol. 2019, 39, 1–8. [Google Scholar] [CrossRef]
- Nguyen, P.; Kim, K.-Y.; Kim, A.-Y.; Choi, B.-H.; Osabutey, A.F.; Park, Y.H.; Lee, H.-T.; Ji, S.D.; Koh, Y.H. Mature silkworm powders ameliorated scopolamine-induced amnesia by enhancing mitochondrial functions in the brains of mice. J. Func. Foods 2020, 67, 103886. [Google Scholar] [CrossRef]
- Kwiri, R.; Winini, C.; Muredzi, P.; Tongonya, J.; Gwala, W.; Mujuru, F.; Gwala, S.T. Mopane worm (Goniobrasia belina) utilization, a potential source of protein in fortified blended foods in Zimbabwe: A review. Glob. J. Sci. Front. Res. D Agric. Vet. 2014, 14, 55–67. [Google Scholar]
- Lautenschläger, T.; Neinhuis, C.; Kikongo, E.; Henle, T.; Förster, A. Impact of different preparations on the nutritional value of the edible caterpillar, Imbrasia epimethea from northern Angola. Eur. Food Res. Technol. 2016, 243, 769–778. [Google Scholar] [CrossRef]
- Megido, R.C.; Sablon, L.; Geuens, M.; Brostaux, Y.; Alabi, T.; Blecker, C.; Drugmand, D.; Haubruge, E.; Francis, F. Edible insects’ acceptance by Belgian consumers: Promising attitude for entomophagy development. J. Sens. Stud. 2014, 29, 14–20. [Google Scholar] [CrossRef]
- Van der Spieger, M.; Noordam, M.Y.; van der Fels-Klenx, H.J. Safety of novel protein sources (insects, microalgae, seaweed, duckweed and rapeseed) and legislative aspects for their application in food and feed production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef]
- Fogang Mba, A.R.; Kansci, G.; Viau, M.; Rougerie, R.; Genot, C. Edible caterpillars of Imbrasia truncata and Imbrasia epimethea contain lipids and proteins of high potential of nutrition. J. Food Compos. Anal. 2019, 79, 70–79. [Google Scholar] [CrossRef]
- Okaraonyre, C.C.; Ikewuchi, J.C. Nutritional potential of Oryctes rhinoceros larva. Pak. J. Nutr. 2009, 8, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Womeni, H.M.; Tiencheu, B.; Linder, B.; Nabayo, E.M.C.; Tenyang, N.; Mbiupo, F.T.; Villeneuve, F.J.; Parmentier, M. Nutritional value and effect of cooking, drying and storage process on some functional properties of Rhynchophorus phoenicis. Int. J. Life Sci. Pharm. Res. 2012, 2, 203–219. [Google Scholar]
- Severelini, C.; Azzolini, D.; Albenzio, M.; Deroesi, A. On printability, quality and nutritional properties of 3D printed cereal-based snacks enriched with edible insects. Food Res. Int. 2018, 106, 666–676. [Google Scholar] [CrossRef]
- Smetana, S.; Larki, N.A.; Pernutz, C.; Franke, K.; Bindrich, I.J.; Toepfl, S.; Heinz, V. Structure design of insect-based meat analogs with high-moisture extrusion. J. Food Eng. 2018, 229, 83–85. [Google Scholar] [CrossRef]
- Fombong, F.T.; van der Borght, M.; Broeck, J.V. Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect, Ruspolia differens. Insects 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinyuru, M.; Kenji, G.M.; Njoroge, S.M.; Ayieko, M. Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess Technol. 2010, 3, 778–782. [Google Scholar] [CrossRef]
- Ssepuuya, G.R.; Nakimbugwe, D.; de Winne, A.; Smets, R.; Claes, J.; van dr Borght, M. Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper, Ruspolia differens Serville. Food Res. Int. 2020, 129, 108831. [Google Scholar] [CrossRef] [PubMed]
- Haassan, N.M.E.; Hamed, S.Y.; Hassan, A.B.; Mohamed, M.E.; Babiker, E.E. Nutritional evaluation and physiological properties of boiled and fried tree locust. Pak. J. Nutr. 2008, 7, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Farina, M.F. How method of killing crickets impact the sensory qualities and physiochemical properties when prepared in a broth. Int. J. Gastron. Food Sci. 2017, 8, 19–23. [Google Scholar] [CrossRef]
- Akullo, J.; Agea, J.G.; Obaa, B.B.; Okwee-Acai, J.; Nokimbugwe, D. Process development, sensory and nutritional evaluation of honey spread enriched with edible insects’ flour. Afr. J. Food Sci. 2017, 11, 30–39. [Google Scholar] [CrossRef]
- Adeduntan, S.A. Nutritional and antinutritional characteristics of some insects foraging in Akure forest reserve Ondo state, Nigeria. J. Food Technol. 2005, 3, 563–567. [Google Scholar]
- Ekpo, K.E. Nutrient composition, functional properties and anti-nutrient content of Rhynchophorus phoenicis (F.) larva. Ann. Biol. Res. 2010, 1, 178–190. [Google Scholar]
- Ekop, E.A.; Udoh, A.I.; Akpan, P.E. Proximate and anti-nutrient composition of four edible insects in Akwa Ibom state, Nigeria. World J. Appl. Sci. Technol. 2010, 2, 224–231. [Google Scholar]
- Ganguly, A.; Chakravorty, R.; Das, M.; Gupta, M.; Mandal, D.K.; Haldar, P.; Ramos-Elorduy, J.; Moreno, J.M.P. A preliminary study on the nutrients and antinutrients in Oedaleus abruptus (Thunberg) (Orthoptera: Acrididae). Int. J. Nutr. Metab. 2013, 5, 60–65. [Google Scholar] [CrossRef]
- Shantibala, T.; Lokeshwari, R.K.; Debaraj, H. Nutritional and anti-nutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J. Insect Sci. 2014, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Haldar, P.; Mandal, D.K. Evaluation of nutrient quality of a short-horned grasshopper, Oxya hyla hyla Serville (Orthoptera: Acrididae), in search of new protein source. J. Entomol. Zool. Stud. 2016, 4, 193–197. [Google Scholar]
- Saeed, T.; Dagga, F.A.; Saraf, M. Analysis of residual pesticides present in edible insects captured in Kuwait. Arab Gulf J. Sci. Res. 1993, 11, 1–5. [Google Scholar]
- Samom, S. Edible aquatic insects vanishing from Loktak. The Assam Tribune, 19 May 2016.
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 2017, 100, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Shang, X.; Duo, L. Accumulation and spatial distribution of Cd, Cr and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Environ. Sci. Pollut. Res. Int. 2013, 20, 967–975. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, Y.; Wang, S.; Han, S.; Liu, J. Lead in the soil—mulberry (Morus alba L.); silkworm (Bombyx mori) food chain: Translocation and detoxification. Chemosphere 2015, 128, 171–177. [Google Scholar] [CrossRef]
- Fasunwon, B.T.; Banjo, A.D.; Jemine, T.A. Effect of Dermetes maculatus on the nutritional qualities of two edible insects (Oryctes boas and Rhynchophorus phoenicis). Afr. J. Food Agric. Nutr. Dev. 2011, 11, 5600–5613. [Google Scholar]
- Grabowski, N.T.; Klein, G. Microbiology of processed edible insect products- results of a preliminary survey. Int. J. Food Microbiol. 2016. [Google Scholar] [CrossRef]
- Fink, M. An experimental infection model for Tetrameres americana (Cram, 1927). Parasitol. Res. 2005, 95, 179–185. [Google Scholar] [CrossRef]
- Braide, W.; Nwaoguikpe, R.N. Assessment of microbiological quality and nutritional values of a processed edible weevil caterpillar (Rhynchophorus phoenicis) in Port Harcourt, southern Nigeria. Int. J. Biol. Chem. Sci. 2011, 5, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Musundire, R.; Osuga, I.M.; Cheseto, M.; Irungu, J.; Torto, B. Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers. PLoS ONE 2016, 11, e014914. [Google Scholar] [CrossRef]
- Braide, W.; Oranusi, S.; Udegbunam, L.I.; Akobondu, C.; Nwaoguikpe, R.N. Microbiological quality of an edible caterpillar of emperor moth, Bunaea alcinoe. J. Ecol. Nat. Environ. 2011, 3, 176–180. [Google Scholar]
- Mutungi, C.; Irungu, F.G.; Nduko, J.; Mutua, F.; Affoghon, H.; Nakjmbugwe, D.; Ekesi, S.; Fiabor, K.K.M. Post-harvest processes of edible insects in Africa. A review of processing methods and the implications for nutrition, safety and new products development. Crit. Rev. Food Sci. Nutr. 2019, 59, 276–298. [Google Scholar] [CrossRef] [Green Version]
- Klunder, H.C.; Wolkers-Roojackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Kamau, E.; Mutungi, C.; Kinyuru, J.; Imathiu, S.; Tanga, C.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Flaboe, K.K.M. Effect of packaging material, storage temperature and duration on the quality of semi-processed adult house cricket meal. J. Food Res. 2018, 7, 21–23. [Google Scholar] [CrossRef]
- Roncolini, A.; Cardinali, F.; Aquilanti, I.; Millanović, V.; Garofalo, C.; Sabbatini, R.; Abaker, M.S.S.; Pandolfi, M.; Pasquini, M.; Tavoletti, S.; et al. Investigating antibiotic resistance genes in marketed ready-to-eat small crickets (Acheta domesticus). J. Food Sci. 2019, 84, 3222–3232. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies. Int. J. Food Microbiol. 2017, 261, 11–18. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Cunha, L.; Sousa-Pinto, B.; Fonseca, J. Allergic risks of consuming edible insects. A systematic review. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Barre, A.; Velazquez, E.; Delpianque, A.; Caze-Subra, S.; Bienvenu, F.; Bienvenu, J.; Maudouit, A.; Simplicien, A.; Gamier, L.; Benoist, H.; et al. Cross-reacting allergens of edible insects. Rev. Fr. d’Allergologie 2016, 56, 522–532. [Google Scholar] [CrossRef]
- Barre, A.; Pichereau, C.; Velazquez, E.; Maudouit, A.; Simplicien, A.; Gamier, L.; Bienvenu, F.; Bienvenu, J.; Buriet-Schultz, O.; Auriol, C.; et al. Insights into the allergenic potential of the edible yellow mealworm (Tenebrio molitor). Foods 2019, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- De Gier, S.; Verhoeckx, K. Insect food allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Boukil, A.; Perreault, B.A.; Chamberland, J.; Mezdour, S.; Poulilot, Y.; Doyen, A. High hygrostatic pressure-assisted enzymatic hydrolysis affects mealworm allergenic proteins. Molecules 2020, 25, 2685. [Google Scholar] [CrossRef]
- Bukkens, S.G.F. Insects in the human diet: Nutritional aspects. In Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails; Paoletti, M.G., Ed.; Science Publishers: Enfield, NH, USA, 2005; pp. 545–577. [Google Scholar]
- Ayensu, J.; Lutterodt, H.; Annan, R.A.; Adusei, A.; Loh, S.P. Nutritional composition and acceptability of biscuits fortified with palm weevil (Rhynchophorus phoenicis Fabricius) and orange-fleshed sweet potato among pregnant women. Food Sci. Nutr. 2019, 7, 1807–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinyuru, M.; Kenji, G.M.; Njoroge, S.M. Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermes subhyalinus) from Lake Victoria region, Kenya. Afr. J. Food Agric. Nutr. Dev. 2009, 9, 1739–1750. [Google Scholar]
- Aguilar-Miranda, E.D.; Lopez, M.G.; Escamilla-Santana, C.; De La Rosa, P.B. Characteristics of maize flour Tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002, 50, 192–195. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meal emulsion under various formulations. J. Food Sci. 2017, 82, 2787–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A. Edible insects: Marketing the impossible? J. Insects Food Feed 2017, 3, 67–68. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Evans, J.D. Nested houses: Domestication dynamics of human-wasp relations in contemporary rural Japan. J. Ethnobiol. Ethnomed. 2017, 13, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, M.H.; Olsen, S.B.; Vedel, S.E.; Pambo, K.O.; Owino, V.O. Combining product attributes with recommendation and shopping location attributes to assess consumer preferences for insect-based food products. Food Qual. Prefer. 2017, 55, 45–57. [Google Scholar] [CrossRef]
- Netshifhethe, S.R.; Kunjeku, E.C.; Duncan, F.D. Human uses and indigenous knowledge of edible termites in Chombe district, Limpopo Province, South Africa. S. Afr. J. Sci. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Mmari, M.W.; Kinyuru, J.N.; Laswai, O.K.; Okoth, J.K. Traditions, beliefs and Indigenous technologies in connection with the edible longhorn grasshopper, Ruspolia differens (Serville) in Tanzania. J. Ethnobiol. Ethnomed. 2017, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Schäufele, I.; Albores, E.B.; Hamm, U. The role of species for the acceptance of edible insects: Evidence from a consumer survey. Br. Food J. 2019, 121, 2190–2204. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Hakko, H. Can edible grasshoppers and silkworm pupae be tasted by humans when prevented to see and smell these insects? J. Asia Pac. Entomol. 2018, 21, 616–619. [Google Scholar] [CrossRef]
- Siozios, S.; Massa, A.; Parr, C.l.; Verspar, R.L.; Hurst, G.D.D. DNA barcoding reveals incoorect labelling of insects sold as food in the UK. PeerJ 2020, 8, e8496. [Google Scholar] [CrossRef]
- Barsics, F.; Megido, R.C.; Brostaux, Y.; Barsics, C.; Blecker, C.; Haubruge, E.; Francis, F. Could new information influence attitude to food supplemented with edible insects? Br. Food J. 2017, 119, 2027–2039. [Google Scholar] [CrossRef]
- Van Thielen, L.; Vermuyten, S.; Storms, B.; Rumpold, B.; van Campenhout, L. Consumer acceptance of foods containing edible insects in Belgium two years after their introduction to the market. J. Insects Food Feed 2019, 5, 35–44. [Google Scholar] [CrossRef]
- Videback, P.N.; Grunert, K.G. Disgusting or delicious? Examining attitudinal ambivalence towards entomophagy among Danish consumers. Food Qual. Prefer. 2020, 83, 103913. [Google Scholar] [CrossRef]
- Barton, A.; Richardson, C.D.; McSweeney, M.B. Consumer attitudes toward entomophagy before and after evaluating cricket (Acheta domesticus)-based protein powders. J. Food Sci. 2020, 35, 781–788. [Google Scholar] [CrossRef]
- Delgado, M.C.; Chambers, E.; Carbonell-Barrachina, A.; Artiaga, L.N.; Quintanar, R.V.; Hernadez, A.B. Consumer acceptability in the USA, Mexico, and Spain of chocolate chip cookies made with partial insect powder replacement. J. Food Sci. 2020, 85, 1621–1628. [Google Scholar] [CrossRef]
- Ghosh, S.; Tchibozo, S.; Lammantchion, E.; Meyer-Rochow, V.B.; Jung, C. Observations on how people in two locations of the Plateau Département of Southeast Benin perceive entomophagy: A case study from West Africa. Front. Nutr. 2021, 8, 637385. [Google Scholar] [CrossRef] [PubMed]
- Schardong, I.S.; Freiberg, J.A.; Santana, N.A.; dos Santos Richads, N.S.P. Brazilian consumers’ perception of edible insects. Ciência Rural 2019, 49. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B.; Dekebo, A. Perception of entomophagy by residents of Korea and Ethiopia revealed through structured questionnaire. J. Insects Food Feed 2020, 6, 59–64. [Google Scholar] [CrossRef]
- Collins, C.M.; Vaskou, P.; Kountouris, Y. Insect food products in the western world: Assessing the potential of a new “green market”. Ann. Entomol. Soc. Am. 2019, 112, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Francis, F. Consumer acceptance of insect-based alternative meat products in western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual. Prefer. 2016, 52, 222–231. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyzaniak, M.; Stolarski, M.J.; Czachorowski, S.; Peni, D. Will yellow mealworm become a source of safe proteins for Europe? Agriculture 2020, 10, 233. [Google Scholar] [CrossRef]
- Hedenus, F.; Wirsenius, S.; Johansson, D.J.A. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim. Chang. 2014, 124, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Gahukar, R.T. Insects as human food: Are they really tasty and nutritious? J. Agric. Food Inf. 2013, 14, 264–267. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Berggren, A.; Jansson, A.; Low, M. Using current systems to inform rearing facility design in the insects as food industry. J. Insects Food Feed 2018, 4, 167–170. [Google Scholar] [CrossRef]
- Oppert, B.; Perkin, L.C.; Lorenzen, M.; Dossey, A.T. Transcriptome analysis of life stages of the house cricket, Acheta domesticus, to improve insect crop production. Sci. Rep. 2020, 10, 3471. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, N.T.; Tchibozo, S.; Abdulmawjood, A.; Acheuk, F.; Guerfali, M.M.; Sayed, W.A.A.; Plötz, M. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation. Foods 2020, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Omotoso, O.T. Nutritional quality, functional properties and antinutrient composition of the larva of Cirina forda (Westwod) (Lepidoptera: Saturniidae). J. Zhejiang Univ. Sci. B 2006, 7, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, E.; Karaś, M.; Baranaik, R. Comparison of functional properties of edible insects and preparation thereof. LWT Food Sci. Technol. 2018, 91, 168–174. [Google Scholar] [CrossRef]
- Alvarez, D.; Wilkinson, K.A.; Treilhou, M.T.; Tene, M.; Castillo, D.; Sauvain, M. Prospecting peptide isolated from black soldier fly (Diptera: Stratiomycidae) with antimicrobial activity against Helicobacter pylori (Campylobacteriales: Helibactericeae). J. Insect Sci. 2019, 19, 17. [Google Scholar] [CrossRef]
- Oh, H.G.; Lee, H.Y.; Kim, J.H.; Kang, Y.R.; Moon, D.I.; Seo, M.Y.; Back, H.I.; Kim, S.Y.; Oh, M.R.; Park, S.H.; et al. Effects of male silkworm pupa powder on the erectile dysfunction by chronic ethanol consumption in rats. Lab. Anim. Res. 2012, 28, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Rochow, V.B. Therapeutic arthropods and other, largely terrestrial, folk medicinally important invertebrates: A comparative survey and review. J. Ethnobiol. Ethnomed. 2017, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Insect | Developmental Stage | Protein | Fat | Fibre | NFE * | Ash | Reference |
---|---|---|---|---|---|---|---|
Blattodea (including infra order Isoptera) | |||||||
Edible cockroaches and termites | 46.3 | 31.3 | 5.2 | 13.7 | 4.4 | [22] | |
Macrotermes bellicosus | A | 40.7 | 44.8 | 5.3 | 2.2 | 5.0 | [36] |
Macrotermes nigeriensis | A | 37.5 | 48.0 | 5.0 | 2.1 | 3.2 | [37] |
Odototermes sp. | A | 33.7 | 50.9 | 6.3 | 6.1 | 3.0 | [38] |
Syntermes sp. soldier | A | 64.7 | 3.1 | 23.0 | 2.5 | 4.2 | [36] |
Coleoptera | |||||||
Edible beetles | 40.7 | 33.4 | 10.7 | 13.2 | 5.1 | [22] | |
Allomyrina dichotoma | L | 54.2 | 20.2 | 4.0 | 17.7 | 3.9 | [39] |
Oryctes rhinoceros | L | 52.0 | 10.8 | 17.9 | 2.0 | 11.8 | [37] |
Protaetia brevitarsis | L | 44.2 | 15.4 | 11.1 | 22.5 | 6.9 | [39] |
Tenebrio molitor | L | 53.2 | 34.5 | 6.3 | 1.9 | 4.0 | |
Tenebrio molitor | P | 51.0 | 32.0 | 12.0 | -- | -- | [40] |
Tenebrio molitor | L | 52.0 | 31.0 | 13.0 | -- | -- | |
Zophobas morio | L | 46.0 | 35.0 | 6.0 | -- | -- | |
Diptera | |||||||
Edible flies | 49.5 | 22.8 | 13.6 | 6.0 | 10.3 | [22] | |
Caliphora vomitoria | A | 64.9 | 0.7 | 16.6 | 12.2 | 5.6 | [41] |
Hermetia illucens | Pre P | 44.3 | 31.9 | 5.1 | 3.4 | 8.7 | |
Hermetia illuscens | L | 39.0 | 32.6 | 12.4 | -- | 14.6 | [42] |
Hemiptera | |||||||
Edible bugs | 48.3 | 30.3 | 12.4 | 6.1 | 5.0 | [22] | |
Aspongopus nepalensis | A | 10.6 | 38.4 | 33.5 | 15.3 | 2.2 | [18] |
Hymenoptera | |||||||
Edible ants, bees, wasps | 46.5 | 25.1 | 5.7 | 20.3 | 3.5 | [22] | |
Oecophylla smaragdina | A | 55.3 | 15.0 | 19.8 | 7.3 | 2.6 | [38] |
Lepidoptera | |||||||
Edible moth | 45.4 | 27.7 | 6.6 | 18.8 | 4.5 | [22] | |
Cirina butyrospermi | L | 62.7 | 14.5 | 5.0 | 12.6 | 5.1 | [43] |
Odonata | |||||||
Edible dragonfly, damselfly | 55.2 | 19.8 | 11.8 | 4.6 | 8.5 | [22] | |
Orthoptera | |||||||
Edible grasshoppers, crickets, locusts | 61.3 | 13.4 | 9.6 | 13.0 | 3.9 | [22] | |
Acheta domesticus | A | 62.6 | 12.2 | 8.0 | 12.3 | 5.0 | [41] |
Brachytrupes sp. | A | 65.4 | 11.8 | 13.3 | 2.5 | 4.9 | [36] |
Brachytrupes orientalis | A | 65.7 | 6.3 | 8.8 | 15.2 | 4.3 | [44] |
Chondacris rosea | A | 68.9 | 7.9 | 12.4 | 6.7 | 4.2 | |
Gryllus assimilis | A | 56.0 | 32.0 | 7.0 | -- | -- | [40] |
Gryllus bimaculatus | A | 58.3 | 11.9 | 9.5 | 10.6 | 9.7 | [39] |
Ruspolia nitidula | A | 40.8 | 46.3 | 5.9 | 3.7 | 3.3 | [41] |
Schistocerca piceifrons piceifrons | A | 80.3 | 6.2 | 12.6 | -- | 3.4 | [45] |
Teleogryllus emma | A | 55.7 | 25.1 | 10.4 | 0.7 | 8.2 | [39] |
Genus | Species | Developmental Stage | Protein | Fat | Fibre | NFE * | Ash | Reference |
---|---|---|---|---|---|---|---|---|
Blattodea | ||||||||
Macrotermes | bellicosus | A | 20.4 | 28.2 | 2.7 | 43.3 | 2.9 | [46] |
notalensis | 22.1 | 22.5 | 2.2 | 42.8 | 1.9 | |||
subhylanus | 39.3 | 44.8 | 6.4 | 1.9 | 7.6 | [47] | ||
bellicosus | 39.7 | 47.0 | 6.2 | 2.4 | 4.7 | |||
Periplaneta | americana | L,A | 65.6 | 28.2 | 3.0 | 0.8 | 2.5 | [48] |
australasiae | 62.4 | 27.3 | 4.5 | 2.7 | 3.0 | |||
Pseudacanthotermes | militaris | A | 33.5 | 46.6 | 6.6 | 8.7 | 4.6 | [47] |
spiniger | 37.5 | 47.3 | 7.2 | 0.7 | 7.2 | |||
Coleoptera | ||||||||
Oryctes | boas | L | 26.0 | 1.5 | 3.4 | 38.5 | 1.5 | [46] |
rhinoceros | 42.3 | 0.6 | -- | 27.7 | 12.7 | [49] | ||
Hemiptera | ||||||||
Edessa | conspersa | N,A | 36.8 | 45.8 | 10.0 | 4.2 | 3.2 | [50] (cf. [22]) |
montezumae | 37.5 | 45.9 | 10.9 | 2.1 | 3.7 | |||
petersii | 37.0 | 42.0 | 18.0 | 1.0 | 2.0 | [51] | ||
sp. | 33.0 | 54.0 | 11.0 | -- | 1.0 | |||
Hymenoptera | ||||||||
Atta | mexicana | A | 46.0 | 39.0 | 11.0 | 0.0 | 4.0 | [51] |
cephalotes | 43.0 | 31.0 | 10.0 | 14.0 | 2.0 | |||
Brachygastra | azteca | B | 63.0 | 22.0 | 3.0 | 9.0 | 3.0 | |
mellifica | 53.0 | 30.0 | 3.0 | 11.0 | 3.0 | |||
Polybia | parvulina | B | 61.0 | 21.0 | 6.0 | 8.0 | 4.0 | |
occidentalis nigratella | 61.0 | 28.0 | 2.0 | 11.0 | 3.0 | |||
occidentalis bohemani | 62.0 | 19.0 | 4.0 | 13.0 | 3.0 | |||
Lepidoptera | ||||||||
Anaphe | infracta | L | 20.0 | 15.2 | 2.4 | 66.1 | 1.6 | [46] |
recticulata | 23.0 | 10.2 | 3.1 | 64.6 | 2.5 | |||
venata | 25.7 | 23.2 | 2.3 | 55.6 | 3.2 | |||
sp. | 18.9 | 18.6 | 1.7 | 46.8 | 4.1 | |||
Orthoptera | ||||||||
Sphenarium | purpurascens | A | 65.2 | 10.8 | 9.4 | 11.6 | 3.0 | [48] |
mexicanum | 62.1 | 10.8 | 4.1 | 22.6 | 0.3 | |||
purpurascens | 56.0 | 11.0 | 9.0 | 21.0 | 3.0 | [51] | ||
histrio | 77.0 | 4.0 | 12.0 | 4.0 | 2.0 | |||
sp. | 68.0 | 12.0 | 11.0 | 5.0 | 5.0 |
Genus | Species | Amino Acid Composition (% of Total Amino Acids or Protein) | Total Amino Acids or Protein (g/100 g Dry Matter) | Reference | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Val | Ile | Leu | Lys | Tyr | Thr | Phe | Trp | His | Met+Cys | Total EAA †† | Arg | Asp | Ser | Glu | Gly | Ala | Pro | ||||
Apis * (P) | mellifera | 5.9 | 5.6 | 7.8 | 7.3 | 4.9 | 4.6 | 0.5 | ND | 2.7 | 1.0 | 40.3 | 5.6 | 8.6 | 4.9 | 20.5 | 6.1 | 7.1 | ND | 40.9 | [33] |
cerana | 6.1 | 4.7 | 8.6 | 5.9 | 3.7 | 4.3 | 4.1 | ND | 2.5 | 4.7 | 44.6 | 4.9 | 12.3 | 4.7 | 10.4 | 7.2 | 9.6 | 6.6 | 51.2 | [34] | |
dorsata | 5.7 | 4.4 | 8.5 | 5.7 | 3.3 | 4.4 | 3.9 | ND | 2.6 | 4.9 | 43.4 | 4.9 | 13.4 | 4.9 | 11.1 | 7.5 | 8.5 | 6.9 | 38.9 | ||
florea | 5.9 | 4.8 | 9.3 | 6.5 | 4.5 | 4.8 | 4.8 | ND | 2.8 | 4.8 | 48.2 | 5.3 | 10.4 | 5.1 | 14.0 | 6.2 | 8.1 | 7.6 | 35.6 | [35] | |
Bombus * (A) | ignitus | 7.0 | 5.7 | 9.3 | 6.1 | 3.0 | 2.3 | 2.7 | ND | 3.0 | 6.1 | 45.2 | 4.0 | 3.8 | 4.9 | 11.4 | 9.1 | 11.2 | 10.1 | 47.3 | [52] |
terrestris | 6.3 | 5.0 | 8.1 | 7.8 | 3.1 | 2.3 | 3.1 | ND | 2.6 | 6.3 | 44.6 | 5.0 | 3.9 | 6.3 | 12.5 | 8.1 | 10.2 | 9.9 | 38.3 | ||
Brachygastra (B) | azteca | 6.4 | 5.1 | 8.5 | 6.1 | 6.5 | 4.4 | 4.1 | 0.7 | 2.8 | 3.0 | 47.6 | 4.4 | 8.4 | 4.5 | 16.4 | 6.7 | 5.8 | 6.4 | 63.0 | [51] |
mellifica | 5.4 | 4.4 | 7.8 | 3.6 | 7.5 | 4.4 | 4.0 | 0.7 | 3.6 | 3.8 | 45.2 | 5.7 | 8.6 | 4.2 | 16.0 | 6.7 | 6.1 | 7.1 | 53.0 | ||
Polybia (B) | occidentalis nigratella | 5.9 | 4.5 | 7.8 | 7.4 | 5.6 | 4.0 | 3.3 | 0.7 | 3.0 | 5.0 | 47.2 | 5.7 | 8.4 | 4.5 | 12.9 | 7.1 | 6.5 | 6.3 | 61.0 | |
parvulina | 6.1 | 4.7 | 7.8 | 7.3 | 5.9 | 4.1 | 3.4 | 0.7 | 3.4 | 5.3 | 48.7 | 5.7 | 7.8 | 4.4 | 13.3 | 7.2 | 6.4 | 6.5 | 61.0 | ||
Polistes * | sagittarius | 6.6 | 5.5 | 7.8 | 4.4 | 5.0 | 4.2 | 5.0 | ND | 3.0 | 1.4 | 42.9 | 4.4 | 8.3 | 4.4 | 17.2 | 6.9 | 7.2 | 8.9 | 36.1 | [31] |
sulcatus | 6.7 | 6.2 | 8.0 | 4.2 | 4.9 | 4.2 | 4.4 | ND | 2.4 | 2.0 | 43.0 | 4.0 | 7.3 | 4.4 | 15.3 | 8.9 | 8.9 | 8.0 | 45.0 | ||
Vespa * (B) | velutina | 6.1 | 5.5 | 8.7 | 6.1 | 6.6 | 4.2 | 4.2 | ND | 3.2 | 2.4 | 47.0 | 4.5 | 6.3 | 4.5 | 20.1 | 6.3 | 5.5 | 6.1 | 37.9 | [32] |
mandarinia | 6.3 | 5.7 | 8.7 | 6.3 | 7.3 | 4.3 | 4.3 | ND | 3.3 | 2.7 | 48.9 | 2.2 | 6.5 | 4.3 | 21.2 | 6.3 | 5.4 | 5.7 | 36.8 | ||
basalis | 5.7 | 5.3 | 8.5 | 6.8 | 7.1 | 4.3 | 4.3 | ND | 3.2 | 1.4 | 46.6 | 4.3 | 6.4 | 4.3 | 22.1 | 5.7 | 5.0 | 5.7 | 28.1 | ||
Vespa * (L) | basalis | 5.9 | 5.9 | 8.0 | 4.3 | 5.7 | 4.1 | 4.3 | ND | 2.5 | 2.1 | 42.8 | 3.9 | 7.7 | 4.3 | 17.1 | 8.2 | 7.7 | 8.4 | 43.9 | [31] |
mandarinia mandarinia | 5.0 | 4.6 | 6.1 | 16.5 | 4.0 | 3.3 | 10.5 | ND | 2.1 | 0.8 | 52.9 | 3.3 | 6.3 | 3.4 | 13.2 | 6.3 | 6.5 | 7.9 | 52.2 | ||
velutina auraria | 6.9 | 5.9 | 7.6 | 2.9 | 7.6 | 4.3 | 4.1 | ND | 3.1 | 2.9 | 45.3 | 6.3 | 9.2 | 6.5 | 12.0 | 8.0 | 7.1 | 5.9 | 49.0 | ||
tropica duealis | 7.5 | 5.4 | 8.3 | 3.3 | 5.4 | 4.5 | 4.2 | ND | 1.4 | 1.2 | 41.2 | 7.1 | 10.1 | 5.0 | 13.4 | 8.7 | 7.8 | 6.6 | 42.4 | ||
Sphenarium | histrio | 5.1 | 5.3 | 8.7 | 5.7 | 7.3 | 4.0 | 11.7 | 0.6 | 1.9 | 3.3 | 53.6 | 6.6 | 9.3 | 5.1 | 5.3 | 5.3 | 7.6 | 7.2 | 77.0 | [51] |
purpurascens | 5.7 | 4.2 | 8.9 | 5.7 | 6.3 | 3.1 | 10.3 | 0.7 | 2.2 | 4.3 | 51.4 | 6.0 | 8.7 | 4.8 | 10.7 | 6.8 | 6.4 | 6.2 | 56.0 |
Genus | Species | Developmental Stage | Fatty Acid Composition (% of Total Fatty Acids) | Total Fatty Acids or Fat (g/100 g Dry Matter) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | C16:0 | C18:0 | SFA | C18:1 | MUFA | C18:2 | PUFA | |||||
Apis† | cerana | L | 3.9 | 38.2 | 8.1 | 50.7 | 46.9 | 48.7 | 0.5 | 0.7 | 6.1 | [34] |
P | 3.0 | 31.4 | 10.6 | 46.2 | 49.8 | 52.7 | 0.9 | 1.1 | 6.3 | |||
A | 1.9 | 18.2 | 12.1 | 33.8 | 57.7 | 63.4 | 2.6 | 2.8 | 4.2 | |||
dorsata | P | 3.2 | 33.3 | 11.8 | 49.4 | 47.7 | 49.8 | 0.8 | 0.8 | 6.2 | ||
A | 1.0 | 14.4 | 14.4 | 31.3 | 61.0 | 66.5 | 2.2 | 2.2 | 3.1 | |||
mellifera | L | 2.4 | 37.3 | 11.8 | 51.8 | 47.5 | 48.2 | 0.0 | 0.0 | 4.9 | [33] | |
P | 2.9 | 35.1 | 12.6 | 51.1 | 47.6 | 48.9 | 0.0 | 0.0 | 5.5 | |||
A | 0.6 | 14.4 | 9.3 | 25.2 | 45.2 | 67.0 | 7.8 | 7.8 | 1.7 | |||
florea | P | 1.8 | 35.3 | 8.8 | 46.6 | 47.6 | 52.3 | 1.0 | 1.1 | 7.2 | [35] | |
A | 1.5 | 30.7 | 9.7 | 43.2 | 49.7 | 55.7 | 1.1 | 1.1 | 5.4 | |||
Aspongopus | viduatus | A | 0.3 | 31.3 | 3.5 | 37.9 | 45.5 | 56.8 | 4.9 | 5.4 | 54.2 | [53] |
nepalensis | A | 0.4 | 32.3 | 4.8 | 37.5 | 46.4 | 56.1 | 6.1 | 6.1 | 35.9 | [18] | |
Bombus *,† | ignitus | A | 2.6 | 16.1 | 1.7 | 22.1 | 49.1 | 75.4 | 2.5 | 2.5 | 9.5 | [52] |
terrestris | A | 3.8 | 15.2 | 1.7 | 21.5 | 51.1 | 76.2 | 2.2 | 2.2 | 8.4 | ||
Imbrasia | belina | L | 1.2 | 31.9 | 4.7 | 37.9 | 34.2 | 36.0 | 6.0 | 26.1 | 23.4 | [54] |
epimethea | L | 0.6 | 23.2 | 22.1 | 46.1 | 8.4 | 9.0 | 7.0 | 42.5 | 13.3 | [22] | |
truncata | L | 0.2 | 24.6 | 21.7 | 46.5 | 7.6 | 7.6 | 7.6 | 44.4 | 16.4 | ||
ertli | L | 1.0 | 22.0 | 0.4 | 61.4 | 2.0 | 24.0 | 20.0 | 31.0 | 11.1 | [55,56] | |
oyemensis | L | 0.5 | 46.0 | 7.2 | 54.2 | 34.6 | 34.6 | 11.2 | 11.2 | 25.4 | [22] | |
Macrotermes | Bellicosus ** | A | 2.2 | 42.5 | 2.9 | 49.0 | 15.8 | 17.9 | 24.2 | 33.1 | 36.1 | [54] |
bellicosus | A | 0.2 | 46.5 | -- | 46.7 | 12.8 | 14.9 | 34.4 | 38.3 | 46.1 | [56,57] | |
nigeriensis | A | 0.6 | 31.4 | 7.1 | 39.4 | 52.5 | 53.1 | 7.6 | 7.6 | 34.2 | [58] | |
subhylanus | A | 1.1 | 27.7 | 6.3 | 35.1 | 48.6 | 52.8 | 10.8 | 12.2 | 44.8 | [47] | |
bellicosus | A | 1.2 | 38.4 | 9.5 | 49.5 | 41.7 | 44.6 | 5.0 | 5.9 | 47.0 | ||
Pseudacanthotermes | militaris | A | 26.0 | 5.9 | 32.2 | 50.3 | 56.1 | 11.5 | 11.7 | 46.6 | ||
spiniger | A | 0.8 | 28.0 | 6.1 | 35.8 | 49.3 | 52.9 | 10.5 | 11.3 | 47.3 | ||
Oryctes | owariensis | L | 2.5 | 0.2 | 0.2 | 3.1 | 5.2 | 43.6 | 45.5 | 50.9 | 53.8 | [59] |
rhinoceros | L | 3.5 | 28.7 | 2.1 | 34.4 | 41.5 | 45.9 | 14.1 | 19.7 | 38.1 | [54] | |
Vespa† | velutina | B | 6.0 | 31.9 | 7.8 | 48.3 | 35.3 | 39.7 | 5.2 | 12.1 | 11.6 | [32] |
mandarinia | B | 2.5 | 21.3 | 5.0 | 30.7 | 27.7 | 29.2 | 33.7 | 40.1 | 20.2 | ||
basalis | B | 1.4 | 15.8 | 5.4 | 24.3 | 23.9 | 25.2 | 42.8 | 50.5 | 22.2 |
Genus | Species | Developmental Stage | Ca | Mg | Na | K | P | Fe | Zn | Cu | Mn | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Anaphe | infracta | L | 8.6 | 1.0 | 111.3 | 1.8 | [46] | |||||
reticulate | L | 10.5 | 2.6 | 102.4 | 2.2 | |||||||
venata | L | 8.6 | 1.6 | 100.5 | 2.0 | |||||||
sp. | L | 7.6 | 1.0 | 122.2 | 1.6 | |||||||
venata | L | 40.0 | 50.0 | 30.0 | 1150.0 | 730.0 | 10.0 | 10.0 | 1.0 | 40.0 | [60] | |
Apis | cerana | L | 63.1 | 86.6 | 37.2 | 823.1 | 715.6 | 5.9 | 7.3 | 1.0 | 1.1 | [34] |
P | 62.9 | 104.3 | 44.4 | 1153.2 | 931.5 | 7.1 | 7.7 | 1.2 | 0.2 | |||
A | 91.1 | 148.8 | 77.1 | 1538.8 | 1283.9 | 11.1 | 12.9 | 1.9 | 0.2 | |||
dorsata | P | 68.9 | 103.4 | 48.6 | 1136.6 | 905.0 | 5.8 | 6.4 | 1.1 | 0.1 | ||
A | 78.5 | 113.3 | 53.9 | 1254.3 | 972.3 | 7.6 | 7.4 | 1.2 | 0.1 | |||
Brachytupes | orientalis | A | 76.3 | 87.2 | 112.0 | 412.3 | 18.7 | 8.5 | 1.5 | 5.0 | [44] | |
sp. | A | 9.2 | 0.1 | 126.9 | 0.7 | [22] | ||||||
Imbrasia | epimethea | L | 224.7 | 402.2 | 75.3 | 1258.1 | 666.7 | 13.0 | 11.1 | 1.2 | 5.8 | [22] |
ertli | L | 55.0 | 254.0 | 2418.0 | 1204.0 | 600.0 | 2.1 | 1.5 | 3.4 | |||
oyemensis | L | 73.0 | 730.0 | 680.0 | ||||||||
Macrotermes | subhylanus | A | 58.7 | 53.3 | 8.1 | [47] | ||||||
bellicosus | A | 63.6 | 116.0 | 10.8 | ||||||||
Pseudacanthotermes | militaris | A | 48.3 | 60.3 | 12.9 | |||||||
spiniger | A | 42.9 | 64.8 | 7.1 |
Insect | Developmental Stage | Protein | Fat | Fibre | NFE * | Ash | Reference |
---|---|---|---|---|---|---|---|
Coleoptera | |||||||
Tebebrio molitor | L | 47.7 | 37.7 | 5.0 | 7.1 | 3.0 | [66] |
P | 53.1 | 36.7 | 5.1 | 1.9 | 3.2 | ||
A | 60.2 | 20.8 | 16.3 | 0.01 | 2.7 | ||
Rhynchophorus phoenicis | Early L | 9.1 | 61.5 | 22.1 | 4.9 | 2.4 | [67] |
Late L | 10.5 | 62.1 | 17.2 | 7.8 | 2.3 | ||
A | 8.4 | 52.4 | 21.8 | 16.0 | 1.4 | ||
Rhynchophorus phoenicis | L | 23.4 | 54.2 | 3.4 | 5.0 | 5.2 | [68] |
Immature P | 33.1 | 42.7 | 3.1 | 6.7 | 7.4 | ||
Mature P | 34.9 | 47.1 | 2.4 | 5.6 | 3 | ||
A | 34.1 | 44.7 | 7.2 | 4.0 | 5.8 | ||
Rhynchophorus phoenicis | Early L | 9.1 | 24.2 | 5.8 | 13.0 | 2.4 | [69] |
Late L | 10.5 | 25.4 | 6.0 | 12.0 | 2.3 | ||
Oryctes rhinoceros | L | 70.8 | 7.5 | 5.4 | 7.0 | 8.3 | [70] |
P | 65.3 | 20.2 | 2.2 | 4.3 | 3.2 | ||
A | 74.2 | 9.6 | 3.7 | 2.8 | 5.3 | ||
Hymenoptera | |||||||
Apis mellifera | L | 42.0 | 19.0 | 1.0 | 35.0 | 3.0 | [51] |
P | 49.0 | 20.0 | 3.0 | 24.0 | 4.0 | ||
Apis mellifera ligustica | L | 35.3 | 14.5 | 45.1 | 4.1 | [33] | |
P | 45.9 | 16.0 | 34.3 | 3.8 | |||
A | 51.0 | 6.9 | 30.5 | 11.5 | |||
Orthoptera | |||||||
Acheta domesticus (as is basis) | N | 15.4 | 3.3 | 5.8 | 0.9 | 1.1 | [71] |
A | 20.5 | 6.8 | 10.0 | 1.1 | |||
Zonoceros variegatus | N1 | 18.3 | 4.3 | 0.9 | 0.4 | 1.9 | [62] |
N2 | 14.4 | 4.8 | 0.9 | 0.4 | 1.0 | ||
N3 | 16.8 | 2.9 | 1.5 | 0.9 | 0.9 | ||
N4 | 15.5 | 0.7 | 0.9 | 9.7 | 1.6 | ||
N5 | 14.6 | 1.1 | 0.9 | 9.8 | 1.6 | ||
N6 | 16.1 | 0.9 | 1.0 | 8.8 | 1.5 | ||
A | 21.4 | 0.9 | 1.2 | 10.0 | 1.4 |
Phytate | Tannin | Oxalate | Trypsin Inhibitor | Lectin | Hydrocyanide | Reference | |
---|---|---|---|---|---|---|---|
Ant † | 2030.8 | 400.0 | [143] | ||||
Termite † | 2482.1 | 948.3 | |||||
Winged termite † | 1128.2 | 250.0 | |||||
Cricket † | 3159.0 | 900.0 | |||||
Meal bug | 2256.4 | 1150.0 | |||||
Grasshopper † | 1100.1 | 1050.0 | |||||
Anaphe venata† | 1918.0 | 753.3 | |||||
Tree hopper | 1000.0 | ||||||
Rhynchophorus pheonicis * L | 1.4 | 1.0 | 0.1 | 0.9 | 0.6 | [144] | |
Gymnogryllus lucens† A | 0.03 | 0.03 | 1.3 | 0.2 | [145] | ||
Heteroligus meles† | 0.03 | 0.04 | 2.8 | 0.3 | |||
Rhynchophorus† L | 0.03 | 0.04 | 1.8 | 0.2 | |||
Zonocerus variegatus† A | 0.03 | 0.04 | 2.6 | 0.3 | |||
Oedaleus abruptus† A | 2450.0 | 600.0 | [146] | ||||
Lethocerus indicus * N,A | 372.3 | [147] | |||||
Laccotrephes maculatus * N,A | 350.4 | ||||||
Hydrophilus olivaceous * A | 528.7 | ||||||
Cybister tripunctatus * A | 301.7 | ||||||
Crocothemes servillia * N | 465.3 | ||||||
Macrotermes nigeriensis† A | 15.2 | 0.6 | 103.0 | [37] | |||
Oryctes rhinoceros† L | 16.1 | 0.6 | 109.0 | ||||
Oecophylla smaragdina† A | 171.0 | 496.7 | [38] | ||||
Odontotermes sp. † A | 141.2 | 615.0 | |||||
Oxya hyla hyla† A | 2316.0 | 474.0 | [148] | ||||
Oryctes rhinoceros† L | 37.0 | 5.6 | 1.3 | [70] | |||
Oryctes rhinoceros† P | 39.4 | 6.8 | 1.3 | ||||
Oryctes rhinoceros† A | 41.1 | 4.2 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. https://doi.org/10.3390/foods10051036
Meyer-Rochow VB, Gahukar RT, Ghosh S, Jung C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods. 2021; 10(5):1036. https://doi.org/10.3390/foods10051036
Chicago/Turabian StyleMeyer-Rochow, Victor Benno, Ruparao T. Gahukar, Sampat Ghosh, and Chuleui Jung. 2021. "Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method" Foods 10, no. 5: 1036. https://doi.org/10.3390/foods10051036
APA StyleMeyer-Rochow, V. B., Gahukar, R. T., Ghosh, S., & Jung, C. (2021). Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 10(5), 1036. https://doi.org/10.3390/foods10051036