Evaluation of Hardness and Retrogradation of Cooked Rice Based on Its Pasting Properties Using a Novel RVA Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polished White Rice Samples
2.3. Preparation of Starch Granules
2.4. Iodine Absorption Spectrum
2.5. Pasting Properties
2.6. Measurement of RS
2.7. Physical Properties of Cooked Rice Grains
2.8. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.9. Statistical Analyses
3. Results and Discussion
3.1. Iodine Absorption Spectrum
3.2. Pasting Properties
3.3. Physical Properties of Cooked Rice Grains
3.4. RS Content
3.5. SDS PAGE
3.6. Correlations between the Pasting Properties of Rice from the Three Programs with the Results of Cooked Rice Characterization
3.7. Formulae for Estimating the Retrograded Hardness H1(R) of Various Kinds of Cooked Rice Based on the Program at 120 °C Using an RVA
3.8. Formulae for Estimating H1(RD) of Cooked Glutinous Rice Based on the Program at 120 °C Using an RVA
4. Conclusions
- Among the three kinds of RVA programs, Program 2 (120 °C) showed the highest correlations with starch microstructure (Aλmax), RS, physical properties, and degree of retrogradation of the cooked rice grains.
- The novel Program 2 (120 °C) showed high determination coefficients for hardness and the degree of retrogradation of cooked rice grains.
- The novel RVA Program 2 enables us to easily and rapidly estimate the cooking and processing characteristics of various kinds of rice cultivars.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bergman, C.J.; Battacharya, K.R.; Ohtsubo, K. Rice end-use quality analysis. In Rice-Chemistry and Technology, 3rd ed.; Champagne, E.T., Ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2004; pp. 415–472. [Google Scholar]
- Nakamura, S.; Suzuki, D.; Kitazume, R.; Ohtsubo, K. Quality evaluation of rice crackers based on physicochemical measurements. Biosci. Biotechnol. Biochem. 2012, 76, 794–804. [Google Scholar] [CrossRef] [Green Version]
- Ohtsubo, K.; Suzuki, K.; Yasui, Y.; Kasumi, T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compos. Anal. 2005, 18, 303–316. [Google Scholar] [CrossRef]
- Juliano, B.O. Criteria and tests for rice grain qualities. In Rice-Chemistry and Technology, 2nd ed.; Juliano, B.O., Ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 1985; pp. 443–524. [Google Scholar]
- Ohtsubo, K.; Toyoshima, H.; Okadome, H. Quality assay of rice using traditional and novel tools. Cereal Foods World 1998, 43, 203–206. [Google Scholar]
- Cuevas, R.P.O.; Domingo, C.J.; Sreenivasulu, N. Multivariate-based classification of predicting cooking quality ideotypes in rice (Oryza sativa L.) indica germplasm. Rice 2018, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Juliano, B.O. A simplified assay for milled-rice amylose. Cereal Sci. Today 1971, 12, 334–360. [Google Scholar]
- Bao, J.S. Rice starch. In Rice-Chemistry and Technology, 4th ed.; Bao, J.S., Ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2019; pp. 55–108. [Google Scholar]
- Hizukuri, S. Polymodal distribution of the chain lengths of amylopectins and its significance. Carbohydr. Res. 1986, 147, 342–347. [Google Scholar] [CrossRef]
- Takeda, Y.; Hizukuri, S.; Juliano, B.O. Structures of rice amylopectins with low and high affinities for iodine. Carbohydr. Res. 1987, 168, 79–88. [Google Scholar] [CrossRef]
- Hizukuri, S.; Takeda, Y.; Maruta, N.; Juliano, B.O. Molecular structure of rice starch. Carbohydr. Res. 1989, 189, 227–235. [Google Scholar] [CrossRef]
- Lian, X.; Kang, H.; Sun, H.; Liu, L.; Li, L. Identification of the Main Retrogradation-Related Properties of Rice Starch. J. Agric. Food Chem. 2015, 63, 1562–1572. [Google Scholar] [CrossRef]
- Nishi, A.; Nakamura, Y.; Tanaka, N.; Satoh, H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127, 459–472. [Google Scholar] [CrossRef]
- Kubo, A.; Akdogan, G.; Nakaya, M.; Shojo, A.; Suzuki, S.; Satoh, H.; Kitamura, S. Structure, Physical, and Digestive Properties of Starch from wx ae Double-Mutant Rice. J. Agric. Food Chem. 2010, 58, 4463–4469. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, L.; Yu, W.; Li, H.; Gilbert, R. Autoclaved rice: The textural property and its relation to starch leaching and the molecular structure of leached starch. Food Chem. 2019, 283, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch. Biosci. Biotechnol. Biochem. 2015, 79, 443–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Yamaguchi, H.; Benitani, Y.; Ohtsubo, K. Development of a novel formula for estimating the amylose content of starch using Japonica milled rice flours based on the iodine absorption curve. Biosci. Biotechnol. Biochem. 2020, 84, 2347–2359. [Google Scholar] [CrossRef] [PubMed]
- Okadome, H.; Kurihara, M.; Kusuda, O.; Toyoshima, H.; Kim, J.I.; Shimotsubo, K.; Matsuda, T.; Ohtsubo, K. Multiple measurements of physical properties of cooked rice grains with different nitrogenous fertilizers. Jpn. J. Crop Sci. 1999, 68, 211–216. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Okadome, H.; Toyoshima, H.; Ohtsubo, K. Multiple Measurements of Physical Properties of Individual Cooked Rice Grains with a Single Apparatus. Cereal Chem. 1999, 76, 855–860. [Google Scholar] [CrossRef]
- Pal, S.; Bagchi, T.B.; Kingsuk Dhali, K.; Kar, A.; Sanghamitra, P.; Sarkar, S.; Samaddar, M.; Joyoti Majumder, J. Evaluation of sensory, physicochemical properties and Consumer preference of black rice and their products. J. Food Sci. Technol. 2019, 56, 1484–1494. [Google Scholar] [CrossRef]
- Zohoun, E.V.; Tang, E.N.; Soumanou, M.M.; Manful, J.; Akissoe, N.H.; Bigoga, J.; Futakuchi, K.; Ndindeng, S.A. Physicochemical and nutritional properties of rice as affected by parboiling steaming time at atmospheric pressure and variety. Food Sci. Nutr. 2018, 6, 638–652. [Google Scholar] [CrossRef]
- Nakamura, S.; Cui, J.; Zhang, X.; Yang, F.; Xu, X.; Sheng, H.; Ohtsubo, K. Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars. Biosci. Biotechnol. Biochem. 2016, 80, 2437–2449. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.-I. Preparation and Application of Rice Flour. In Rice-Chemistry and Technology, 3rd ed.; Champagne, E.T., Ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2004; pp. 495–539. [Google Scholar]
- Kitadume, R.; Nakamura, S.; Kumagai, T.; Takahashi, H.; Ohtsubo, K. Characteristics of chalky rice grains and their influence on rice cracker processing. Nippon Shokuhin Kagaku Kogaku Kaishi 2012, 59, 621–627. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.M. Applications of the Rapid Visco Analyser (RVA) in the Food Industry: A Broader View. 2015. Available online: https://www.perten.com/Publications/Articles/ (accessed on 1 February 2020).
- Blakeney, A.B.; Welsh, L.A.; Bannon, D.R. Rice quality analysis using a computer controlled RVA. In Cereals International; Martin, D.J., Wrigley, C.W., Eds.; Royal Austlarian Chemical Institute: Melbourne, Australia, 1991; pp. 180–182. [Google Scholar]
- Champagne, E.T.; Bett, K.L.; Vinyard, B.T.; McClung, A.M.; Barton, F.E., II; Moldenhauer, K.; Linscombe, S.; Mckenzie, K. Correlation between cooked rice texture and rapid visco analyzer measurements. Cereal Chem. 1999, 76, 764–771. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, G.; Cheng, L.; Zhang, H.; Wang, L.; Qian, H.; Qi, X. Effect of soaking and cooking on structure formation of cooked rice through thermal pro42.perties, dynamic viscoelasticity, and enzyme activity. Food Chem. 2019, 289, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Katsura, J.; Kato, K.; Ohtsubo, K. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of Japonica polished rice and starch. Biosci. Biotechnol. Biochem. 2016, 80, 329–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Relationship between fatty acid composition and starch properties of 30 japonica rice cultivars. Cereal Chem. 2019, 96, 228–242. [Google Scholar] [CrossRef]
- Martínez, M.M.; Calviño, A.; Rosell, C.M.; Gómez, M. Effect of Different Extrusion Treatments and Particle Size Distribution on the Physicochemical Properties of Rice Flour. Food Bioprocess Technol. 2014, 7, 2657–2665. [Google Scholar] [CrossRef] [Green Version]
- Satou, K.; Takahashi, Y.; Yoshii, Y. Effect of Superheated Steam Treatment on Enzymes Related to Lipid Oxidation of Brown Rice. Food Sci. Technol. Res. 2010, 16, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Sawada, S.; Onogaki, I. Effects of quality and quantity of alkali solution on the properties of rice starch. Denpun Kagaku 1981, 28, 241–244. (In Japanese) [Google Scholar]
- Toyoshima, H.; Okadome, H.; Ohtsubo, K.; Suto, M.; Horisue, N.; Inatsu, O.; Narizuka, A.; Aizaki, M.; Inouchi, N.; Fuwa, H. Cooperative test on the small-scale rapid method for the gelatinization properties test of rice flours with a rapid visco analyser. Nippon Shokuhin Kogakukaishi 1997, 44, 579–584, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Juliano, B.O.; Onate, L.U.; Mundo, A.M. A simplified assay for milled rice amylose. Food Technol. 1965, 19, 1006–1011. [Google Scholar]
- Takeda, Y.; Shitaozono, T.; Hizukuri, S. Molecular structure of corn starch. Starch/Staerke 1988, 40, 51–54. [Google Scholar] [CrossRef]
- Biselli, C.; Cavalluzzo, D.; Perrini, R.; Gianinetti, A.P.; Urso, S.; Orasen, G.; Desiderio, F.; Lupotto, E.; Cattivelli, L.; Valè, G. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice 2014, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, Y. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 1984, 68, 467–473. [Google Scholar] [CrossRef]
- Hirano, H.; Sano, Y. Enhancement of Wx gene expression and the accumulation of amylose in response to cool temperatures during seed development in rice. Plant Cell Physiol. 1998, 39, 807–812. [Google Scholar] [CrossRef]
- Adeva, C.C.; Lee, H.-S.; Kim, S.-H.; Jeon, Y.-A.; Shim, K.-C.; Luong, N.H.; Kang, J.-W.; Kim, C.-S.; Cho, J.-H.; Ahn, S.-N. Two Complementary Genes, SBE3 and GBSS1 Contribute to High Amylose Content in Japonica Cultivar Dodamssal. Plant Breed. Biotechnol. 2020, 8, 354–367. [Google Scholar] [CrossRef]
- Nakamura, Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol. 2002, 43, 718–725. [Google Scholar] [CrossRef]
- Robin, J.P.; Mercier, C.; Charbonniere, R.; Guilbot, A. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 1974, 51, 389–406. [Google Scholar]
- Umemoto, T.; Yano, M.; Satoh, H.; Shomura, A.; Nakamura, Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 2002, 104, 1–8. [Google Scholar] [CrossRef]
- Nakamura, Y.; Sakurai, A.; Inaba, Y.; Kimura, K.; Iwasawa, N.; Nagamine, T. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch/Starke 2002, 54, 117–131. [Google Scholar] [CrossRef]
- Asaoka, M.; Okuno, K. Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice. Agric. Biol. Chem. 1985, 49, 373–379. [Google Scholar]
- Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of starch evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177–191. [Google Scholar] [CrossRef]
- Taira, H.; Nakagahra, M.; Nagamine, T. Fatty acid composition of Indica, Sinica, Javanica, and Japonica groups of nonglutinous brown rice. J. Agric. Food Chem. 1988, 36, 45–47. [Google Scholar] [CrossRef]
- Igarashi, T.; Yanagihara, T.; Kanda, H.; Kawamoto, K.; Masaki, K. Development of new eating quality evaluation method based on iodine adsorption multispectral analysis of rice flour. J. Crop Sci. 2009, 78, 66–73. [Google Scholar] [CrossRef]
- Inouchi, N.; Ando, H.; Asaoka, M.; Okuno, K.; Fuwa, H. The effect of environmental temperature on distribution of unit chains of rice amylopectin. Starch/Strake 2000, 52, 8–12. [Google Scholar] [CrossRef]
- Jideani, I.A.; Takeda, Y.; Hizukuri, S. Structures and physicochemical properties of starches from Acha (Digitaria exilis), Iburu (D. iburua), and Tamba (Eleusine coracana). J. Cereal Chem. 1996, 6, 677–685. [Google Scholar]
- Igarashi, T.; Kinoshita, M.; Kanda, H.; Nakamori, T.; Kusume, T. Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution. J. Appl. Glycosci. 2008, 55, 13–19. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakamura, S.; Satoh, H.; Ohtsubo, K. Relationship between chain-length distributions of waxy rice amylopectin and physical properties of rice grains. J. Appl. Glycosci. 2006, 53, 227–232. [Google Scholar] [CrossRef]
- Kodama, I.; Shibata, C.; Fujita, N.; Ishikawa, K.; Takahashi, T.; Nakamura, Y.; Kawamoto, T.; Kato, K.; Sato, K.; Matsunami, M.; et al. Starch properties of waxy rice cultivars influencing rice cake hardening. Jpn. J. Food Eng. 2011, 12, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H.; Nemoto, H. Estimate of rice cake hardness by Rapid Visco Analyzer and the hyper hardness variety “Kantomochi 172”. J. Crop Sci. 1998, 67, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Matsue, Y.; Ogata, T. Physicochemical and mochi-making properties of the native red and black-kerneled glutinous rice cultivars. Plant Prod. Sci. 1998, 1, 126–133. [Google Scholar] [CrossRef]
- Okamoto, K.; Kobayashi, K.; Hirasawa, H.; Umemoto, T. Structural differences in amylopectin affect waxy rice processing. Plant Prod. Sci. 2002, 5, 45–50. [Google Scholar] [CrossRef]
- Juliano, B.O. Properties of rice starch in relation to varietal differences in processing characteristics of rice grain. J. Jpn. Soc. Starch Sci. 1982, 29, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Hizukuri, S. Characterization of the heat dependent pasting behavior of starches. (studies on the gelatinization of starches part I). Biosci. Biotechnol. Biochem. 1974, 48, 663–669. [Google Scholar]
- Mizukami, H.; Takeda, Y. Chewing properties of cooked rice from new characteristics rice cultivars and their relation to starch molecular structures. J. Appl. Glycosci. 2000, 1, 61–65. [Google Scholar] [CrossRef]
- Miles, M.J.; Morris, V.J.; Orford, P.D.; Ring, S.G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 1985, 135, 271–281. [Google Scholar] [CrossRef]
- Han, X.-Z.; Hamaker, B.R. Amylopectin Fine Structure and Rice Starch Paste Breakdown. J. Cereal Sci. 2001, 34, 279–284. [Google Scholar] [CrossRef]
- Takami, K.; Koriyama, T.; Ohtsubo, K. Staling characteristics of cooked low-amylose rice and a proposal of evaluation method. Nippon Shokuhin Kagaku Kogaku Kaishi 1998, 45, 469–477. (In Japanese) [Google Scholar] [CrossRef]
- Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. Ageing of stored rice: Changes in chemical and physical attributes. J. Cereal Sci. 2002, 35, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.U.; Suzuki, K.; Okadome, H.; Ikezaki, H.; Homma, S.; Ohtsubo, K. Detection of changes in taste of japonica and indica brown and milled rice (Oryza sativa L) during storage using physicochemical analyses and taste sensing system. J. Agric. Food Chem. 2005, 53, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, T.; Horibata, T.; Aoki, N.; Hiratsuka, M.; Yano, M.; Inouchi, N. Effects of variations in starch synthase on starch properties and eating quality of rice. Plant Prod. Sci. 2008, 11, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Matsuki, J. Resistant starch. Nippon Shokuhin Kagaku Kougaku Kaishi 2010, 57, 224. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Z.; Shu, X.L.; Zhang, L.L.; Wang, X.Y.; Zhao, H.J.; Ma, C.X.; Wu, D.X. Starch properties of mutant rice high in resistant starch. J. Agric. Food Chem. 2006, 54, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Jane, J.; Chen, Y.Y.; Lee, L.F.; McPherson, A.E.; Wong, K.S.; Radosavljevic, M.J. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Characteristics of pregelatinized ae mutant rice flours prepared by boiling after pre-roasting. J. Agric. Food Chem. 2011, 59, 10665–10676. [Google Scholar] [CrossRef] [PubMed]
- Homma, N.; Akaishi, R.; Yoshii, Y.; Nakamura, K.; Ohtsubo, K. Measurement of resistant starch content in polished rice and processed rice products. Nippon Shokuhin Kagaku Kogakkaishi 2008, 55, 18–24. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Hanashiro, I.; Takeda, Y. Examination of number average degree of polymerization and molar-based distribution of amylose by fluorescent labeling with 2-aminopyridine. Carbohydr. Res. 1998, 306, 421–426. [Google Scholar] [CrossRef]
- Goddard, M.; Yong, G.; Marcus, R. The effect of amylose content on insulin and glucose responses to ingested rice. J. Clin. Nutr. 1984, 39, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Hwang, I.K.; Kim, K.S.; Choi, H.C. Ultrastructure of individual and compound starch granules in isolation preparation from a high-quality, low-amylose rice, Ilpumbyeo, and its mutant, G2, a high-dietary fiber, high-amylose rice. J. Agric. Food Chem. 2003, 51, 6598–6603. [Google Scholar] [CrossRef]
- Miyazato, S.; Nakagawa, C.; Kishimoto, Y.; Tagami, H.; Hara, H. Promotive effects of resistant maltodextrin on apparent absorption of calcium, magnesium, iron and zinc in rats. Eur. J. Nutr. 2010, 49, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.C.; Ostman, E.M.; Granfeldt, Y.; Bjorck, I.M. Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. J. Clin. Nutr. 2008, 87, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.J.; Lightowler, H.J.; Tydeman, E.A.; Skeath, R. Use of low-glycemic index bread to reduce 24-h blood glucose implications for dietary advice to non-diabetic and diabetic subjects. J. Food Nutr. 2006, 57, 273–278. [Google Scholar]
- Chiu, Y.-T.; Stewart, M.L. Effect of variety and cooking method on resistant starch content of white rice and subsequent postprandial glucose response and appetite in humans. Asia Pac. J. Clin. Nutr. 2013, 22, 372–379. [Google Scholar] [CrossRef]
- Matsui, T.; Ishizaki, K.; Nakamura, S.; Ohtsubo, K. Differences in physical properties of boiled rice and gelatinization properties of rice flour between pairs of near-isogenic lines for low glutelin gene (Lgc1) locus. Nippon Shokuhin Kagaku Kogaku Kaishi 2013, 60, 204–211. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Ohtsubo, K. Chemical components of rice (Prorein). In Science of Rice; Ishitani, T., Ohtsubo, K., Eds.; Asakurashoten: Tokyo, Japan, 1995; pp. 20–25. (In Japanese) [Google Scholar]
- Okuda, M.; Hashizume, K.; Aramaki, I.; Numata, M. Influence of starch characteristics on digestibility of steamed rice grains under sake-making conditions, and rapid estimation methods of digestibility by physical analysis. J. Appl. Glycosci. 2009, 56, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Honjyo, K. Variation of protein content between rice varieties and the influences of environmental factors on the protein content. Jpn. J. Crop Sci. 1971, 40, 183–189. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Honjyo, K. Effect of the fertilization on protein content and protein production. In paddy grain. Jpn. J. Crop Sci. 1971, 40, 190–196. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Inouchi, N. Study on structures and physical properties of endosperm starches of rice and other cereals. J. Appl. Glycosci. 2010, 57, 13–23. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Ong, M.H.; Blanshard, J.M.V. Texture determinants of cooked parboiled rice II: Physicochemical properties and leaching behaviour of rice. J. Cereal Sci. 1995, 21, 251–260. [Google Scholar] [CrossRef]
- Sugiura, K.; Saka, N.; Kudo, S. Evaluation of rice cake hardness and easing quality of rice cake for breeding selection of glutinous rice varieties. J. Crop Sci. 2005, 74, 30–35. (In Japanese) [Google Scholar] [CrossRef]
- Doman, K.; Hirayama, Y.; Sato, T.; Tanaka, J. Development of an efficient evaluation method for the hardness of rice cakes using an amylose auto analyzer. Breed. Res. 2020, 22, 11–20. [Google Scholar] [CrossRef]
Starch | Cookedrice | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAC | Absorbance | SD | λmax | SD | Aλmax | SD | λmax/Aλmax | SD | Fb3(%) | SD | Absorbance | SD | λmax | SD | Aλmax | SD | λmax/Aλmax | SD | Fb3 (%) | SD | |||||||||||
(%) | 620 nm | 620 nm | |||||||||||||||||||||||||||||
Benika (red glutinous rice) | 3.5 | 0.122 | b | 0.1 | 523.0 | a | 0.0 | 0.233 | b | 0.002 | 2249.6 | g | 20.5 | 4.7 | a | 0.1 | 0.081 | b | 0.006 | 523.0 | a | 0.0 | 0.176 | b | 0.010 | 3016.1 | g | 169.6 | 4.0 | a | 0.4 |
Shihou (purple glutinous rice) | 2.9 | 0.113 | b | 0.2 | 523.0 | a | 0.0 | 0.222 | b | 0.002 | 2361.3 | g | 22.6 | 4.3 | a | 0.1 | 0.084 | b | 0.000 | 523.0 | a | 0.0 | 0.189 | b | 0.001 | 2811.7 | g | 10.5 | 3.8 | a | 0.0 |
Hakuchomochi (glutinous rice) | 0.5 | 0.083 | a | 0.1 | 523.0 | a | 0.0 | 0.189 | a | 0.002 | 2774.7 | h | 31.2 | 7.7 | b | 0.1 | 0.070 | a | 0.001 | 523.0 | a | 0.0 | 0.163 | a | 0.002 | 2767.2 | g | 31.3 | 6.5 | b | 0.1 |
Koganemochi (glutinous rice) | 4.3 | 0.132 | c | 0.1 | 523.0 | a | 0.0 | 0.251 | c | 0.002 | 2087.9 | f | 17.7 | 10.4 | d | 0.1 | 0.112 | c | 0.002 | 523.0 | a | 0.0 | 0.217 | c | 0.004 | 2083.7 | e | 17.7 | 8.9 | d | 0.2 |
Himenomochi (glutinous rice) | 2.2 | 0.104 | b | 0.1 | 523.0 | a | 0.0 | 0.218 | b | 0.002 | 2404.7 | g | 23.5 | 8.9 | c | 0.1 | 0.086 | b | 0.001 | 523.0 | a | 0.0 | 0.186 | b | 0.004 | 2399.1 | f | 23.4 | 7.5 | c | 0.2 |
Kinunohada (glutinous rice) | 1.3 | 0.093 | a | 0.1 | 523.0 | a | 0.0 | 0.204 | a | 0.002 | 2570.2 | g | 26.8 | 8.3 | c | 0.1 | 0.082 | b | 0.001 | 523.0 | a | 0.0 | 0.182 | b | 0.001 | 2563.7 | f | 26.9 | 7.3 | c | 0.0 |
Kitayukimochi (glutinous rice) | 0.7 | 0.085 | a | 0.1 | 523.0 | a | 0.0 | 0.193 | a | 0.001 | 2716.9 | h | 10.0 | 7.8 | b | 0.0 | 0.072 | a | 0.000 | 523.0 | a | 0.0 | 0.166 | a | 0.000 | 2709.8 | g | 9.9 | 6.6 | b | 0.0 |
Yumepirika (low-amylose japonica rice) | 15.5 | 0.214 | d | 0.0 | 574.5 | b | 0.7 | 0.303 | d | 0.000 | 1896.0 | e | 2.3 | 13.1 | e | 0.0 | 0.203 | d | 0.003 | 555.5 | b | 2.1 | 0.245 | d | 0.003 | 2267.4 | f | 17.5 | 10.2 | e | 0.1 |
Koshihikari (premium japonica rice) | 15.9 | 0.286 | e | 0.0 | 580.5 | b | 2.1 | 0.310 | d | 0.000 | 1872.6 | e | 6.8 | 13.1 | e | 0.0 | 0.227 | e | 0.001 | 558.0 | b | 2.8 | 0.274 | e | 0.000 | 2036.5 | d | 10.3 | 11.5 | f | 0.0 |
Jasmin rice (low-amylose indica rice) | 11.9 | 0.278 | e | 0.3 | 565.5 | c | 2.1 | 0.259 | c | 0.002 | 2187.7 | g | 9.7 | 10.8 | d | 0.1 | 0.204 | d | 0.004 | 549.5 | b | 0.7 | 0.259 | e | 0.004 | 2121.9 | e | 37.5 | 10.8 | e | 0.2 |
Calrose (japonica rice) | 16.5 | 0.299 | e | 0.2 | 579.5 | b | 3.5 | 0.312 | d | 0.002 | 1860.4 | e | 24.0 | 13.1 | e | 0.1 | 0.240 | e | 0.001 | 560.0 | b | 4.2 | 0.282 | e | 0.002 | 1989.3 | d | 0.1 | 11.8 | f | 0.1 |
Carnaroli (tropical japonica rice) | 23.4 | 0.379 | f | 0.1 | 590.5 | d | 2.1 | 0.397 | e | 0.000 | 1487.4 | d | 5.3 | 17.0 | f | 0.0 | 0.328 | f | 0.006 | 582.0 | d | 2.8 | 0.347 | f | 0.004 | 1677.3 | b | 12.4 | 14.7 | g | 0.2 |
Hoshiyutaka (japonica-indica hybrid rice) | 25.3 | 0.374 | f | 0.8 | 596.0 | d | 2.8 | 0.417 | e | 0.012 | 1431.5 | d | 34.5 | 17.8 | f | 0.5 | 0.329 | f | 0.002 | 582.5 | d | 2.1 | 0.352 | f | 0.002 | 1657.2 | b | 4.0 | 14.9 | g | 0.1 |
Basmati (indica rice) | 23.7 | 0.375 | f | 0.2 | 589.0 | d | 2.8 | 0.403 | e | 0.002 | 1463.4 | d | 0.7 | 17.2 | f | 0.1 | 0.301 | f | 0.001 | 574.5 | c | 0.7 | 0.330 | f | 0.000 | 1740.9 | c | 2.1 | 14.0 | g | 0.0 |
Goami2 (Ae mutant rice) | 29.3 | 0.471 | g | 0.4 | 576.5 | b | 0.7 | 0.510 | f | 0.004 | 1130.4 | c | 8.0 | 22.0 | g | 0.2 | 0.466 | g | 0.002 | 575.5 | c | 0.7 | 0.516 | g | 0.004 | 1116.4 | a | 9.0 | 22.3 | h | 0.2 |
Niigata 129gou (Ae mutant rice) | 39.0 | 0.590 | h | 0.7 | 590.0 | d | 1.4 | 0.617 | g | 0.011 | 957.2 | b | 18.8 | 25.9 | g | 0.4 | 0.477 | g | 0.004 | 572.5 | c | 0.7 | 0.536 | g | 0.002 | 1069.1 | a | 5.6 | 23.2 | h | 0.1 |
Dodam (Ae mutant rice) | 43.7 | 0.640 | i | 0.1 | 593.5 | d | 2.1 | 0.680 | h | 0.001 | 873.4 | a | 4.0 | 29.6 | h | 0.0 | 0.551 | h | 0.001 | 582.5 | d | 2.1 | 0.590 | h | 0.002 | 988.1 | a | 7.2 | 25.6 | h | 0.1 |
Samples | Max.vis. | Mini.vis. | BD | Final.vis | SB | Pt | Cons | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(RVU) | SD | (RVU) | SD | (RVU) | SD | (RVU) | SD | (RVU) | SD | (°C) | SD | (RVU) | SD | ||||||||
Benika (red glutinous rice) | 145.5 | c | 1.4 | 58.0 | b | 0.5 | 87.6 | c | 0.8 | 85.9 | b | 0.7 | −59.6 | d | 0.6 | 50.6 | a | 0.1 | 28.0 | b | 0.2 |
Shihou (purple glutinous rice) | 168.3 | d | 0.6 | 79.3 | b | 0.6 | 88.9 | c | 1.2 | 115.1 | b | 0.1 | −53.1 | d | 0.6 | 50.5 | a | 0.1 | 35.8 | c | 0.5 |
Hakuchomochi (glutinous rice) | 156.3 | d | 0.1 | 30.9 | a | 0.6 | 125.4 | d | 0.5 | 46.9 | a | 0.2 | −109.4 | b | 0.0 | 50.2 | a | 0.1 | 16.0 | a | 0.5 |
Koganemochi (glutinous rice) | 222.7 | b | 2.6 | 99.5 | c | 2.4 | 123.2 | d | 0.2 | 147.2 | c | 1.2 | −75.5 | c | 0.7 | 53.6 | a | 4.3 | 47.7 | c | 1.2 |
Himenomochi (glutinous rice) | 115.7 | a | 0.5 | 41.2 | a | 0.2 | 74.5 | b | 0.3 | 62.8 | a | 0.4 | −53.0 | d | 0.1 | 50.7 | a | 0.1 | 21.6 | b | 0.1 |
Kinunohada (glutinous rice) | 115.9 | a | 0.6 | 44.1 | a | 0.1 | 71.8 | b | 0.5 | 66.8 | a | 0.1 | −49.1 | d | 0.3 | 50.7 | a | 0.0 | 22.7 | b | 0.0 |
Kitayukimochi (glutinous rice) | 130.8 | b | 2.8 | 32.6 | a | 0.8 | 98.2 | c | 1.9 | 49.9 | a | 0.5 | −80.9 | c | 1.1 | 50.5 | a | 0.1 | 17.3 | a | 0.4 |
Yumepirika (low-amylose japonica rice) | 349.7 | f | 0.7 | 143.4 | d | 0.6 | 206.3 | e | 1.3 | 264.9 | d | 0.2 | −84.8 | c | 0.9 | 66.8 | c | 0.5 | 121.5 | e | 0.4 |
Koshihikari (premium japonica rice) | 379.0 | f | 0.6 | 142.4 | d | 0.8 | 236.7 | e | 0.1 | 260.1 | d | 1.2 | −118.9 | b | 0.6 | 66.9 | c | 0.2 | 117.8 | e | 0.5 |
Jasmin rice (low-amylose indica rice) | 485.2 | g | 1.9 | 147.6 | d | 1.6 | 337.6 | f | 3.6 | 267.2 | d | 1.2 | −218.0 | a | 3.1 | 70.9 | c | 0.4 | 119.6 | e | 0.5 |
Calrose (japonica rice) | 398.0 | g | 11.7 | 152.1 | d | 0.6 | 245.9 | e | 12.3 | 280.2 | d | 0.1 | −117.7 | b | 11.7 | 68.9 | c | 0.0 | 128.1 | e | 0.6 |
Carnaroli (tropical japonica rice) | 411.9 | g | 10.7 | 191.3 | e | 2.7 | 220.6 | e | 8.0 | 394.4 | e | 1.1 | −17.5 | e | 9.6 | 65.5 | c | 0.1 | 203.0 | g | 1.6 |
Hoshiyutaka (japonica-indica hybrid rice) | 233.3 | e | 3.1 | 106.5 | c | 5.3 | 126.8 | d | 2.2 | 279.0 | d | 7.6 | 45.7 | f | 4.5 | 61.5 | b | 1.6 | 172.5 | f | 2.3 |
Basmati (indica rice) | 210.3 | e | 3.4 | 181.7 | e | 2.8 | 28.6 | a | 0.5 | 411.8 | e | 6.6 | 201.5 | h | 3.2 | 76.7 | d | 0.5 | 230.1 | h | 3.8 |
Goami2 (Ae mutant rice) | 213.4 | e | 0.5 | 197.0 | e | 0.9 | 16.5 | a | 0.1 | 328.3 | d | 0.6 | 114.9 | g | 0.3 | 78.5 | d | 1.4 | 131.3 | e | 0.2 |
Niigata 129gou (Ae mutant rice) | 186.1 | e | 1.8 | 158.3 | d | 0.5 | 27.7 | a | 1.3 | 274.9 | d | 4.8 | 88.8 | g | 6.6 | 79.7 | d | 0.3 | 116.6 | e | 5.3 |
Dodam (Ae mutant rice) | 125.5 | b | 0.0 | 99.5 | c | 0.1 | 26.0 | a | 0.1 | 173.8 | c | 0.1 | 48.3 | f | 0.2 | 78.9 | d | 0.1 | 74.3 | d | 0.2 |
Benika (red glutinous rice) | 134.7 | b | 3.8 | 40.9 | b | 0.2 | 93.8 | c | 4.0 | 74.7 | b | 0.4 | −60.0 | d | 3.5 | 68.7 | c | 0.0 | 33.8 | b | 0.5 |
Shihou (purple glutinous rice) | 158.1 | c | 0.9 | 61.4 | c | 0.5 | 96.7 | c | 0.5 | 104.8 | b | 0.5 | −53.3 | d | 0.5 | 70.0 | c | 2.5 | 43.3 | c | 0.0 |
Hakuchomochi (glutinous rice) | 144.1 | b | 2.5 | 21.4 | a | 1.0 | 122.8 | d | 3.5 | 45.2 | a | 4.4 | −99.0 | c | 1.8 | 60.5 | a | 0.4 | 23.8 | a | 5.4 |
Koganemochi (glutinous rice) | 206.2 | d | 0.1 | 85.0 | d | 0.7 | 121.3 | d | 0.6 | 137.3 | c | 0.2 | −68.9 | d | 0.1 | 69.3 | c | 3.5 | 52.3 | c | 0.5 |
Himenomochi (glutinous rice) | 106.8 | a | 1.2 | 29.0 | a | 0.1 | 77.8 | b | 1.1 | 55.2 | a | 0.3 | −51.6 | d | 0.9 | 65.0 | b | 0.5 | 26.2 | a | 0.2 |
Kinunohada (glutinous rice) | 107.0 | a | 1.5 | 30.3 | a | 0.7 | 76.7 | b | 0.9 | 57.0 | a | 0.9 | −50.0 | d | 0.6 | 65.1 | b | 2.9 | 26.7 | a | 0.3 |
Kitayukimochi (glutinous rice) | 121.0 | a | 2.8 | 22.8 | a | 0.5 | 98.2 | c | 2.2 | 44.4 | a | 0.4 | −76.6 | d | 2.4 | 63.7 | b | 0.1 | 21.6 | a | 0.1 |
Yumepirika (low-amylose japonica rice) | 278.5 | e | 1.2 | 63.6 | c | 0.3 | 214.9 | e | 1.5 | 135.3 | c | 0.8 | −143.2 | b | 2.0 | 63.5 | b | 3.8 | 71.7 | d | 0.5 |
Koshihikari (premium japonica rice) | 337.5 | f | 2.8 | 73.2 | c | 0.1 | 264.3 | e | 2.8 | 152.6 | c | 0.6 | −184.9 | b | 2.2 | 67.0 | c | 0.0 | 79.4 | d | 0.6 |
Jasmin rice (low-amylose indica rice) | 443.1 | g | 14.8 | 102.8 | e | 0.2 | 340.3 | f | 15.0 | 189.6 | d | 2.1 | −253.5 | a | 12.7 | 72.0 | c | 0.5 | 86.7 | d | 2.4 |
Calrose (japonica rice) | 333.9 | f | 1.8 | 82.1 | d | 0.2 | 251.8 | e | 1.5 | 169.0 | d | 0.7 | −164.9 | b | 1.1 | 69.8 | c | 2.0 | 86.9 | d | 0.5 |
Carnaroli (tropical japonica rice) | 344.3 | f | 11.1 | 94.5 | e | 0.7 | 249.9 | e | 10.4 | 243.8 | e | 4.0 | −100.5 | c | 7.1 | 64.5 | b | 1.8 | 149.4 | e | 3.4 |
Hoshiyutaka (japonica-indica hybrid rice) | 214.5 | d | 8.3 | 57.8 | c | 1.1 | 156.6 | d | 7.2 | 185.5 | d | 4.1 | −29.0 | e | 4.2 | 62.9 | b | 2.6 | 127.6 | e | 3.0 |
Basmati (indica rice) | 159.5 | c | 0.4 | 122.5 | e | 0.2 | 37.0 | a | 0.2 | 345.6 | f | 4.7 | 186.1 | g | 5.0 | 78.5 | d | 2.4 | 223.2 | j | 4.8 |
Goami2 (Ae mutant rice) | 210.5 | d | 1.0 | 134.1 | e | 0.7 | 76.4 | b | 1.7 | 419.5 | g | 0.1 | 209.1 | g | 1.1 | 82.1 | d | 0.8 | 285.5 | k | 0.7 |
Niigata 129gou (Ae mutant rice) | 186.0 | d | 0.3 | 116.7 | e | 0.2 | 69.3 | b | 0.1 | 333.5 | f | 3.2 | 147.6 | f | 3.5 | 80.8 | d | 0.4 | 216.8 | j | 3.4 |
Dodam (Ae mutant rice) | 114.5 | a | 1.9 | 64.6 | c | 0.8 | 49.8 | a | 1.2 | 235.5 | e | 0.9 | 121.0 | f | 1.1 | 78.2 | d | 0.0 | 170.8 | f | 0.1 |
Benika (red glutinous rice) | 135.8 | a | 0.6 | 25.5 | a | 0.2 | 110.4 | b | 0.8 | 56.3 | b | 0.2 | −79.6 | e | 0.3 | 48.2 | a | 0.2 | 30.8 | a | 0.4 |
Shihou (purple glutinous rice) | 156.1 | b | 1.0 | 33.5 | b | 0.5 | 122.6 | b | 1.5 | 72.6 | b | 1.1 | −83.5 | e | 0.1 | 49.4 | a | 1.2 | 39.0 | b | 1.6 |
Hakuchomochi (glutinous rice) | 143.1 | b | 2.1 | 16.3 | a | 0.0 | 126.8 | b | 2.1 | 37.6 | a | 0.2 | −105.5 | d | 1.9 | 58.5 | b | 1.2 | 21.3 | a | 0.2 |
Koganemochi (glutinous rice) | 206.8 | c | 0.2 | 53.3 | c | 0.4 | 153.5 | c | 0.2 | 105.8 | c | 0.7 | −101.0 | d | 0.5 | 70.8 | d | 4.9 | 52.5 | c | 0.4 |
Himenomochi (glutinous rice) | 107.8 | a | 2.2 | 20.5 | a | 0.1 | 87.3 | a | 2.3 | 45.1 | a | 0.1 | −62.7 | f | 2.3 | 64.9 | c | 1.3 | 24.6 | a | 0.0 |
Kinunohada (glutinous rice) | 108.3 | a | 1.2 | 21.8 | a | 0.1 | 86.5 | a | 1.4 | 46.7 | a | 0.2 | −61.6 | f | 1.5 | 64.7 | c | 1.7 | 24.8 | a | 0.1 |
Kitayukimochi (glutinous rice) | 124.5 | a | 1.8 | 18.5 | a | 0.5 | 106.0 | b | 2.3 | 40.5 | a | 1.1 | −84.0 | e | 2.8 | 55.3 | b | 3.2 | 22.0 | a | 0.5 |
Yumepirika (low-amylose japonica rice) | 271.9 | d | 5.8 | 40.7 | b | 0.2 | 231.2 | d | 6.0 | 105.1 | c | 0.8 | −166.8 | c | 5.1 | 64.4 | c | 0.0 | 64.4 | c | 0.9 |
Koshihikari (premium japonica rice) | 333.6 | e | 5.7 | 43.1 | b | 0.2 | 290.5 | d | 5.5 | 112.5 | c | 0.4 | −221.2 | b | 5.3 | 69.6 | d | 0.4 | 69.3 | d | 0.2 |
Jasmin rice (low-amylose indica rice) | 434.8 | f | 0.5 | 57.4 | d | 1.8 | 377.4 | e | 1.2 | 128.9 | c | 2.0 | −305.9 | a | 1.5 | 71.6 | d | 2.1 | 71.5 | d | 0.2 |
Calrose (japonica rice) | 320.2 | e | 6.0 | 47.9 | c | 0.3 | 272.3 | d | 5.7 | 122.3 | c | 0.7 | −197.9 | b | 5.3 | 69.0 | d | 0.0 | 74.4 | d | 0.4 |
Carnaroli (tropical japonica rice) | 324.5 | e | 1.9 | 51.4 | c | 0.9 | 273.1 | d | 2.8 | 170.1 | d | 0.7 | −154.4 | c | 2.6 | 66.1 | c | 0.0 | 118.7 | f | 0.2 |
Hoshiyutaka (japonica-indica hybrid rice) | 200.3 | c | 0.9 | 33.5 | b | 0.2 | 166.8 | c | 0.8 | 115.3 | c | 0.2 | −85.0 | e | 0.7 | 64.1 | c | 0.0 | 81.8 | e | 0.1 |
Basmati (indica rice) | 159.3 | b | 0.1 | 81.0 | e | 1.0 | 78.2 | a | 1.0 | 228.4 | e | 1.5 | 69.1 | i | 1.4 | 70.6 | d | 8.8 | 147.3 | g | 0.5 |
Goami2 (Ae mutant rice) | 209.1 | c | 2.7 | 60.6 | d | 0.9 | 148.5 | c | 1.8 | 205.2 | e | 2.5 | −3.9 | h | 0.2 | 82.6 | e | 0.6 | 144.5 | g | 1.6 |
Niigata 129gou (Ae mutant rice) | 184.5 | c | 1.1 | 33.8 | b | 1.1 | 150.8 | c | 0.1 | 115.5 | c | 2.2 | −69.0 | f | 1.1 | 79.0 | e | 0.3 | 81.8 | e | 1.1 |
Dodam (Ae mutant rice) | 116.5 | a | 3.4 | 18.2 | a | 0.2 | 98.3 | a | 3.2 | 75.0 | b | 0.5 | −41.4 | g | 3.9 | 76.6 | e | 0.4 | 56.8 | c | 0.7 |
Sample | Surface Layer Hardness (H1) | SD | Overall Hardness (H2) | SD | Surface Layer Stickiness (S1) | SD | Overall Stickiness (S2) | SD | Surface Layer Adhered (L3) | SD | Surface Layer Balance Degree H1 | SD | Overall Balance Degree H2 | SD | Surface Layer Balance Degree A1 | SD | Overall Balance Degree A2 | SD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
×105 [N/cm2] | ×105 [N/cm2] | ×105 [N/cm2] | ×105 [N/cm2] | [mm] | (S1/H1) | (S2/H2) | (A3/A1) | (A6/A4) | |||||||||||||||||||
Benika (red glutinous rice) | 0.03 | a | 0.01 | 1.26 | a | 0.14 | −0.004 | b | 0.002 | −0.299 | a | 0.048 | 0.0030 | c | 0.0005 | 0.13 | c | 0.06 | 0.24 | b | 0.04 | 0.49 | c | 0.27 | 0.16 | c | 0.06 |
Shihou (purple glutinous rice) | 0.04 | a | 0.01 | 1.32 | a | 0.13 | −0.006 | b | 0.003 | −0.321 | a | 0.032 | 0.0028 | c | 0.0006 | 0.17 | c | 0.07 | 0.24 | b | 0.02 | 0.58 | c | 0.31 | 0.19 | c | 0.06 |
Hakuchomochi (glutinous rice) | 0.04 | a | 0.01 | 1.10 | a | 0.25 | −0.005 | b | 0.002 | −0.265 | a | 0.085 | 0.0032 | c | 0.0000 | 0.14 | c | 0.06 | 0.23 | b | 0.04 | 0.54 | c | 0.27 | 0.19 | c | 0.06 |
Koganemochi (glutinous rice) | 0.03 | a | 0.01 | 1.17 | a | 0.12 | −0.006 | b | 0.003 | −0.277 | a | 0.039 | 0.0031 | c | 0.0001 | 0.18 | c | 0.08 | 0.24 | b | 0.02 | 0.74 | c | 0.39 | 0.21 | c | 0.06 |
Himenomochi (glutinous rice) | 0.04 | a | 0.01 | 1.12 | a | 0.15 | −0.005 | b | 0.003 | −0.286 | a | 0.055 | 0.0031 | c | 0.0001 | 0.14 | c | 0.06 | 0.25 | b | 0.03 | 0.55 | c | 0.32 | 0.18 | c | 0.07 |
Kinunohada (glutinous rice) | 0.04 | a | 0.01 | 1.15 | a | 0.12 | −0.005 | b | 0.002 | −0.301 | a | 0.050 | 0.0031 | c | 0.0004 | 0.12 | c | 0.04 | 0.26 | b | 0.03 | 0.45 | c | 0.25 | 0.17 | c | 0.04 |
Kitayukimochi (glutinous rice) | 0.05 | a | 0.01 | 1.20 | a | 0.11 | −0.006 | b | 0.002 | −0.332 | a | 0.037 | 0.0032 | c | 0.0000 | 0.13 | c | 0.04 | 0.28 | b | 0.02 | 0.39 | c | 0.17 | 0.16 | c | 0.05 |
Yumepirika (low-amylose japonica rice) | 0.06 | b | 0.02 | 1.58 | b | 0.19 | −0.006 | b | 0.004 | −0.369 | a | 0.072 | 0.0024 | b | 0.0010 | 0.10 | c | 0.05 | 0.23 | b | 0.04 | 0.16 | b | 0.11 | 0.11 | b | 0.04 |
Koshihikari (premium japonica rice) | 0.07 | b | 0.02 | 1.67 | b | 0.16 | −0.010 | a | 0.006 | −0.337 | a | 0.066 | 0.0031 | c | 0.0002 | 0.15 | c | 0.07 | 0.20 | b | 0.04 | 0.26 | b | 0.12 | 0.10 | b | 0.04 |
Jasmin rice (low-amylose indica rice) | 0.07 | b | 0.02 | 1.65 | b | 0.19 | −0.006 | b | 0.003 | −0.351 | a | 0.056 | 0.0025 | b | 0.0009 | 0.08 | b | 0.05 | 0.22 | b | 0.04 | 0.15 | b | 0.09 | 0.08 | b | 0.02 |
Calrose (japonica rice) | 0.09 | c | 0.03 | 1.68 | b | 0.23 | −0.007 | b | 0.004 | −0.362 | a | 0.073 | 0.0026 | c | 0.0009 | 0.07 | b | 0.04 | 0.22 | b | 0.05 | 0.13 | b | 0.09 | 0.08 | b | 0.04 |
Carnaroli (tropical japonica rice) | 0.10 | c | 0.04 | 2.89 | e | 0.52 | −0.004 | b | 0.004 | −0.173 | b | 0.076 | 0.0024 | b | 0.0010 | 0.04 | a | 0.02 | 0.06 | a | 0.03 | 0.07 | a | 0.04 | 0.03 | a | 0.01 |
Hoshiyutaka (japonica-indica hybrid rice) | 0.09 | c | 0.02 | 2.10 | c | 0.26 | −0.003 | c | 0.002 | −0.139 | b | 0.073 | 0.0020 | b | 0.0012 | 0.03 | a | 0.02 | 0.07 | a | 0.04 | 0.06 | a | 0.03 | 0.03 | a | 0.01 |
Basmati (indica rice) | 0.12 | d | 0.02 | 2.26 | d | 0.25 | −0.001 | c | 0.001 | −0.091 | c | 0.070 | 0.0013 | a | 0.0011 | 0.01 | a | 0.01 | 0.04 | a | 0.03 | 0.02 | a | 0.03 | 0.01 | a | 0.01 |
Goami2 (Ae mutant rice) | 0.18 | e | 0.05 | 2.35 | d | 0.30 | −0.001 | d | 0.000 | −0.005 | d | 0.007 | 0.0009 | a | 0.0010 | 0.00 | a | 0.00 | 0.00 | a | 0.00 | 0.01 | a | 0.01 | 0.00 | a | 0.01 |
Niigata 129gou (Ae mutant rice) | 0.23 | e | 0.06 | 2.38 | d | 0.35 | −0.001 | d | 0.000 | −0.024 | d | 0.015 | 0.0012 | a | 0.0012 | 0.01 | a | 0.00 | 0.01 | a | 0.01 | 0.01 | a | 0.01 | 0.01 | a | 0.01 |
Dodam (Ae mutant rice) | 0.21 | e | 0.08 | 2.38 | d | 0.41 | −0.001 | d | 0.000 | −0.014 | d | 0.048 | 0.0016 | a | 0.0012 | 0.01 | a | 0.00 | 0.01 | a | 0.03 | 0.01 | a | 0.01 | 0.01 | a | 0.01 |
H1(R) | H2(R) | H2(R.D) | S2(R.D) | Aλmax (starch) | Aλmax (cooked) | RS | Ploramin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Consistency (93 °C) | 0.53 | * | 0.75 | ** | 0.47 | −0.57 | * | 0.50 | * | 0.50 | * | 0.24 | 0.74 | ** | ||
Consistency (120 °C) | 0.92 | ** | 0.90 | ** | 0.72 | ** | −0.92 | ** | 0.85 | ** | 0.88 | ** | 0.80 | ** | 0.51 | * |
Consistency (140 °C) | 0.67 | ** | 0.82 | ** | 0.56 | * | −0.72 | ** | 0.58 | * | 0.61 | ** | 0.43 | 0.62 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, S.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Evaluation of Hardness and Retrogradation of Cooked Rice Based on Its Pasting Properties Using a Novel RVA Testing. Foods 2021, 10, 987. https://doi.org/10.3390/foods10050987
Nakamura S, Katsura J, Maruyama Y, Ohtsubo K. Evaluation of Hardness and Retrogradation of Cooked Rice Based on Its Pasting Properties Using a Novel RVA Testing. Foods. 2021; 10(5):987. https://doi.org/10.3390/foods10050987
Chicago/Turabian StyleNakamura, Sumiko, Junji Katsura, Yasuhiro Maruyama, and Ken’ichi Ohtsubo. 2021. "Evaluation of Hardness and Retrogradation of Cooked Rice Based on Its Pasting Properties Using a Novel RVA Testing" Foods 10, no. 5: 987. https://doi.org/10.3390/foods10050987
APA StyleNakamura, S., Katsura, J., Maruyama, Y., & Ohtsubo, K. (2021). Evaluation of Hardness and Retrogradation of Cooked Rice Based on Its Pasting Properties Using a Novel RVA Testing. Foods, 10(5), 987. https://doi.org/10.3390/foods10050987