Influence of Various Factors on Caffeine Content in Coffee Brews
Abstract
:1. Introduction
2. Factors Affecting Caffeine Content in Different Coffee Beverages
2.1. The Impact of Species
2.2. The Impact of Brewing Time
2.3. The Impact of Temperature of Water
2.4. The Impact of Water Pressure
2.5. The Impact of Roasting
2.6. The Impact of Grinding Degree
2.7. The Impact of Type of Water
2.8. The Impact of Coffee/Water Ratio
2.9. The Impact of Volume
2.10. The Impact of Other Factors
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miran, J. Space, mobility, and translocal connections across the Red Sea area since 1500. Northeast Afr. Stud. 2012, 12, 9–26. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Machado, E.M.; Martins, S.; Teixeira, J.A. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Maghuly, F.; Jankowicz-Cieslak, J.; Bado, S. Improving coffee species for pathogen resistance. CAB Rev. 2020, 15, 1–18. [Google Scholar] [CrossRef]
- Mishra, K.M.; Nishani, S.; Jayarama. Molecular identification and genetic relationships among coffee species (Coffea L.) inferred from ISSR and SRAP marker analyses. Arch. Biol. Sci. 2011, 63, 667–679. [Google Scholar] [CrossRef]
- Davis, A.P.; Chadburn, H.; Moat, J.; O’Sullivan, R.; Hargreaves, S.; Lughadha, E.N. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 2019, 5, eaav3473. [Google Scholar] [CrossRef] [Green Version]
- International Coffee Organization. World Coffee Consumption. Available online: http://www.ico.org/prices/new-consumption-table.pdf (accessed on 26 February 2021).
- International Coffee Organization. Crop Year Production by Country. Available online: http://www.ico.org/prices/po-production.pdf (accessed on 26 February 2021).
- Gonzalez de Mejia, E.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab. 2014, 25, 489–492. [Google Scholar] [CrossRef]
- Clarke, R.J. Chemistry. In Coffee, 1st ed.; Springer: Dordrecht, The Netherlands, 1985; Volume 1, pp. 42–222. [Google Scholar] [CrossRef]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, j5024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökcen, B.B.; Şanlier, N. Coffee consumption and disease correlations. Crit. Rev. Food Sci. Nutr. 2019, 59, 336–348. [Google Scholar] [CrossRef]
- Cano-Marquina, A.; Tarín, J.J.; Cano, A. The impact of coffee on health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef]
- Festi, D.; Scaioli, E.; Baldi, F.; Vestito, A.; Pasqui, F.; Di Biase, A.R.; Colecchia, A. Body weight, lifestyle, dietary habits and gastroesophageal reflux disease. World J. Gastroenterol. 2009, 15, 1690–1701. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.Y.; Hsueh, P.H.; Wen, S.H.; Chen, C.L.; Wang, C.C. The role of tea and coffee in the development of gastroesophageal reflux disease. Tzu. Chi. Med. J. 2019, 31, 169–176. [Google Scholar] [CrossRef]
- Vossoughinia, H.; Salari, M.; Amirmajdi, E.M.; Saadatnia, H.; Abedini, S.; Shariati, A.; Shariati, M.; Khorashad, A.K. An epidemiological study of gastroesophageal reflux disease and related risk factors in urban population of Mashhad, Iran. Iran. Red. Crescent. Med. J. 2014, 16, e15832. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.J.; Reddy, D.N.; Ghoshal, U.C.; Jayanthi, V.; Abraham, P.; Choudhuri, G.; Broor, S.L.; Ahuja, V.; Augustine, P.; Bhasin, D.K.; et al. Epidemiology and symptom profile of gastroesophageal reflux in the Indian population: Report of the Indian Society of Gastroenterology Task Force. Indian J. Gastroenterol. 2011, 30, 118–127. [Google Scholar] [CrossRef]
- Plichart, M.; Menegaux, F.; Lacour, B.; Hartmann, O.; Frappaz, D.; Doz, F.; Bertozzi, A.I.; Defaschelles, A.S.; Pìerre-Kahn, A.; Icher, C.; et al. Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy and childhood malignant central nervous system tumours: The ESCALE study (SFCE). Eur. J. Cancer Prev. 2008, 17, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.O. Potentially toxic foods while breastfeeding: Garlic, caffeine, mushrooms, and more. Breastfeed. Med. 2018, 13, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, H.; Song, J.M.; Zhang, J.; Tang, Y.L.; Xin, C.M. A meta-analysis of risk of pregnancy loss and caffeine and coffee consumption during pregnancy. Int. J. Gynaecol. Obs. 2015, 130, 116–122. [Google Scholar] [CrossRef]
- Jahanfar, S.; Jaafar, S.H. Effects of restricted caffeine intake by mother on fetal, neonatal and pregnancy outcomes. Cochrane Database Syst. Rev. 2015, 6, CD006965. [Google Scholar] [CrossRef]
- Paula, T.D.M.D.E.; Shang, F.L.T.; Chiarini-Garcia, H.; De Almeida, F.R.C.L. Caffeine Intake during Pregnancy: What Are the Real Evidences? J. Pharm. Pharmacol. 2017, 5, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Borota, D.; Murray, E.; Keceli, G.; Chang, A.; Watabe, J.M.; Ly, M.; Toscano, J.P.; Yassa, M.A. Post-study caffeine administration enhances memory consolidation in humans. Nat. Neurosci. 2014, 17, 201–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredholm, B.B.; Yang, J.; Wang, Y. Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol. Asp. Med. 2017, 55, 22–25. [Google Scholar] [CrossRef]
- Bae, J.-H.; Park, J.-H.; Im, S.-S.; Song, D.-K. Coffee and health. Integr. Med. Res. 2014, 3, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Nicoli, M.C.; Dalla Rosa, M.; Lerici, C.R.; Severini, C. Caratteristiche chimiche dell’estratto di caffè. Nota 1: Cinetiche di estrazione della caffeina e delle sostanze solide. Ind. Aliment. 1987, 26, 467–471. [Google Scholar]
- Farah, A. Coffee constituent. In Coffee: Emerging Health Effects and Disease Prevention; Chu, Y.F., Ed.; Willey-Blackwell: Oxford, UK, 2012; p. 352. [Google Scholar]
- Bicho, N.C.; Lidon, F.C.; Ramalho, J.C.; Leitão, A.E. Quality assessment of Arabica and Robusta green and roasted coffees—A review. Emir. J. Food Agric. 2013, 25, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Gaibor, J.; Morales, D.; Carrillo, W. Determination of caffeine content in robusta roasted coffee (Coffea canephora) by RP-UHPLC-PDA. Asian J. Crop Sci. 2020. [Google Scholar] [CrossRef]
- Xia, Z.; Ni, Y.; Kokot, S. Simultaneous determination of caffeine, theophylline and theobromine in food samples by a kinetic spectrophotometric method. Food Chem. 2013, 141, 4087–4093. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharm. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [Green Version]
- Thorn, C.F.; Aklillu, E.; McDonagh, E.M.; Klein, T.E.; Altman, R.B. PharmGKB summary: Caffeine pathway. Pharm. Genom. 2012, 22, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, M.J. Metabolism of caffeine and other components of coffee. In Caffeine, Coffee and Health; Garattini, S., Ed.; Raven Press: New York, NY, USA, 1993; pp. 43–95. [Google Scholar]
- Heckman, M.A.; Weil, J.; Gonzalez de Mejia, E. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B. Notes on the History of Caffeine Use. In Methylxanthines. Handbook of Experimental Pharmacology; Fredholm, B.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 200, pp. 1–9. [Google Scholar] [CrossRef]
- Lozano, P.R.; García, A.Y.; Tafalla, D.B.; Albaladejo, M.F. Caffeine: A nutrient, a drug, or a drug of abuse? Adicciones 2007, 19, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Nehlig, A. Dependence upon coffee and caffeine: An update. In Coffee, Tea, Chocolate and the Brain; Nehlig, A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 133–146. [Google Scholar]
- Masi, C.; Dinnella, C.; Pirastu, N.; Prescott, J.; Monteleone, E. Caffeine metabolism rate influences coffee perception, preferences and intake. Food Qual. Prefer. 2016, 53, 97–104. [Google Scholar] [CrossRef]
- Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 2016, 57, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Bhumiratana, N.; Adhikari, K.; Chambers, E.I. Evolution of sensory aroma attributes from coffee beans to brewed coffee. LWT Food Sci. Technol. 2011, 44, 2185–2192. [Google Scholar] [CrossRef] [Green Version]
- Poisson, L.; Blank, I.; Dunkel, A.; Hofmann, T. The Chemistry of Roasting—Decoding Flavor Formation. In The Craft and Science of Coffee; Academic Press: Amsterdam, The Netherlands, 2017; pp. 273–309. [Google Scholar]
- Rendón, M.Y.; de Jesus Garcia Salva, T.; Bragagnolo, N. Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chem. 2014, 147, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.M.S.; de Abreu, C.M.P.; Menezes, H.C.; Santos, M.H.; Gouvêa, C.M.C.P. Effect of processing and roasting on the antioxidant activity of coffee brews. Food Sci. Technol. 2005, 25, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Bilge, G. Investigating the effects of geographical origin, roasting degree, particle size and brewing method on the physicochemical and spectral properties of Arabica coffee by PCA analysis. J. Food Sci. Technol. 2020, 57, 3345–3354. [Google Scholar] [CrossRef] [PubMed]
- Babova, O.; Occhipinti, A.; Maffei, M. Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry 2016, 123, 33–39. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Liu, T.X. Study on chemicals and antioxidant activity of Pu-er teas stored at different time. Food Ind. 2013, 34, 127–130. [Google Scholar] [CrossRef]
- Hečimović, I.; Belščak-Cvitanović, A.; Horžić, D.; Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef]
- European Food Safety Authority. EFSA Explains Risk Assessment. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/efsaexplainscaffeine150527.pdf (accessed on 26 February 2021).
- Food Standards Agency. Food Additives. Available online: https://www.food.gov.uk/print/pdf/node/279 (accessed on 26 February 2021).
- Lopes, G.R.; Passos, C.P.; Rodrigues, C.; Teixeira, J.A.; Coimbra, M.A. Modulation of infusion processes to obtain coffee-derived food ingredients with distinct composition. Eur. Food Res. Technol. 2019, 245, 2133–2146. [Google Scholar] [CrossRef] [Green Version]
- Komes, D.; Belščak-Cvitanović, A. Effects of preparation techniques on the antioxidant capacity of coffee brews. In Processing and Impact on Antioxidants in Beverages; Preedy Victor, R., Ed.; Academic Press: Oxford, UK, 2014; pp. 87–97. [Google Scholar]
- Niseteo, T.; Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Budeč, M. Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chem. 2012, 134, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Gloess, A.N.; Schönbächler, B.; Klopprogge, B.; D’Ambrosio, L.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur. Food Res. Technol. 2013, 236, 607–627. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; William, J.; Fu, Y.; Lim, L.T. Effects of capsule parameters on coffee extraction in single-serve brewer. Food Res. Int. 2016, 89, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Rosa, M.D.; Lerici, C.R. Influence of some processing conditions on solid-liquid extraction of coffee. Lebensm. Wiss. Technol. 1990, 23, 386–389. [Google Scholar] [CrossRef]
- Andueza, S.; Vila, A.M.; de Peña, M.P.; Cid, C. Influence of coffee/water ratio on the final quality of espresso coffee. J. Sci. Food Agric. 2007, 87, 586–592. [Google Scholar] [CrossRef]
- Seninde, D.R.; Chamber, E. Coffee flavor: A review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Khamitova, G.; Angeloni, S.; Borsetta, G.; Xiao, J.; Maggi, F.; Sagratini, G.; Vittori, S.; Caprioli, G. Optimization of espresso coffee extraction through variation of particle sizes, perforated disk height and filter basket aimed at lowering the amount of ground coffee used. Food Chem. 2020, 314, 126220. [Google Scholar] [CrossRef]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M.; Grim, M.D. Physiochemical characteristics of hot and cold brew coffee chemistry: The effects of roast level and brewing temperature on compound extraction. Foods 2020, 9, 902. [Google Scholar] [CrossRef]
- Dąbrowska-Molenda, M.; Szwedziak, K.; Zabłudowska, Ż. Analiza zawartości kofeiny w wybranych rodzajach kawy [Analysis of caffeine content in selected types of coffee]. Postępy Tech. Przetwórstwa Spożywczego 2019, 2, 68–71. (In Polish) [Google Scholar]
- Macheiner, L.; Schmidt, A.; Schreiner, M.; Mayer, H.K. Green coffee infusion as a source of caffeine and chlorogenic acid. J. Food Compos. Anal. 2019, 84, 103307. [Google Scholar] [CrossRef]
- Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 2018, 116, 1327–1335. [Google Scholar] [CrossRef]
- Merecz, A.; Marusińska, A.; Karwowski, B.T. The content of biologically active substances and antioxidant activity in coffee depending on brewing method. Pol. J. Nat. Sci. 2018, 33, 267–284. [Google Scholar]
- Dankowska, A.; Kowalski, D. Wpływ wybranych sposobów zaparzania kawy na zawartość kofeiny w naparach kawowych [Impact of selected brewing methods on caffeine content in coffee infusions]. Towarozn. Probl. Jakości 2018, 1, 58–65. (In Polish) [Google Scholar]
- Caprioli, G.; Cortese, M.; Maggi, F.; Minnetti, C.; Odello, L.; Sagratini, G.; Vittori, S. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: The influence of espresso machines and coffee cultivars. Int. J. Food Sci. Nutr. 2014, 65, 465–469. [Google Scholar] [CrossRef]
- Caporaso, N.; Genovese, A.; Canela, M.D.; Civitella, A.; Sacchi, R. Neapolitan coffee brew chemical analysis in comparison to espresso, moka and American brews. Food Res. Int. 2014, 61, 152–160. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Bocăniciu, I.; Pop, A.; Tofană, M.; Muste, S.; Feier, D. Evaluation of biofunctional compounds content from brewed coffee. Bull. Uasvm. Food Sci. Technol. 2014, 71, 114–118. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; Del Rio, D.; Lean, M.E.J.; Crozier, A. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food Funct. 2014, 5, 1718–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tfouni, S.A.V.; Carreiro, L.B.; Teles, C.R.A.; Furlani, R.P.Z.; Cipolli, K.M.V.A.B.; Camargo, M.C.R. Caffeine and chlorogenic acids intake from coffee brew: Influence of roasting degree and brewing procedure. Int. J. Food Sci. Tech. 2014, 49, 747–752. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Sanchez, L.; Caemmerer, B.; Kroh, L.W.; De Peña, M.P.; Cid, C. Extraction of coffee antioxidants: Impact of brewing time and method. Food Res. Int. 2012, 48, 57–64. [Google Scholar] [CrossRef]
- Ranić, M.; Konić-Ristic, K.; Takić, M.; Glibetić, M.; Pavlović, Z.; Pavlović, M.; Dimitrijević-Branković, S. Nutrient profile of black coffee consumed in Serbia: Filling a gap in the food consumption database. J. Food Compos. Anal. 2015, 40, 61–69. [Google Scholar] [CrossRef]
- Sanchez, K.; Chambers, E. How does product preparation affect sensory properties? An example with coffee. J. Sens. Stud. 2015, 30, 499–511. [Google Scholar] [CrossRef]
- Derossi, A.; Ricci, I.; Caporizzi, R.; Fiore, A.; Severini, C. How grinding levels and brewing methods (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. J. Sci. Food Agric. 2018, 98, 3198–3207. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Loftfield, E.; Wedekind, R.; Freedman, N.; Kambanis, C.; Scalbert, A.; Sinha, R. A metabolomic study of the variability of the chemical composition of commonly consumed coffee brews. Metabolites 2019, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.S.; Scholz, M.B.; Kitzberger, C.S.; Benassi, M.T. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Mestdagh, F.; Davidek, T.; Chaumonteuil, T.; Folmer, B.; Blank, I. The kinetics of coffee aroma extraction. Food Res. Int. 2014, 63, 271–274. [Google Scholar] [CrossRef]
- Gielissen, R.; Graafland, J. Concepts of price fairness: Empirical research into the Dutch coffee market. Bus. Ethics A Eur. Rev. 2009, 18, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Descroix, F.; Snoeck, J. Environmental factors suitable for coffee cultivation. In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers; Wintgens, J.N., Ed.; Wiley-VCH: Weinheim, Germany, 2009; pp. 168–181. [Google Scholar]
- Koshiro, Y.; Zheng, X.Q.; Wang, M.L.; Nagai, C.; Ashihara, H. Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Sci. 2006, 171, 242–250. [Google Scholar] [CrossRef]
- Perrois, C.; Strickler, S.R.; Mathieu, G.; Lepelley, M.; Bedon, L.; Michaux, S.; Husson, J.; Mueller, L.; Privat, I. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta 2015, 241, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Severini, C.; Degrossi, A.; Ricci, I.; Fiore, A.G.; Caporizzi, R. How much caffeine in coffee cup? Effects of processing operations, extraction methods and variables. In The Question of Caffeine; Latosinska, J.N., Latosinska, M., Eds.; Intechopen: London, UK, 2017; pp. 45–85. [Google Scholar]
- Morales, A.M.F. Effect of holding-time on sensory quality of brewed coffee. Food Qual. Prefer. 1989, 1, 87–89. [Google Scholar] [CrossRef]
- Batali, M.E.; Frost, S.C.; Lebrilla, C.B.; Ristenpart, W.D.; Guinard, J.X. Sensory and monosaccharide analysis of drip brew coffee fractions versus brewing time. J. Sci. Food Agric. 2020, 100, 2953–2962. [Google Scholar] [CrossRef]
- Woźniczko, M.; Orłowski, D. Profesja baristy i specyfika jego pracy w branży kawiarnianej na rynku horeca w Polsce [Baristic profession and specification of its work in the coffee industry on the horeca market in Poland]. Zeszyty Naukowe. Turystyka Rekreacja. 2019, 1, 185–202. [Google Scholar]
- Prankerd, R.J. Critical compilation of pKa values for pharmaceutical substances. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: London, UK, 2007; Volume 33, pp. 1–33. [Google Scholar] [CrossRef]
- Illy, E.; Navarini, L. Neglected food bubbles: The espresso coffee foam. Food Biophys. 2011, 6, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Salamanca, C.A.; Fiola, F.; González, C.; Saez, M.; Villaescusa, I. Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso. Food Chem. 2017, 214, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Masella, P.; Guerrini, L.; Spinelli, S.; Calamai, L.; Spugnoli, P.; Illy, F.; Parenti, A. A new espresso brewing method. J. Food Eng. 2015, 146, 204–208. [Google Scholar] [CrossRef]
- Parenti, A.; Guerrini, L.; Masella, P.; Spinelli, S.; Calamai, L.; Spugnoli, P. Comparison of espresso coffee brewing techniques. J. Food Eng. 2014, 121, 112–117. [Google Scholar] [CrossRef]
- Andueza, S.; Maeztu, L.; Dean, B.; de Peña, M.P.; Bello, J.; Cid, C. Influence of water pressure on the final quality of Arabica espresso coffee. Application of multivariate analysis. J. Agric. Food Chem. 2002, 50, 7426–7431. [Google Scholar] [CrossRef] [PubMed]
- Charles-Bernard, M.; Kraehenbuehl, K.; Rytz, A.; Roberts, D.D. Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components. J. Agric. Food Chem. 2005, 53, 4417–4425. [Google Scholar] [CrossRef]
- Buffo, R.A.; Cardelli-Freire, C. Coffee flavour: An overview. Flavour Fragr. J. 2004, 19, 99–104. [Google Scholar] [CrossRef]
- Wei, F.; Tanokura, M. Chapter 10—Chemical Changes in the Components of Coffee Beans during Roasting. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: London, UK, 2015; pp. 83–91. [Google Scholar] [CrossRef]
- Jokanović, M.R.; Džinić, N.R.; Cvetković, B.R.; Grujić, S.; Odžaković, B. Changes of physical properties of coffee beans during roasting. Acta Period. Technol. 2012, 43, 21–31. [Google Scholar] [CrossRef]
- Schenker, S.; Handschin, S.; Frey, B.; Perren, R.; Escher, F. Pore structure of coffee beans affected by roasting conditions. J. Food Sci. 2000, 65, 452–457. [Google Scholar] [CrossRef]
- National Coffee Association, USA: Coffee Roast Guide. Available online: https://www.ncausa.org/About-Coffee/Coffee-Roasts-Guide (accessed on 27 February 2021).
- Schenker, S.; Heinemann, C.; Huber, M.; Pompizzi, R.; Perren, R.; Escher, R. Impact of roasting conditions on the formation of aroma compounds in coffee beans. J. Food Sci. 2002, 67, 60–66. [Google Scholar] [CrossRef]
- Wei, F.; Furihata, K.; Koda, M.; Hu, F.; Miyakawa, T.; Tanokura, M. Roasting process of coffee beans as studied by nuclear magnetic resonance: Time course of changes in composition. J. Agric. Food Chem. 2012, 60, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Kwan-Jung, K.; Seung-Kook, P. Changes in major chemical constituents of green coffee beans during the roasting. Korean J. Food Sci. Technol. 2006, 38, 153–158. [Google Scholar]
- Crozier, T.W.M.; Stalmach, A.; Lean, M.E.J.; Crozier, A. Espresso coffees, caffeine and chlorogenic acid intake: Potential health implications. Food Funct. 2012, 3, 30–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfner, R.; Ferge, T.; Yeretzian, C.; Kettrup, A.; Zimmermann, R. Laser mass spectrometry as on-line sensor for industrial process analysis: Process control of coffee roasting. Anal. Chem. 2004, 76, 1386–1402. [Google Scholar] [CrossRef]
- Herawati, D.; Giriwono, P.E.; Dewi, F.N.A.; Kashiwagi, T.; Andarwulan, N. Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food Sci. Biotechnol. 2019, 28, 7–14. [Google Scholar] [CrossRef]
- Severini, C.; Derossi, A.; Fiore, A.G.; De Pilli, T.; Alessandrino, O.; Del Mastro, A. How the variance of some extraction variables may affect the quality of espresso coffees served in coffee shop? J. Sci. Food Agric. 2016, 96, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Casal, S.; Oliveira, M.B.; Ferreira, M.A. HPLC/diode-array applied to the thermal degradation of trigonelline, nicotinic acid and caffeine in coffee. Food Chem. 2000, 68, 481–485. [Google Scholar] [CrossRef]
- Jeon, J.S.; Kim, H.T.; Jeong, I.H.; Hong, S.R.; Oh, M.S.; Park, K.H.; Shim, J.H.; Abd El-Aty, A.M. Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1064, 115–123. [Google Scholar] [CrossRef]
- Ross, C.F.; Pecka, K.; Weller, K. Effect of storage conditions on the sensory quality of ground Arabica coffee. J. Food Qual. 2006, 29, 596–606. [Google Scholar] [CrossRef]
- Moroney, K.M.; Lee, W.T.; O’Brien, S.B.G.; Suijver, F.; Marra, J. Modelling of coffee extraction during brewing using multiscale methods: An experimentally validated model. Chem. Eng. Sci. 2015, 137, 216–234. [Google Scholar] [CrossRef]
- Ocieczek, A. Wpływ stopnia rozdrobnienia kawy palonej na jej właściwości higroskopijne [Influence of roasted coffee grinding degree on its hygroscopic properties]. Inż. Ap. Chem. 2013, 2, 78–80. (In Polish) [Google Scholar]
- Severini, C.; Ricci, I.; Marone, M.; Derossi, A.; De Pilli, T. Changes in aromatic profile of espresso coffee as a function of grinding grade and extraction time: A study by electronic nose system. J. Agric. Food Chem. 2015, 63, 2321–2327. [Google Scholar] [CrossRef] [PubMed]
- Spiro, M.; Selwood, R.M. The kinetics and mechanism of caffeine infusion from coffee: The effect of particle size. J. Sci. Food Agric. 1984, 35, 915–924. [Google Scholar] [CrossRef]
- Kuhn, M.; Lang, S.; Bezold, F.; Minceva, M.; Briesen, H. Time-resolved extraction of caffeine and trigonelline from finely-ground espresso coffee with varying particle sizes and tamping pressures. J. Food Eng. 2017, 206, 37–47. [Google Scholar] [CrossRef]
- Uman, E.; Colonna-Dashwood, M.; Colonna-Dashwood, L.; Perger, M.; Klatt, K.; Leighton, S.; Miller, B.; Butler, K.T.; Melot, B.C.; Speirs, R.W.; et al. The effect of bean origin and temperature on grinding roasted coffee. Sci. Rep. 2016, 6, 24483. [Google Scholar] [CrossRef] [PubMed]
- Andueza, S.; de Peña, M.P.; Cid, C. Chemical and sensorial characteristics of espresso coffee as affected by grinding and torrefacto roast. J. Agric. Food Chem. 2003, 51, 7034–7039. [Google Scholar] [CrossRef]
- Bell, L.N.; Wetzel, C.R.; Grand, A.N. Caffeine content in coffee as influenced by grinding and a brewing conditions. Food Res. Int. 1996, 29, 785–789. [Google Scholar] [CrossRef]
- Murray, C.; Laredo, T. Effect of home grinding on properties of brewed coffee. J. Food Res. 2015, 4, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Navarini, L.; Rivetti, D. Water quality for Espresso coffee. Food Chem. 2010, 122, 424–428. [Google Scholar] [CrossRef]
- Pangborn, R.M.; Trabue, I.M.; Little, A.C. Analysis of coffee, tea and artificially flavored drinks prepared from mineralized waters. J. Food Sci. 1971, 36, 355–362. [Google Scholar] [CrossRef]
- Sivetz, M. How acidity affects coffee flavor? Food Technol. 1972, 26, 70–77. [Google Scholar]
- Gardner, D.G. Effect of certain ion combinations commonly found in potable water on rate of filtration through roasted and ground coffee. Food Res. 1958, 23, 76–84. [Google Scholar] [CrossRef]
- Cammenga, H.K.; Zielasko, B. Kinetics and Development of Boiler Scale Formation in Commercial Coffee Brewing Machines. Available online: http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato=2&cantidad=1&expresion=mfn=025481 (accessed on 27 February 2021).
- Petracco, M. Percolation. In Espresso Coffee: The Science of Quality, 2nd ed.; Illy, A., Viani, R., Eds.; Academic Press: Oxford, UK, 2005; pp. 259–289. [Google Scholar]
- Vaast, P.; Bertrand, B.; Perriot, J.J.; Guyot, B.; Génard, M. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agric. 2006, 86, 197–204. [Google Scholar] [CrossRef]
- Worku, M.; de Meulenaer, B.; Duchateau, L.; Boeckx, P. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Res. Int. 2018, 105, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Simmi, P.; Naik, G.K.; Giridhar, P. RP-HPLC and transcript profile indicate increased leaf caffeine in Coffea canephora plants by light. J. Biol. Earth Sci. 2015, 5, 1–9. [Google Scholar]
- Ribeiro, D.E.; Borem, F.M.; Cirillo, M.A.; Prado, M.V.B.; Ferraz, V.P.; Alves, H.M.R.; da Silva Taveira, J.H. Interaction of genotype, environment and processing in the chemical composition expression and sensorial quality of Arabica coffee. Afr. J. Agric. Res. 2016, 11, 2412–2422. [Google Scholar] [CrossRef] [Green Version]
- Samporn, C.; Kamtuo, A.; Theerakulpisut, P.; Siriamornpun, S. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L. cv. Catimor) harvested from north-eastern Thailand. J. Sci. Food Agric. 2012, 92, 1956–1963. [Google Scholar] [CrossRef]
- Da Matta, F.M.; Ronchi, C.P.; Sale, E.F.; Araujo, J.B.S. Café conilon em sistema agroflorestais. In Cafe Conilon, 2nd ed.; Ferrao, R.G., Fonseca, A.F.A., Braganca, S.M., Ferrao, M.A.G., De Muner, L.H., Eds.; Incaper: Vitoria, Spain, 2007; pp. 377–389. [Google Scholar]
- Avelino, J.; Barboza, B.; Araya, J.C.; Fonseca, C.; Davrieux, F.; Guyot, B.; Cilas, C. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 2005, 85, 1869–1876. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, D.J.; Witter, J.D.; Spongberg, A.L.; Philpott, S.M. Effect of nitrogen fertilization on caffeine production in coffee (Coffea arabica). Chemoecology 2011, 21, 123–130. [Google Scholar] [CrossRef]
- Bytof, G.; Knopp, S.E.; Kramer, D.; Breitenstein, B.; Bergervoet, J.H.W.; Groot, S.P.C.; Selmar, D. Transient occurrence of seed germination processes during coffee post-harvest treatment. Ann. Bot. 2007, 100, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Bytof, G.; Knopp, S.E.; Schieberle, P.; Teutsch, L.; Selmar, D. Influence of processing on the generation of γ-aminobutyric acid in green coffee beans. Eur. Food Res. Technol. 2005, 220, 245–250. [Google Scholar] [CrossRef]
- Joët, T.; Laffargue, A.; Descroix, F.; Doulbeau, S.; Bertrand, B.; de Kochko, A.; Dussert, S. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem. 2010, 118, 693–701. [Google Scholar] [CrossRef]
Caffeine Content Av ± SD (g/L) | Methods | Time (min) | Amount of Coffee (g) | Amount of Water (mL) | Type of Water | Volume of Coffee Brew (mL) | Pressure (bars) | Temperature (°C) | Degree/Conditions of Roasting | Type of Coffee | Country | Methods of Analysis | References (Year) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.962 ± 0.041 | French press (cold brew) | 420 | 20 | 200 | DIw | Nd | Nd | Room t. | 209 °C | G | Colombia | HPLC | [61] (2020) |
1.114 ± 0.056 | 194 °C | ||||||||||||
1.036 ± 0.019 | 203 °C | ||||||||||||
1.095 ± 0.065 | French press | 6 | 100 | 194 °C | |||||||||
1.056 ± 0.047 | 203 °C | ||||||||||||
1.035 ± 0.039 | 209 °C | ||||||||||||
0.489 | Pouring water | 5 | 2.5 | 150 | Nd | Nd | Nd | 100 | R | FG | Nd | HPLC | [62] (2019) |
0.188 ± 0.007 | Pouring water | 5 | 3 | 200 | UHQw | Nd | Nd | 100 | Green | FG | Nicaragua | HPLC | [63] (2019) |
0.183 ± 0.003 | Bali | ||||||||||||
0.175 ± 0.003 | Guatemala | ||||||||||||
0.173 ± 0.007 | Mexico | ||||||||||||
0.171 ± 0.001 | G | Honduras | |||||||||||
0.167 ± 0.001 | FG | Ethiopia | |||||||||||
0.166 ± 0.004 | G | Brazil | |||||||||||
0.151 ± 0.010 | FG | Tanzania | |||||||||||
0.139 ± 0.002 | G (tea bag) | Nicaragua | |||||||||||
0.006 # | FG | Honduras | |||||||||||
4.200 ± 0.090 | Coffee machine—espresso specialty method (portafilter, La Marzocco GS3, Italy) | 0.44 | 18 | Nd | Mw | 18 | 9 | 93 | R | FG (fine course) | Ethiopia | HPLC-DAD | [64] (2018) |
4.100 ± 0.160 | Coffee machine—espresso classical method (portafilter. La Marzocco GS3, Italy) | 0.45 | 14 | Nd | 30 | 9 | 93 | ||||||
1.280 ± 0.040 | Coffee percolator | 2.13 | 15 | 150 | 40 | 1.5 | 100 | ||||||
1.250 ± 0.120 | Cold-brew | 282 | 25 | 250 | 120 | 1 | 20 | FG (coarse) | |||||
0.780 ± 0.090 | Aeropress | 1.35 | 16.5 | 250 | 120 | 1 | 93 | ||||||
0.520 ± 0.060 | French Press | 5 | 15 | 250 | 120 | 1 | 93 | ||||||
0.410 ± 0.020 | Coffee machine (portafilter, De’Longhi, EC145, Italy) | Nd | 2 | 100 | Nd | Nd | Nd | Nd | R | G | Brazil, Colombia, Central America | SP | [65] (2018) |
0.390 ± 0.010 | Nd | M | G | South/Central America, Brazil | |||||||||
0.330 ± 0.020 | Nd | R | G | Nd | |||||||||
0.700 ± 0.050 | Pouring water | 10 | 90 | M | G | South/Central America, Brazil | |||||||
0.470 ± 0.050 | 10 | R | G | Nd | |||||||||
0.410 ± 0.050 | 10 | R | G | Brazil, Colombia, Central America | |||||||||
0.650 ± 0.050 | Coffee percolator | Nd | Cold water and heated to the boil | R | G | Brazil, Colombia, Central America | |||||||
0.420 ± 0.040 | Nd | R | G | Nd | |||||||||
0.340 ± 0.020 | Nd | M | G | South/Central America, Brazil | |||||||||
0.506 ± 0.036 | Coffee percolator (brews were filtered) | 15 | 4 | 100 | Dw | Nd | Nd | 100 | R | FG | Costa Rica, Tanzania, Peru, Mexico, Guatemala | SP | [66] (2017) |
0.375 ± 0.021 | Pouring water (brews were filtered) | ||||||||||||
5.270 | Coffee machine (portafilter, Aurelia Competizione) | 0.42 | 7.5 | Nd | Nd | 25 | 9 | 92 | Nd | FG | Colombia | HPLC-VWD | [67] (2014) |
5.231 | 11 | ||||||||||||
4.750 | 7 | ||||||||||||
4.512 | 7 | 98 | |||||||||||
4.348 | 9 | ||||||||||||
4.172 | 11 | ||||||||||||
3.910 | 7 | 88 | |||||||||||
3.851 | 9 | ||||||||||||
3.540 | 11 | ||||||||||||
2.440 ± 0.240 | Coffee machine—espresso (fully automatic, Spinel Pinocchio C, Italy) | 0.42 | 7 | Nd | Nd | 25 | 9.5 | 93 | M | G | Italy | SPME-GC/MS | [68] (2014) |
1.680 ± 0.200 | Coffee percolator—moka | 3 | 11.3 | 80 | Dw | 62 | Nd | 100 | |||||
1.390 ± 0.300 | American coffee maker (filter coffee machine) | 2 | 25 | 300 | Dw | 230 | Nd | 90 | |||||
1.300 ± 0.180 | Neapolitan pot | 5 | 15.4 | 145 | Dw | 75 | Nd | 90 | |||||
1.876 | Pouring water | 2 | 1 g (calculation for 5 g) | 100 | DIw | Nd | Nd | Hot water | R | G | Nd | SP | [69] (2014) |
7.908 | Coffee machine—regular extraction | Nd | 20.4 | Nd | Nd | 22 | 9 | 92 | D (219 °C) | G | Brazil | HPLC | [70] (2014) |
7.174 | 18.6 | 23 | L (197 °C) | ||||||||||
6.609 | 18.1 | 23 | M (211 °C) | ||||||||||
4.489 | Coffee machine—over-extraction | 18.1 | 45 | M (211 °C) | |||||||||
4.218 | 20.4 | 55 | D (219 °C) | ||||||||||
3.691 | 18.6 | 43 | L (197 °C) | ||||||||||
1.225 | Pouring water (25 °C), bringing to a boil and filtering through a paper filter | Nd | 50 | 500 | Nd | Nd | Nd | 25 °C and coming to a boil | L | G | Brazil | HPLC | [71] (2014) |
1.110 | D | ||||||||||||
1.108 | M | ||||||||||||
0.990 | Paper filter | 92–96 | D (12 min, 200 °C) | ||||||||||
0.925 | L (7 min, 200 °C) | ||||||||||||
0.873 | M (10 min, 200 °C) | ||||||||||||
1.414 ± 0.024 | Coffee machine (portafilter, Saeco Aroma, Italy) | 3 * 0.13 * | 7.0 | 45 | Nd | 47 | Nd | Nd | Nd | FG | Guatemala | HPLC | [72] (2012) |
0.571 ± 0.001 | Filter coffee machine | 6 | 36 | 600 | Nd | 532 | Nd | 90 | |||||
about 1.200 | Coffee machine | Nd | 7 | Nd | Dw | 50 | Nd | 95–97 | R | G (capsules) | Nd | HPLC | [52] (2012) |
Caffeine Content Av. ± SD (g/L) | Methods | Time (min) | Amount of Coffee (g) | Amount of Water (mL) | Type of Water | Volume of Coffee Brew (mL) | Pressure (bars) | Temperature (°C) | Degree/Conditions of Roasting | Type of Coffee | Country | Methods of Analysis | References (Year) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.293 ± 0.014 | Pouring water | 5 | 3 | 200 | UHQw | Nd | Nd | 100 | Green | FG | India | HPLC | [63] (2019) |
0.227 ± 0.010 | G | ||||||||||||
0.186 ± 0.008 | G (tea bag) | ||||||||||||
0.760 ± 0.060 | Pouring water | 10 | 2 | 100 | Nd | Nd | Nd | 90 | R | G | Nd | SP | [65] (2018) |
0.690 ± 0.030 | Coffee percolator | Nd | Cold water and heated to the boil | ||||||||||
0.150 ± 0.010 | Coffee machine (portafilter, De’Longhi, EC145, Italy) | Nd | Nd | ||||||||||
0.892 ± 0.079 | Coffee percolator | 15 | 4 | 100 | Dw | Nd | 100 | 100 | R | FG | Indonesia, Yemen, India, and Vietnam | SP | [66] (2017) |
0.602 ± 0.069 | Pouring water | Nd | Nd | FG | |||||||||
2.581 | Pouring water | 2 | 1 g (calculation for 5 g) | 100 | Dw | Nd | Nd | Hot water | R | G | Nd | SP | [69] (2014) |
1.920 ± 0.141 | Pouring water (25 °C), bringing to a boil and filtering | Nd | 50 | 500 | Nd | Nd | Nd | 25 °C and coming to a boil | M | G | Brazil | HPLC | [71] (2014) |
1.763 ± 0.061 | D | ||||||||||||
1.713 ± 0.057 | L | ||||||||||||
1.655 ± 0.049 | Paper filter | 92–96 | M | ||||||||||
1.290 ± 0.225 | L | ||||||||||||
1.233 ± 0.278 | D | ||||||||||||
2.533 ± 0.020 | Coffee machine (portafilter, Saeco Aroma, Italy) | 3 * 0.13 | 7 | 45 | Nd | 46 | Nd | Nd | Nd | FG | Vietnam | HPLC | [72] (2012) |
1.153 ± 0.004 | Filter coffee machine | 6 | 36 | 600 | Nd | 532 | Nd | 90 | Nd | FG |
Caffeine Content Av ± SD (g/L) | Methods | Time (min) | Amount of Coffee (g) | Amount of Water (mL) | Type of Water | Volume of Coffee Brew (mL) | Pressure (bars) | Temperature (°C) | Species | Degree/Conditions of Roasting | Type of Coffee | Country | Methods of Analysis | References (Year) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.303 | Coffee machine (portafilter, Aurelia Competizione) | 0.4 | 7.5 | Nd | Nd | 25 | 7 | 92 | Robusta blend (95% Robusta + 5% Arabica) | Nd | FG | Nd | HPLC-VWD | [67] (2014) |
10.206 | 9 | 92 | ||||||||||||
9.171 | 11 | 88 | ||||||||||||
8.504 | 7 | 88 | ||||||||||||
8.052 | 11 | 92 | ||||||||||||
8.038 | 9 | 88 | ||||||||||||
6.432 | 7 | 98 | ||||||||||||
6.376 | 9 | 98 | ||||||||||||
4.448 | 11 | 98 | ||||||||||||
1.180 ± 0.100 | Coffee added to hot water, boiling | 3 | 6.9 | 100 | Tap water | Nd | Nd | 95–100 | Arabica and Robusta blend | R | G | Brazil, India, Vietnam, African | SP | [73] (2015) |
0.700 ± 0.110 | 3.4 | |||||||||||||
2.519 | Pouring water | 2 | 1 g (calculation for 5 g) | 100 | Dw | Nd | Nd | Nd | Arabica and Robusta blend | R | G | Nd | SP | [69] (2014) |
Factors | Possible Impact on Caffeine Content |
---|---|
Species | Robusta coffee has genetically more caffeine than Arabica |
Brewing time | Not a decisive factor |
Temperature of water | Caffeine is most soluble at 100 °C. A lower temperature reduces caffeine extraction |
Water pressure | Not a decisive factor. Higher water pressure does not increase caffeine extraction |
Roasting beans | Possible increase in caffeine loss during roasting, but the evidence is inconclusive |
Grinding degree | The evidence is not conclusive, whereas the degree of grinding is closely related to the brewing method. It affects the aroma and taste of coffee, which is probably more important from the point of view of the consumer |
Type of water | Probably does not affect caffeine extraction, but may affect the flavor and aroma of coffee |
Coffee/water ratio | Probably has the greatest influence on caffeine content in the brew |
Volume of coffee drink | Different brewing methods have a different volume, which affects caffeine content in the brew |
Origin of coffee beans | The origin is related to climatic and environmental factors that may have an influence |
Light exposure | The shade can have a positive effect on caffeine content in the coffee beans, but it is probably species dependent |
Height above sea level | Possible positive effect on caffeine in Arabica beans. No data available on Robusta |
Method of growing | The use of nitrogen fertilizers can increase the amount of caffeine |
Storage of coffee beans | Not-significant influence of caffeine beans processing methods |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E.; Socha, K. Influence of Various Factors on Caffeine Content in Coffee Brews. Foods 2021, 10, 1208. https://doi.org/10.3390/foods10061208
Olechno E, Puścion-Jakubik A, Zujko ME, Socha K. Influence of Various Factors on Caffeine Content in Coffee Brews. Foods. 2021; 10(6):1208. https://doi.org/10.3390/foods10061208
Chicago/Turabian StyleOlechno, Ewa, Anna Puścion-Jakubik, Małgorzata Elżbieta Zujko, and Katarzyna Socha. 2021. "Influence of Various Factors on Caffeine Content in Coffee Brews" Foods 10, no. 6: 1208. https://doi.org/10.3390/foods10061208