Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chicken Salad Preparation
2.3. Microbial Inoculum Preparation
2.4. In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment
2.5. Microbial Analysis
2.6. Storage Study
2.7. Color Measurement
2.8. Antioxidant Capacity Determination
2.9. Sensory Test
2.10. Statistical Analysis
3. Results and Discussion
3.1. Determination of ADCP Treatment Conditions
3.2. Tulane Virus Inactivation
3.3. Storage Study
3.3.1. Microbial Growth during Storage
3.3.2. Color
3.3.3. Antioxidant Capacity
3.3.4. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Makinde, O.M.; Ayeni, K.I.; Sulyok, M.; Krska, R.; Adeleke, R.A.; Ezekiel, C.N. Microbiological safety of ready-to-eat foods in low-and middle-income countries: A comprehensive 10-year (2009 to 2018) review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 703–732. [Google Scholar] [CrossRef]
- Baselice, A.; Colantuoni, F.; Lass, D.A.; Nardone, G.; Stasi, A. Trends in EU consumers’ attitude towards fresh-cut fruit and vegetables. Food Qual. Prefer. 2017, 59, 87–96. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Foodborne Outbreak Online Database (FOOD Tool). Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 30 October 2019).
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Pignata, C.; D’angelo, D.; Fea, E.; Gilli, G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 2017, 122, 1438–1455. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Huang, K.; Wang, J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control 2015, 50, 482–490. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold plasma: A novel non-thermal technology for food processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Cullen, P.J.; Lalor, J.; Scally, L.; Boehm, D.; Milosavljević, V.; Bourke, P.; Keener, K. Translation of plasma technology from the lab to the food industry. Plasma Process. Polym. 2018, 15, 1700085. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiol. 2017, 65, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ziuzina, D.; Han, L.; Cullen, P.J.; Bourke, P. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. Int. J. Food Microbiol. 2015, 210, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Roh, S.H.; Lee, S.Y.; Park, H.H.; Lee, E.S.; Min, S.C. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. Int. J. Food Microbiol. 2019, 293, 24–33. [Google Scholar] [CrossRef]
- McHugh, T.H.; Krochta, J.M. Sorbitol-vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 1994, 42, 841–845. [Google Scholar] [CrossRef]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 2017, 63, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Sites, J.E.; Boyd, G.; Lacombe, A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int. J. Food Microbiol. 2016, 237, 114–120. [Google Scholar] [CrossRef]
- Kim, S.Y.; Bang, I.H.; Min, S.C. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J. Food Eng. 2019, 242, 55–67. [Google Scholar] [CrossRef]
- Lee, E.S.; Cheigh, C.I.; Kang, J.H.; Lee, S.Y.; Min, S.C. Evaluation of in-package atmospheric dielectric barrier discharge cold plasma treatment as an intervention technology for decontaminating bulk ready-to-eat chicken breast cubes in plastic containers. Appl. Sci. 2020, 10, 6301. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Li, X.; Jia, J.; Chen, Y.; Hua, Z. Antioxidant capacities and main reducing substance contents in 110 fruits and vegetables eaten in china. Food Nutr. Sci. 2014, 5, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Z.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Mexis, S.F.; Chouliara, E.; Kontominas, M.G. Combined effect of an O2 absorber and oregano essential oil on shelf-life extension of Greek cod roe paste (tarama salad) stored at 4 C. Innov. Food Sci. Emerg. Technol. 2009, 10, 572–579. [Google Scholar] [CrossRef]
- Muriel-Galet, V.; Cerisuelo, J.P.; López-Carballo, G.; Lara, M.; Gavara, R.; Hernández-Muñoz, P. Development of antimicrobial films for microbiological control of packaged salad. Int. J. Food Micobiol. 2012, 157, 195–201. [Google Scholar] [CrossRef]
- Kwon, M.R.; Noh, B.S.; Lee, S.J.; Lee, Y.S.; Lee, J.H.; Lee, H.S.; Cho, I.H.; Choi, N.E. Quality Management of Sensory and Hedonic Properties of Food; Soohaksa: Seoul, Korea, 2018; pp. 71–72. [Google Scholar]
- Kim, M.A.; Chae, J.E.; van Hout, D.; Lee, H.S. Higher performance of constant-reference duo–trio test incorporating affective reference framing in comparison with triangle test. Food Qual. Prefer. 2014, 32, 113–125. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Fan, X.; Sokorai, K.; Jin, T.Z. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res. Int. 2018, 108, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Ahlfeld, B.; Li, Y.; Boulaaba, A.; Binder, A.; Schotte, U.; Zimmermann, J.L.; Morfill, G.; Klein, G. Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. mBio 2015, 6, e02300-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roy, G.; Embury, J.D.; Edwards, G.; Ashby, M.F. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 1981, 29, 1509–1522. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, Y.; Wei, K.; Li, W.; Yao, M.; Zhang, J.; Grinshpun, S.A. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels. Appl. Environ. Microbiol. 2015, 81, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Ye, R.; Davidson, P.M.; Hayes, D.G.; Golden, D.A.; Zhong, Q. Sucrose monolaurate improves the efficacy of sodium hypochlorite against Escherichia coli O157:H7 on spinach. Int. J. Food Microbiol. 2011, 145, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014, 42, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef]
- Bjoroy, O.; Rayyan, S.; Fossen, T.; Andersen, O.M. Structural properties of anthocyanins: Rearrangement of c-glycosyl-3-deoxyanthocyanidins in acidic aqueous solutions. J. Agric. Food Chem. 2009, 15, 6668–6677. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; O’Donnell, C.P.; Cullen, P.J. Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci. Technol. 2009, 20, 137–145. [Google Scholar] [CrossRef]
- Ziuzina, D.; Misra, N.N.; Han, L.; Cullen, P.J.; Moiseev, T. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov. Food Sci. Emerg. 2020, 59, 102229. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef]
- Song, A.Y.; Oh, Y.J.; Kim, J.E.; Song, K.B.; Oh, D.H.; Min, S.C. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci. Biotechnol. 2015, 24, 1717–1724. [Google Scholar] [CrossRef]
- Pasquali, F.; Stratakos, A.C.; Koidis, A.; Berardinelli, A.; Cevoli, C.; Ragni, L.; Mancusi, R.; Manfreda, G.; Trevisani, M. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 2016, 60, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Shah, U.; Ranieri, P.; Zhou, Y.; Schauer, C.L.; Miller, V.; Fridman, G.; Sekhon, J.K. Effects of cold plasma treatments on spot-inoculated Escherichia coli O157:H7 and quality of baby kale (Brassica oleracea) leaves. Innov. Food Sci. Emerg. 2019, 57, 102104. [Google Scholar] [CrossRef]
Conditions | Salmonella (log CFU/g) | Microbial Reduction (log CFU/g) | |
---|---|---|---|
Treatment Voltage | Treatment Time | ||
24 kV | 1 min | 5.5 ± 0.2 | 0.3 ± 0.1 b |
2 min | 4.9 ± 0.2 | 1.0 ± 0.2 a | |
3 min | 5.0 ± 0.2 | 0.8 ± 0.2 a | |
4 min | 5.0 ± 0.2 | 0.9 ± 0.2 a | |
5 min | 4.9 ± 0.3 | 1.0 ± 0.2 a |
Content | Storage Time (d) | L * | a * | b * | ΔE | ||||
---|---|---|---|---|---|---|---|---|---|
Untreated | ADCPT | Untreated | ADCPT | Untreated | ADCPT | Untreated | ADCPT | ||
Romaine Lettuce | 0 | 38.23 ± 2.05 b | 38.95 ± 3.79 b | −16.10 ± 5.83 ab | −16.82 ± 1.76 ab | 27.06 ± 4.80 a | 26.21 ± 3.96 a | 0 | 3.25 ± 1.29 a |
3 | 39.60 ± 3.19 ab | 39.96 ± 2.91 ab | −16.08 ± 1.33 a | −16.25 ± 1.05 a | 26.02 ± 2.26 a | 26.88 ± 2.09 a | 2.65 ± 1.77 a | 3.17 ± 1.46 a | |
5 | 40.07 ± 2.82 ab | 41.35 ± 1.96 ab | −16.46 ± 1.61 ab | −16.88 ± 1.14 ab | 27.73 ± 1.24 a | 27.24 ± 1.81 a | 3.2 ± 2.19 a | 3.58 ± 1.5 a | |
7 | 41.66 ± 2.17 a | 41.12 ± 2.54 ab | −16.68 ± 0.88 ab | −16.36 ± 0.74 a | 26.98 ± 1.59 a | 26.22 ± 2.23 a | 3.99 ± 0.55 a | 3.47 ± 0.33 a | |
10 | 41.33 ± 3.45 a | 41.67 ± 2.72 a | −17.25 ± 0.83 b | −16.69 ± 1.51 a | 26.64 ± 1.56 a | 26.79 ± 2.26 a | 3.29 ± 0.52 a | 3.97 ± 2.15 a | |
14 | 41.03 ± 2.14 a | 41.99 ± 2.74 a | −17.23 ± 1.20 b | −17.71 ± 1.01 b | 26.11 ± 1.74 a | 27.36 ± 1.52 a | 2.93 ± 0.42 a | 4.45 ± 3.05 a | |
Red cabbage | 0 | 27.70 ± 2.06 a | 27.31 ± 1.20 b | 33.94 ± 3.35 a | 33.22 ± 3.07 a | −8.7 ± 1.38 a | −8.95 ± 0.99 d | 0 | 1.81 ± 0.41 c |
3 | 27.81 ± 1.66 a | 34.63 ± 2.48 a | 32.38 ± 2.57 ab | 23.15 ± 3.65 b | −8.72 ± 1.67 a | −5.52 ± 3.05 c | 2.43 ± 1.34 b | 13.71 ± 2.52 b | |
5 | 27.59 ± 2.16 a | 35.10 ± 2.67 a | 29.52 ± 2.81 bc | 20.36 ± 2.31 bc | −8.45 ± 1.67 a | 0.02 ± 2.81 b | 4.83 ± 1.95 a | 18.25 ± 0.3 ab | |
7 | 27.92 ± 1.88 a | 35.40 ± 3.28 a | 28.35 ± 2.90 bc | 18.73 ± 2.64 c | −9.48 ± 1.93 a | 0.39 ± 2.43 ab | 6.62 ± 3.07 a | 19.07 ± 3.09 a | |
10 | 28.18 ± 1.55 a | 34.98 ± 2.57 a | 27.56 ± 4.31 c | 20.19 ± 1.70 bc | −8.38 ± 2.30 a | 1.81 ± 1.21 ab | 6.98 ± 3.44 a | 18.77 ± 1.00 ab | |
14 | 26.62 ± 2.22 a | 34.34 ± 3.22 a | 26.36 ± 3.27 c | 18.19 ± 3.25 c | −8.12 ± 1.34 a | 2.95 ± 1.90 a | 8.13 ± 2.17 a | 20.78 ± 1.15 a | |
Carrot | 0 | 53.77 ± 2.47 c | 53.61 ± 2.53 c | 26.67 ± 2.89 c | 26.40 ± 2.57 c | 43.11 ± 3.86 a | 43.68 ± 3.48 a | 0 | 3.19 ± 0.57 b |
3 | 56.45 ± 1.89 b | 56.19 ± 1.93 b | 28.61 ± 1.63 b | 28.32 ± 2.16 bc | 42.64 ± 1.82 a | 42.93 ± 2.25 a | 4.51 ± 0.85 b | 3.21 ± 0.05 b | |
5 | 56.43 ± 2.17 b | 56.06 ± 1.47 b | 28.63 ± 1.86 b | 28.49 ± 0.95 b | 42.31 ± 2.24 a | 42.08 ± 1.95 a | 4.79 ± 0.16 ab | 4.11 ± 0.37 b | |
7 | 56.78 ± 1.78 b | 56.71 ± 1.39 b | 28.66 ± 0.99 b | 28.39 ± 1.15 bc | 42.59 ± 1.38 a | 42.67 ± 1.49 a | 4.05 ± 0.49 b | 3.69 ± 0.68 b | |
10 | 57.44 ± 1.04 b | 57.16 ± 1.74 b | 28.97 ± 1.55 b | 28.51 ± 0.80 b | 42.02 ± 2.05 a | 42.10 ± 1.53 a | 5.12 ± 1.38 ab | 4.88 ± 0.72 ab | |
14 | 60.08 ± 1.15 a | 59.98 ± 1.28 a | 33.75 ± 1.98 a | 32.57 ± 1.48 a | 43.89 ± 1.81 a | 42.86 ± 1.89 a | 8.07 ± 0.41 a | 7.53 ± 1.49 a | |
Chicken breast cube | 0 | 80.74 ± 1.15 a | 80.68 ± 1.20 a | 2.14 ± 0.51 a | 2.05 ± 0.40 a | 15.85 ± 0.74 a | 15.89 ± 0.78 b | 0 | 0.37 ± 0.08 c |
3 | 80.68 ± 0.74 a | 80.63 ± 1.08 a | 1.45 ± 0.49 b | 1.29 ± 0.41 b | 15.90 ± 0.65 a | 15.88 ± 0.82 b | 0.79 ± 0.14 a | 1.17 ± 0.01 ab | |
5 | 80.64 ± 1.30 a | 80.30 ± 1.14 a | 1.35 ± 0.43 b | 1.30 ± 0.44 b | 15.98 ± 0.57 a | 15.94 ± 0.88 b | 0.85 ± 0.01 a | 1.01 ± 0.1 abc | |
7 | 80.33 ± 1.19 a | 80.87 ± 1.33 a | 1.36 ± 0.61 b | 1.33 ± 0.42 b | 15.95 ± 0.68 a | 15.93 ± 0.72 b | 1.2 ± 0.46 a | 0.93 ± 0.38 bc | |
10 | 80.39 ± 1.39 a | 80.28 ± 0.93 a | 1.10 ± 0.42 b | 1.04 ± 0.49 b | 16.01 ± 1.05 a | 16.31 ± 1.04 ab | 1.33 ± 0.43 a | 1.51 ± 0.21 ab | |
14 | 80.77 ± 1.22 a | 81.10 ± 1.15 a | 1.12 ± 0.61 b | 1.15 ± 0.32 b | 16.22 ± 0.75 a | 16.61 ± 0.84 a | 1.16 ± 0.45 a | 1.61 ± 0.24 a |
Storage Time (d) | Lettuce | Red Cabbage | Carrot | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DPPH | ABTS | DPPH | ABTS | DPPH | ABTS | |||||||
Untreated | ADCPT | Untreated | ADCPT | Untreated | ADCPT | Untreated | ADCPT | Untreated | ADCPT | Untreated | ADCPT | |
0 | 21.6 ± 2.6 a | 20.9 ± 1.9 a | 65.8 ± 5.9 a | 66.4 ± 5.9 a | 19.6 ± 1.7 a | 19.2 ± 2.0 a | 76.8 ± 1.7 a | 77.0 ± 2.3 a | 37.3 ± 1.9 a | 37.1 ± 0.9 a | 47.9 ± 1.0 a | 47.7 ± 1.0 a |
3 | 14.3 ± 1.5 b | 14.8 ± 1.2 b | 65.5 ± 3.2 a | 65.7 ± 3.1 a | 18.4 ± 1.0 a | 18.2 ± 1.2 a | 77.0 ± 1.9 a | 76.9 ± 1.7 a | 36.8 ± 0.7 a | 36.2 ± 1.1 a | 47.7 ± 0.5 a | 47.9 ± 0.9 a |
5 | 14.2 ± 1.2 b | 14.3 ± 1.0 b | 66.5 ± 3.0 a | 65.2 ± 3.4 a | 18.5 ± 1.0 a | 18.3 ± 1.2 a | 77.2 ± 0.7 a | 76.9 ± 1.3 a | 36.2 ± 0.9 a | 36.9 ± 0.5 a | 47.8 ± 1.6 a | 47.7 ± 1.7 a |
7 | 14.3 ± 1.7 b | 14.8 ± 1.1 b | 66.4 ± 3.6 a | 66.0 ± 3.0 a | 17.5 ± 1.3 b | 17.5 ± 0.8 b | 77.3 ± 0.9 a | 77.0 ± 0.8 a | 36.7 ± 0.5 a | 36.5 ± 1.1 a | 46.2 ± 0.9 a | 46.7 ± 0.6 a |
10 | 14.4 ± 1.5 b | 14.7 ± 1.9 b | 65.8 ± 2.5 a | 66.4 ± 3.0 a | 17.2 ± 1.3 b | 17.7 ± 0.7 b | 77.3 ± 1.0 a | 77.2 ± 1.1 a | 35.6 ± 0.5 b | 35.6 ± 1.1 b | 45.9 ± 0.7 b | 45.9 ± 0.9 b |
14 | 14.6 ± 1.2 b | 14.6 ± 1.1 b | 66.1 ± 3.1 a | 66.4 ± 1.6 a | 17.2 ± 1.6 b | 17.1 ± 1.4 b | 77.3 ± 0.8 a | 77.0 ± 1.2 a | 34.6 ± 0.5 b | 34.9 ± 0.5 b | 45.7 ± 0.6 b | 45.3 ± 0.7 b |
Samples | Sensory Attributes | |||
---|---|---|---|---|
Color | Smell | Appearance | ||
Unstored | Untreated | 6.5 ± 1.8 a | 5.3 ± 1.6 a | 6.0 ± 1.7 a |
ADCPT | 6.2 ± 1.6 a | 5.1 ± 1.4 a | 5.9 ± 1.7 a | |
3-day storage at 4 °C | Untreated | 6.1 ± 1.8 a | 5.5 ± 1.3 a | 6.2 ± 1.7 a |
ADCPT | 4.9 ± 1.6 b | 5.0 ± 1.3 a | 5.1 ± 1.8 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.S.; Jeon, Y.J.; Min, S.C. Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. Foods 2021, 10, 1214. https://doi.org/10.3390/foods10061214
Lee ES, Jeon YJ, Min SC. Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. Foods. 2021; 10(6):1214. https://doi.org/10.3390/foods10061214
Chicago/Turabian StyleLee, Eun Song, Ye Jeong Jeon, and Sea C. Min. 2021. "Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment" Foods 10, no. 6: 1214. https://doi.org/10.3390/foods10061214
APA StyleLee, E. S., Jeon, Y. J., & Min, S. C. (2021). Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. Foods, 10(6), 1214. https://doi.org/10.3390/foods10061214