Coffee Brews: Are They a Source of Macroelements in Human Nutrition?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sodium Content in Coffee Brews
3.2. Potassium Content in Coffee Brews
3.3. Calcium Content in Coffee Brews
3.4. Magnesium Content in Coffee Brews
3.5. Phosphorus Content in Coffee Brews
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Coffee Organization. World Coffee Consumption. Available online: http://www.ico.org/prices/new-consumption-table.pdf (accessed on 22 March 2021).
- Maghuly, F.; Jankowicz-Cieslak, J.; Souleymane, B. Improving coffee species for pathogen resistance. CAB Rev. 2020, 15. [Google Scholar] [CrossRef]
- Mishra, M.J.; Nishani, S.; Jayarama, J. Molecular identification and genetic relationships among coffee species (Coffea L.). Arch. Biol. Sci. 2011, 63, 667–679. [Google Scholar] [CrossRef]
- Davis, A.P.; Chadburn, H.; Moat, J.; O’Sullivan, R.; Hargreaves, S.; Lughadha, E.N. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 2019, 5, eaav3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359. [Google Scholar] [CrossRef] [Green Version]
- Gökcen, B.B.; Şanlier, N. Coffee consumption and disease correlations. Crit. Rev. Food Sci. Nutr. 2019, 59, 336–348. [Google Scholar] [CrossRef]
- Cano-Marquina, A.; Tarín, J.J.; Cano, A. The impact of coffee on health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef]
- Wachamo, H.L. Review on health benefit and risk of coffee consumption. Med. Aromat. Plants 2017, 6. [Google Scholar] [CrossRef]
- Gonzalez de Mejia, E.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab. 2014, 25, 498–592. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Coffee, tea, cocoa. In Food Chemistry, 4th ed.; Belitz, H.D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 938–970. [Google Scholar] [CrossRef]
- Pohl, P.; Stelmach, E.; Welna, M.; Szymczycha-Madeja, A. Determination of the elemental composition of coffee using instrumental methods. Food Anal. Methods 2013, 6, 598–613. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Van Cuong, T.; Ling, L.H.; Quan, G.K.; Jin, S.; Jie, S.S.; Linh, T.L.; Tiep, T.D. Effect of roasting conditions on concentration in elements of Vietnam Robusta coffee. Acta Univ. Cibiniensis Ser. E Food Technol. 2014, 18, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Clarke, R.J. Chapter 2—Water and mineral contents. In Coffee Chemistry, 1st ed.; Clarke, R.J., Macrae, R., Eds.; Springer: Dordrecht, The Netherlands, 1985; Volume 1, pp. 42–82. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Chapter 6—Macro- and secondary elements and their role in human health. In Soil Components and Human Health, 1st ed.; Benbi, D.K., Reichl, F.X., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 257–315. [Google Scholar] [CrossRef]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar] [CrossRef]
- European Food Safety Authority. Dietary Reference Values for Nutrients Summary Report. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2017.e15121 (accessed on 31 March 2021).
- Geissler, C.; Powers, H. Minerals and trace elements. In Human Nutrition, 13th ed.; Geissler, C., Powers, H., Eds.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [Green Version]
- Janda, K.; Jakubczyk, K.; Baranowska-Bosiacka, I.; Kapczuk, P.; Kochman, J.; Rębacz-Maron, E.; Gutowska, I. Mineral composition and antioxidant potential of coffee beverages depending on the brewing method. Foods 2020, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.J.; Pablos, F.; González, A.G. Characterization of green coffee varieties according to their metal content. Anal. Chim. Acta 1998, 358, 177–183. [Google Scholar] [CrossRef]
- Martín, M.J.; Pablos, F.; González, A.G. Characterization of arabica and robusta roasted coffee varieties and mixture resolution according to their metal content. Food Chem. 1999, 66, 365–370. [Google Scholar] [CrossRef]
- Oliveira, M.; Casal, S.; Morais, S.; Alves, C.; Dias, F.; Ramos, S.; Mendes, E.; Delerue-Matos, C.; Oliveira, M.B.P.P. Intra- and interspecific mineral composition variability of commercial instant coffees and coffee substitutes: Contribution to mineral intake. Food Chem. 2012, 130, 702–709. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, J.S.; dos Santos, M.L.P.; Conti, M.M. Comparative study of metal contents in Brazilian coffees cultivated by conventional and organic agriculture applying principal component analysis. J. Braz. Chem. Soc. 2010, 21, 1468–1476. [Google Scholar] [CrossRef] [Green Version]
- Juniora, J.B.d.S.E.; da Silvaa, G.B.M.D.; Bastos, R.; Furlong, E.; Carapelli, R. Evaluation of the influence of cultivation on the total magnesium concentration and infusion extractability in commercial Arabica coffee. Food Chem. 2020, 327, 127012. [Google Scholar] [CrossRef]
- Cruz, R.; Morais, S.; Casal, S. Chapter 66—Mineral Composition Variability of Coffees: A Result of Processing and Production. In Processing and Impact on Active Components in Food, 1st ed.; Preedy, V., Ed.; Academic Press: New York, NY, USA, 2015; pp. 549–558. [Google Scholar] [CrossRef]
- Gure, A.; Chandravanshi, B.S.; Godeto, T.W. Assessment of metals in roasted indigenous coffee varieties of Ethiopia. Bull. Chem. Soc. Ethiop. 2018, 32, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Feleke, H.M.; Srinivasulu, A.; Surendra, K.; Aruna, B.; Biswas, J.; Sudershan, M.; Rao, A.D.P.; Narayana, P.V.L. Estimation of elemental concentrations of Ethiopia coffee Arabica on different coffee bean varieties (subspecies) using Energy Dispersive X-ray Florescence. Int. J. Eng. Res. 2018, 9, 148–165. [Google Scholar]
- Mehari, B.; Redi-Abshiro, M.; Chandravanshi, B.S.; Combrinck, S.; McCrindle, R. Characterization of the cultivation region of Ethiopian coffee by elemental analysis. Anal. Lett. 2016, 49, 2474–2489. [Google Scholar] [CrossRef]
- Bertrand, B.; Villarreal, D.; Laffargue, A.; Posada, H.; Lashermes, P.; Dussert, S. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. J. Agric. Food Chem. 2008, 56, 2273–2280. [Google Scholar] [CrossRef]
- Stelmach, E.; Pohl, P.; Szymczycha-Madeja, A. The suitability of the simplified method of the analysis of coffee infusions on the content of Ca, Cu, Fe, Mg, Mn and Zn and the study of the effect of preparation conditions on the leachability of elements into the coffee brew. Food Chem. 2013, 141, 1956–1961. [Google Scholar] [CrossRef]
- Oliveira, M.; Ramos, S.; Delerue-Matos, C.; Morai, S. Espresso beverages of pure origin coffee: Mineral characterization, contribution for mineral intake and geographical discrimination. Food Chem. 2015, 177, 330–338. [Google Scholar] [CrossRef]
- Jaganyi, D.; Madlala, S.P. Kinetics of coffee infusion: A comparative study on the extraction kinetics of mineral ions and caffeine from several types of medium roasted coffees. J. Sci. Food Agric. 2000, 80, 85–90. [Google Scholar] [CrossRef]
- Anderson, K.A.; Smith, B.W. Chemical profiling to differentiate geographic growing origins of coffee. J. Agric. Food Chem. 2002, 50, 2068–2075. [Google Scholar] [CrossRef]
- Filho, V.R.M.; Polito, W.L.; Neto, J.A.G. Comparative studies of the sample decomposition of green and roasted coffee for determination of nutrients and data exploratory analysis. J. Braz. Chem. Soc. 2007, 18, 47–53. [Google Scholar] [CrossRef]
- Ashu, R.; Chandravanshi, B.S. Concentration levels of metals in commercially available Ethiopian roasted coffee powders and their infusions. Bull. Chem. Soc. Ethiop. 2011, 25, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Endaye, M.; Atlabachew, M.; Mehari, B.; Alemayehu, M.; Mengistu, D.A.; Kerisew, B. Combining multi-element analysis with statistical modeling for tracing the origin of green coffee beans from Amhara Region, Ethiopia. Biol. Trace Elem. Res. 2020, 195, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Jeszka-Skowron, M.; Stanisz, E.; De Peña, M.P. Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT 2016, 73, 243–250. [Google Scholar] [CrossRef]
- Debastiani, R.; dos Santos, C.E.J.; Ramosa, M.M.; Souzac, V.S.; Amarala, L.; Yoneamaa, M.L.; Diasa, J.F. Elemental analysis of Brazilian coffee with ion beam techniques: From ground coffee to the final beverage. Food Res. Int. 2019, 119, 297–304. [Google Scholar] [CrossRef]
- Alegría-Torán, A.; Barberá-Sáez, R.; Cilla-Tatay, A. Chapter 3—Bioavailability of minerals in foods. In Handbook of Mineral Elements in Food; de la Guardia, M., Garrigues, S., Eds.; John Wiley&Sons: Hoboken, NJ, USA, 2015; pp. 41–67. [Google Scholar] [CrossRef]
- Özdestan, Ö. Evaluation of bioactive amine and mineral levels in Turkish coffee. Food Res. Int. 2014, 61, 167–175. [Google Scholar] [CrossRef]
- Grembecka, M.; Malinowska, E.; Szefer, P. Differentiation of market coffee and its infusions in view of their mineral composition. Sci. Total Environ. 2007, 383, 59–69. [Google Scholar] [CrossRef]
- Gogoaşă, I.; Sipos, L.; Negrea, A.; Alda, L.M.; Costescu, C.; Rada, M.; Velimirovici, D.; Draghici, G.A.; Ostan, M.; Bordean, D.M. Study regarding coffee brew metal content. In 22nd International Symposium on Analytical and Environmental Problems; Alapi, T., Ilisz, I., Eds.; University of Szeged, Department of Inorganic and Analytical Chemistry: Szeged, Hungary, 2016; pp. 164–167. [Google Scholar]
- Tagliaferro, F.S.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Bode, P.; De França, E.J. Can impurities from soil-contaminated coffees reach the cup? J. Radioanal. Nucl. Chem. 2007, 271, 371–375. [Google Scholar] [CrossRef]
- Fercan, M.M.; Kipcak, A.S.; Ozdemir, O.D.; Piskin, M.B.; Derun, E.M. Determination of the element contents in Turkish coffee and effect of sugar addition. Eng. Technol. Int. J. Chem. Mol. Eng. 2016, 10, 112–115. [Google Scholar] [CrossRef]
- Adler, G.; Nędzarek, A.; Tórz, A. Concentrations of selected metals (Na, K, Ca, Mg, Fe, Cu, Zn, Al, Ni, Pb, Cd) in coffee. Zdr. Varst. 2019, 58, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Pohl, H.R.; Wheeler, J.S.; Murray, E.H. Sodium and potassium in health and disease. Interrelations between essential metal ions and human diseases. Met. Ions Life Sci. 2013, 13, 29–47. [Google Scholar] [CrossRef]
- World Health Organization. Sodium Intake for Adults and Children. Available online: https://www.who.int/elena/titles/guidance_summaries/sodium_intake/en/ (accessed on 30 March 2021).
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium intake and hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Strazzullo, P.; Leclercq, C. Sodium. Adv. Nutr. 2014, 5, 188–190. [Google Scholar] [CrossRef] [Green Version]
- Küçükkömürler, S.; Özgen, L. Coffee and Turkish coffee culture. Pakistan J. Nutr. 2009, 8, 1693–1700. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, B.; Tek, N.; Sözlü, S. Turkish cultural heritage: A cup of coffee. J. Ethn. Foods 2017, 4, 213–220. [Google Scholar] [CrossRef]
- Świetlik, R.; Trojanowska, M. Specjacja fizyczna metali ciężkich w naparach kawy [Physical speciation of heavy metals in coffee infusions]. Bromatol. Chem. Toksykol. 2014, 47, 82–88. (In Polish) [Google Scholar]
- Michałkiewicz, M.; Kruszelnicka, I.; Ginter-Kramarczyk, D. Czy warto stosować filtry dzbankowe? Część 2 [Is it worth using water filter jugs? Part 2]. Technol. Wody 2017, 5, 30–35. (In Polish) [Google Scholar]
- Severini, C.; Derossi, A.; Fiore, A.G.; De Pilli, T.; Alessandrino, O.; Del Mastro, A. How the variance of some extraction variables may affect the quality of espresso coffees served at coffee shop? J. Food Agric. Sci. 2015, 96, 3023–3031. [Google Scholar] [CrossRef]
- Severini, C.; Ricci, I.; Marone, M.; Derossi, A.; De Pilli, T. Changes in aromatic profile of espresso coffee as a function of grinding grade and extraction time: A study by electronic nose system. J. Agric. Food Chem. 2015, 63, 2321–2327. [Google Scholar] [CrossRef]
- Ocieczek, A. Wpływ stopnia rozdrobnienia kawy palonej na jej właściwości higroskopijne [Influence of roasted coffee grinding degree on its hygroscopic properties]. Inż. Ap. Chem. 2013, 52, 78–80. (In Polish) [Google Scholar]
- Habte, G.; Hwang, I.M.; Kim, J.S.; Hoong, J.H. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA). Food Chem. 2016, 212, 512–520. [Google Scholar] [CrossRef]
- Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 2018, 116, 1327–1335. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; Del Rio, D.; Lean, M.E.J.; Crozier, A. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food Funct. 2014, 5, 1718–1726. [Google Scholar] [CrossRef] [Green Version]
- Navarini, L.; Rivetti, D. Water quality for espresso coffee. Food Chem. 2010, 122, 424–428. [Google Scholar] [CrossRef]
- Suseela, B.; Bhalke, S.; Kumar, A.V.; Tripathi, R.M.; Sastry, V.N. Daily intake of trace metals through coffee consumption in India. Food Addit. Contam. 2001, 18, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.P.; Santos, M.C.; Lemos, S.G.; Ferreira, M.M.C.; Nogueira, A.R.A.; Nobrega, J.A. Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits. Spectrochim. Acta. Part B 2005, 60, 717–724. [Google Scholar] [CrossRef]
- Zaidi, J.H.; Fatima, I.; Arif, M.; Qureshi, I.H. Determination of trace elements in coffee beans and instant coffee of various origins by INAA. J. Radioanal. Nucl. Chem. 2006, 267, 109–112. [Google Scholar] [CrossRef]
- Dąbrowska-Molenda, M.; Szwedziak, K.; Zabłudowska, Ż. Analiza zawartości kofeiny w wybranych rodzajach kawy [Analysis of caffeine content in selected types of coffee]. Postępy Tech. Przetwórstwa Spożywczego 2019, 2, 68–71. (In Polish) [Google Scholar]
- Caporaso, N.; Canela, M.D.; Genovese, A.; Civitella, A. Neapolitan coffee brew chemical analysis in comparison to espresso, moka and American brews. Food Res. Int. 2014, 61, 152–160. [Google Scholar] [CrossRef]
- EEC. Commission Directive 2008/100/EC of 28 October 2008, amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Off. J. Eur. Union 2008, L 285, 9–12. [Google Scholar]
- Fenton, R.A.; Poulsen, S.B.; de la Mora Chavez, S.; Soleimani, M.; Busslinger, M.; Dominguez Rieg, J.A.; Rieg, T. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am. J. Physiol Renal Physiol. 2015, 308, F1409–F1420. [Google Scholar] [CrossRef] [Green Version]
- Marx, B.; Éléonore Scuvée, E.; Scuvée-Moreau, J.; Seutin, V.; Jouret, F. Mechanisms of caffeine-induced diuresis. Med. Sci. 2016, 32, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.E.; Casa, D.J.; Maresh, C.M.; Ganio, M.S. Caffeine, fluid-electrolyte balance, temperature regulation, and exercise-heat tolerance. Exerc. Sport Sci. Rev. 2007, 35, 135–140. [Google Scholar] [CrossRef]
- Millard-Stafford, M.L.; Cureton, K.J.; Wingo, J.E.; Trilk, J.; Warren, G.L.; Buyckx, M. Hydration during exercise in warm, humid conditions: Effect of a caffeinated sports drink. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 163–167. [Google Scholar] [CrossRef]
- Maughan, R.J.; Griffin, J. Caffeine ingestion and fluid balance: A review. J. Hum. Nutr. Diet. 2003, 16, 411–420. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Pumerantz, A.C.; Roti, M.W.; Judelson, D.A.; Watson, G.; Dias, J.C.; Sokmen, B.; Casa, D.J.; Maresh, C.M.; Lieberman, H.; et al. Fluid, electrolyte, and renal indices of hydration during 11 days of controlled caffeine consumption. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 252–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Coca, A.; Casa, D.J.; Antonio, J.; Greene, J.M.; Bishop, P.A. Caffeine and diuresis during rest and exercise: A meta-analysis. J. Sci. Med. Sport 2015, 18, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Seal, A.D.; Bardis, C.N.; Gavrieli, A.; Grigorakis, P.; Adams, J.D.; Arnaoutis, G.; Yannakoulia, M.; Kavouras, S.A. Coffee with high but not low caffeine content augments fluid and electrolyte excretion at rest. Front. Nutr. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.M.; Griffiths, R.R. Caffeine tolerance and choice in humans. Psychopharmacology 1992, 108, 51–59. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the Safety of Caffeine. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2015.4102 (accessed on 15 April 2021).
- Neuhauser, B.; Beine, S.; Verwied, S.C.; Luhrmann, P.M. Coffee consumption and total body water homeostasis as measured by fluid balance and bioelectrical impedance analysis. Ann. Nutr. Metab. 1997, 41, 29–36. [Google Scholar] [CrossRef]
- Killer, S.C.; Blannin, A.K.; Jeukendrup, A.E. No evidence of dehydration with moderate daily coffee intake: A counterbalanced cross-over study in a free-living population. PLoS ONE 2014, 9, e84154. [Google Scholar] [CrossRef]
- Weaver, C.M. Potassium and health. Adv. Nutr. 2013, 4, 368S–377S. [Google Scholar] [CrossRef]
- Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5, S23–S30. [Google Scholar] [CrossRef] [Green Version]
- Trailokya, A.; Srivastava, A.; Bhole, M.; Zalte, N. Calcium and calcium salts. J. Assoc. Physicians India 2017, 65, 100–103. [Google Scholar]
- Danrong, Z.; Yuqiong, C.; Dejiang, N. Effect of water quality on the nutritional components and antioxidant activity of green tea extracts. Food Chem. 2009, 113, 110–114. [Google Scholar] [CrossRef]
- Mossion, A.; Potin-Gautier, M.; Deleruea, S.; Le Hecho, I.; Behra, P. Effect of water composition on aluminium, calcium and organic carbon extraction in tea infusions. Food Chem. 2008, 106, 1467–1475. [Google Scholar] [CrossRef]
- Gizińska, M.; Pytka, A.; Skwarzyńska, A.; Micek, A.; Jóźwiakowski, K.; Marzec, M.; Sosnowska, B. Porównanie skuteczności działania i żywotności filtrów dzbankowych do wody [Comparison of the effectiveness and service life of water jug filters]. Technol. Wody 2014, 2, 25–29. (In Polish) [Google Scholar]
- Lee, D.R.; Lee, J.; Rota, M.; Lee, J.; Ahn, H.S.; Park, S.M.; Shin, D. Coffee consumption and risk of fractures: A systematic review and dose-response meta-analysis. Bone 2014, 63, 20–28. [Google Scholar] [CrossRef]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109, 585–648. [Google Scholar] [CrossRef]
- Choi, E.; Choi, K.H.; Park, S.M.; Shin, D.; Joh, H.K.; Cho, E. The benefit of bone health by drinking coffee among Korean postmenopausal women: A cross-sectional analysis of the fourth&fifth Korea National Health and Nutrition Examination Surveys. PLoS ONE 2016, 11, e0147762. [Google Scholar] [CrossRef]
- Chang, H.C.; Hsieh, C.F.; Lin, Y.C.; Tantoh, D.M.; Ko, P.C.; Kung, Y.Y.; Wang, M.C.; Hsu, S.Y.; Liaw, Y.C.; Liaw, Y.P. Does coffee drinking have beneficial effects on bone health of Taiwanese adults? A longitudinal study. BMC Public Health 2018, 18, 1273. [Google Scholar] [CrossRef]
- Hallström, H.; Melhus, H.; Glynn, A.; Lind, L.; Syvänen, A.C.; Michaëlsson, K. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: A cohort study. Nutr. Metab. 2010, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [Green Version]
- de Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Di Nicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef] [PubMed]
- Zheltova, A.A.; Kharitonova, M.V.; Iezhitsa, I.N.; Spasov, A.A. Magnesium deficiency and oxidative stress: An update. Biomedicine 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Jin, F.; Hao, Y.; Li, H.; Tang, T.; Wang, H.; Yan, W.; Dai, K. Magnesium and the risk of cardiovascular events: A meta-analysis of prospective cohort studies. PLoS ONE 2013, 8, e57720. [Google Scholar] [CrossRef] [Green Version]
- The United States Department of Agriculture. Abridged List Ordered by Nutrient Content in Household Measure. Available online: https://www.nal.usda.gov/sites/www.nal.usda.gov/files/magnesium.pdf (accessed on 30 March 2021).
- Gebretsadik, A.T.; Berhanu, T.; Kefarge, B. Levels of selected ssential and nonessential metals in roasted coffee beans of Yirgacheffe and Sidama, Ethiopia. Am. J. Environ. Prot. 2015, 4, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Massey, L.K.; Wise, B.S.K.J. The effect of dietary caffeine on urinary excretion of calcium, magnesium, sodium and potassium in healthy young females. Nutr. Res. 1984, 4, 43–50. [Google Scholar] [CrossRef]
- Massey, L.K.; Wise, B.S.K.J. The effect of dietary caffeine on urinary excretion of calcium, magnesium, phosphorus, sodium, potassium, chloride and zinc in healthy males. Nutr. Res. 1985, 5, 1281–1284. [Google Scholar] [CrossRef]
- Kynast-Gales, S.A.; Massey, L.K. Effect of caffeine on circadian excretion of urinary calcium and magnesium. J. Am. Coll. Nutr. 1994, 13, 467–472. [Google Scholar] [CrossRef]
- Saito, M.; Nemoto, T.; Tobimatsu, S.; Ebata, M.; Le, Y.; Nakajima, K. Coffee consumption and cystatin-C-based estimated glomerular filtration rates in healthy young adults: Results of a clinical trial. J. Nutr. Metab. 2011, 146865. [Google Scholar] [CrossRef]
- Stelmach, E.; Pohl, P.; Szymczycha-Madeja, A. Evaluation of the bioaccessability of Ca, Fe, Mg and Mn in ground coffee infusions by in vitro gastrointestinal digestion. J. Braz. Chem. Soc. 2014, 25, 1993–1999. [Google Scholar] [CrossRef]
- The United States Department of Agriculture. Abridged List Ordered by Nutrient Content in Household Measure: Phosphorus. Available online: https://www.nal.usda.gov/sites/www.nal.usda.gov/files/phosphorus.pdf (accessed on 30 March 2021).
- Sakamoto, W.; Nishihira, J.; Fujie, K.; Iizuka, T.; Handa, H.; Ozaki, M.; Yukawa, S. Effect of coffee consumption on bone metabolism. Bone 2001, 28, 332–336. [Google Scholar] [CrossRef]
- Yeh, J.K.; Aloia, J.F.; SemLa, H.M.; Chen, S.Y. Influence of injected caffeine on the metabolism of calcium and the retention and excretion of sodium, potassium, phosphorus, magnesium, zinc and copper in rats. J. Nutr. 1986, 116, 273–280. [Google Scholar] [CrossRef]
Content Av. ± SD (mg/100 mL or 100 g) | Method of Brewing | Time (Min.) | Coffee (g) | Water (mL) | Cup Volume (mL) | Type of Water | Pressure (Ba) | Temperature of Water (°C) | Species | Degree of Roasting | Type of Coffee | Origin | Methods of Analysis | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | ||||||||||||||
28.97 ± 6.35 | Turkish coffee | nd | 5 | 65 | nd | up dw | nd | nd | A | R | fine ground | nd | HR-CS-FAAS | [41] |
~2.78 | Pouring water | 5 | 17 | 250 | nd | fw | nd | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
~2.75 | Coffee machine | nd | 17 | nd | 250 | fw | 9 | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
2.60 | French press | 5 | 17 | 300 | nd | fw | 1–2 | 92 | A | R | medium ground | nd | ICP-OES | [20] |
~2.54 | Aeropress | 2 | 18 | nd | 250 | fw | 2–4 | 93 | A | R | coarse ground | nd | ICP-OES | [20] |
2.52 * | Pouring water | nd | 6 | 150 | nd | nd | nd | nd | A&R | R | ground | nd | FAAS | [42] |
2.47 | Drip method | 2.5 | 18 | 300 | nd | fw | nd | 92 | A | R | medium coarse ground | nd | ICP-OES | [20] |
0.59 | Pouring water | 5 | 6 | 200 | nd | nd | nd | 100 | nd | nd | ground # | Ethiopia | FAAS | [36] |
0.39 * | Coffee machine | nd | 5 | 40 | nd | dw | nd | nd | A&R | R | ground (capsules) | Asia (India) | HR-CS-AAS | [32] |
0.36 * | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | A | R | ground | India, Australia, Tanzania, Peru, Cuba, Timor, Zambia, Honduras, Indonesia | FAAS | [42] |
0.27 | Coffee machine | nd | 5 | 40 | nd | dw | nd | nd | A | R | capsules—ground | South America (Colombia, Brazil) | HR-CS-AAS | [32] |
0.21 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Asia (China, Timor) | HR-CS-AAS | [32] |
0.12 * | Coffee machine | nd | 6 | 40 | nd | up dw | nd | nd | A&R | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
0.12 | Pouring water | 10 | 6 | 150 | nd | dw | nd | 100 | nd | nd | ground coffee | nd | FAAS | [43] |
0.12 * | Coffee machine (freeze-dried beverage) | 0.83 | 15 | 400 | 300 | diw | 15 | 94 | A | nd | fine fresh ground (washed) | nd | INAA | [44] |
0.11 * | Coffee machine | nd | 6 | 40 | nd | up dw | nd | nd | A | R | ground | Africa (Mussulo and Ethiopia) | HR-CS-AAS | [32] |
0.10 * | Coffee machine (freeze-dried beverage) | 0.83 | 15 | 400 | 300 | diw | 15 | 94 | A | R | fine fresh ground (washed) | ns | INAA | [44] |
0.08 * | Turkish coffee | nd | 2 | 100 | nd | dw | nd | nd | A | R | nd | nd | ICP-OES | [45] |
0.07 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A&R | R | ground | Oceania (Papua New Guinea) | HR-CS-AAS | [32] |
0.06 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Central America (Cuba, Mexico, Honduras, Guatemala) | HR-CS-AAS | [32] |
0.05 ± 0.02 | Turkish coffee | 5 | 10 | 200 | nd | nd | nd | 100 | nd | nd | fresh ground | nd | FAAS | [46] |
K | ||||||||||||||
300.85 * | Coffee machine (freeze-dried beverage) | 0.83 | 15 | 400 | 300 | diw | 15 | 94 | A | nd | fine fresh ground (no washed) | nd | INAA | [44] |
294.91 * | Coffee machine (freeze-dried beverage) | 0.83 | 15 | 400 | 300 | diw | 15 | 94 | A | nd | fine fresh ground (washed) | nd | INAA | [44] |
167.44 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A&R | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
154.07 | Aeropress | 2 | 18 | nd | 250 | fw | 2–4 | 93 | A | R | coarse ground | nd | ICP-OES | [20] |
148.55 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A | R | ground | Asia (China, Timor) | HR-CS-AAS | [32] |
140.00 | Drip | 2.5 | 18 | 300 | nd | fw | nd | 92 | A | R | medium coarse ground | nd | ICP-OES | [20] |
139 * | Coffee machine (capsules) | nd | 5 | nd | 40 | dw | nd | nd | A | R | capsule—ground | South America (Colombia, Brazil) | HR-CS-AAS | [32] |
132.69 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A&R | R | ground | Oceania (Papua New Guinea) | HR-CS-AAS | [32] |
~120.00 | Pouring water | 5 | 17 | 250 | nd | fw | nd | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
119.14 * | Coffee machine | nd | 5 | nd | 40 | dw | nd | nd | A&R | R | capsules—ground | Asia (India) | HR-CS-AAS | [32] |
110.41 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A | R | ground | Africa (Mussulo and Ethiopia) | HR-CS- AAS | [32] |
103.40 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A | R | ground | Central America (Cuba, Mexico, Honduras, Guatemala) | HR-CS-AAS | [32] |
~100.00 | Coffee machine | nd | 17 | nd | 250 | fw | 9 | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
99.20 ± 17.94 | Turkish coffee | 5 | 10 | 200 | nd | nd | nd | 100 | nd | R | fresh ground | nd | FAAS | [46] |
88.74 | French pres | 5 | 17 | 300 | nd | fw | 1–2 | 92 | A | R | medium ground | nd | ICP-OES | [20] |
82.74 * | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | A | R | ground | India, Australia, Tanzania, Peru, Cuba, Timor, Zambia, Honduras, Indonesia | FAAS | [42] |
82.14 * | Pouring water | nd | 6 | 150 | nd | nd | nd | nd | A&R | R | ground | nd | FAAS | [42] |
57.03 ± 9.73 | Turkish coffee | nd | 5 | 65 | nd | up dw | nd | nd | A | R | fine ground | nd | HR-CS-FAAS | [41] |
52.20 | Pouring water | 10 | 6 | 150 | nd | dw | nd | 100 | nd | R | ground | nd | FAAS | [43] |
37.21 | Pouring water | 5 | 6 | 200 | nd | nd | nd | 100 | nd | R | ground # | Ethiopia | FAAS | [36] |
Ca | ||||||||||||||
43.23 * | Pouring water | 10 | 6 | 200 | nd | rw | nd | 100 | A | R | ground | nd | FAAS | [31] |
37.97 * | Pouring water | 10 | 6 | 200 | nd | rw | nd | 100 | A&R | R | ground | nd | FAAS | [31] |
8.31 * | Coffee machine (freeze-dried beverage) | 0.83 | 15 | 400 | 300 | diw | 15 | 94 | A | nd | fine fresh ground (no-washed) | nd | INAA | [44] |
7.81 * | Coffee machine (freeze-dried beverage) | 0.83 | 15 | 400 | 300 | diw | 15 | 94 | A | nd | fine fresh ground (washed) | nd | INAA | [44] |
6.78 * | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | A | R | ground | India, Australia, Tanzania | FAAS | [42] |
5.05 * | Pouring water | nd | 6 | 150 | nd | nd | nd | nd | A&R | R | ground | nd | FAAS | [42] |
3.49 | Pouring water | 10 | 6 | 150 | nd | dw | nd | 100 | nd | nd | ground coffee | nd | FAAS | [43] |
2.57 | Coffee machine | nd | 17 | nd | 250 | fw | 9 | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
2.36 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A | R | ground | Africa (Mussulo, Ethiopia) | HR-CS-AAS | [32] |
~2.30 | Pouring water | 5 | 17 | 250 | nd | fw | nd | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
2.18 * | Coffee machine | nd | 5 | nd | 40 | dw | nd | nd | A&R | R | capsules—ground | Asia (India) | HR-CS-AAS | [32] |
~2.00 | Aeropress | 2 | 18 | nd | 250 | fw | 2–4 | 93 | A | R | coarse ground | nd | ICP-OES | [20] |
1.94 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A&R | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
~1.70 | French press | 5 | 17 | 300 | nd | fw | 1–2 | 92 | A | R | medium ground | nd | ICP-OES | [20] |
1.63 | Drip | 2.5 | 18 | 300 | nd | fw | nd | 92 | A | R | medium coarse ground | nd | ICP-OES | [20] |
1.62 | Pouring water | 5 | 6 | 200 | nd | nd | nd | 100 | nd | nd | ground # | Ethiopia | FAAS | [36] |
1.50 * | Coffee machine (capsules) | nd | 5 | nd | 40 | dw | nd | nd | A | R | capsule—ground | South America (Colombia, Brazil) | HR-CS-AAS | [32] |
1.49 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A&R | R | ground | Oceania (Papua New Guinea) | HR-CS-AAS | [32] |
1.45 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A | R | ground | Asia (China, Timor) | HR-CS-AAS | [32] |
1.38 ± 0.29 | Turkish coffee | 5 | 10 | 200 | nd | nd | nd | 100 | nd | nd | fresh ground | nd | FAAS | [46] |
1.11 * | Coffee machine | nd | 6 | nd | 40 | dw | nd | nd | A | R | ground | Central America (Cuba, Mexico, Honduras, Guatemala) | HR-CS-AAS | [32] |
Mg | ||||||||||||||
198.47 * | Pouring water | 10 | 6 | 200 | nd | rw | nd | 100 | A&R | R | ground | nd | FAAS | [31] |
99.60 * | Pouring water | 10 | 6 | 200 | nd | rw | nd | 100 | A | R | ground | nd | FAAS | [31] |
14.92 ± 2.15 | Turkish coffee | nd | 5 | 65 | nd | dw | nd | nd | A | R | fine ground | nd | HR-CS-FAAS | [41] |
12.60 * | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | A&R | R | ground | nd | FAAS | [42] |
11.63 | Aeropress | 2 | 18 | nd | 250 | fw | 2–4 | 93 | A | R | coarse ground | nd | ICP-OES | [20] |
~10.70 | Pouring water | 5 | 17 | 250 | nd | fw | nd | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
~10.00 | Drip | 2.5 | 18 | 300 | nd | fw | nd | 92 | A | R | medium coarse ground | nd | ICP-OES | [20] |
8.68 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A&R | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
~8.50 | Coffee machine | nd | 17 | nd | 250 | fw | 9 | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
8.39 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A&R | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
8.24 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A&R | R | ground | Oceania (Papua New Guinea) | HR-CS-AAS | [32] |
7.72 | French press | 5 | 17 | 300 | nd | fw | 1–2 | 92 | A | R | medium ground | nd | ICP-OES | [20] |
7.49 * | Coffee machine | nd | 5 | 40 | nd | dw | nd | nd | A&R | R | capsules-ground | Asia (India) | HR-CS-AAS | [32] |
7.03 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Asia (China, Timor) | HR-CS-AAS | [32] |
7.00 ± 1.37 | Turkish coffee | 5 | 10 | 200 | nd | nd | nd | 100 | nd | nd | fresh ground | nd | FAAS | [46] |
7.00 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Africa (Mussulo, Ethiopia) | HR-CS-AAS | [32] |
5.35 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Central America (Cuba, Mexico, Honduras, Guatemala) | HR-CS-AAS | [32] |
5.02 * | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | A | R | ground | India, Australia, Tanzania, Peru, Cuba, Timor, Zambia, Honduras, Indonesia | FAAS | [42] |
2.83 | Pouring water | 5 | 6 | 200 | nd | nd | nd | 100 | nd | nd | ground # | Ethiopia | FAAS | [36] |
2.15 | Pouring water | 10 | 6 | 150 | nd | dw | nd | 100 | nd | nd | ground coffee | nd | FAAS | [43] |
2.15 * | Turkish coffee | nd | 2 | 100 | nd | dw | nd | nd | A | R | nd | nd | ICP-OES | [45] |
P | ||||||||||||||
40.39 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
36.09 * | Coffee machine (capsules) | nd | 6 | 40 | nd | dw | nd | nd | A&R | R | ground | Africa (Kenya) | HR-CS-AAS | [32] |
33.44 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A&R | R | ground | Oceania (Papua New Guinea) | HR-CS-AAS | [32] |
31.95 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Africa (Mussulo, Ethiopia) | HR-CS-AAS | [32] |
27.17 * | Coffee machine | nd | 5 | 40 | nd | dw | nd | nd | A&R | R | capsules-ground | Asia (India) | HR-CS-AAS | [32] |
27.16 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Asia (China, Timor) | HR-CS-AAS | [32] |
19.44 * | Coffee machine | nd | 6 | 40 | nd | dw | nd | nd | A | R | ground | Central America (Cuba, Mexico, Honduras, Guatemala) | HR-CS-AAS | [32] |
15.90 * | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | A | R | ground | India, Australia, Tanzania, Peru, Cuba, Timor, Zambia, Honduras, Indonesia | FAAS | [42] |
13.68 * | Pouring water | nd | 6 | 150 | nd | nd | nd | nd | A&R | R | ground | nd | FAAS | [42] |
8.16 | Aeropress | 2 | 18 | nd | 250 | fw | 2–4 | 93 | A | R | coarse ground | nd | ICP-OES | [20] |
~7.50 | Pouring water | 5 | 17 | 250 | nd | fw | nd | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
~7.20 | Drip | 2.5 | 18 | 300 | nd | fw | nd | 92 | A | R | medium coarse ground | nd | ICP-OES | [20] |
~5.60 | Coffee machine | nd | 17 | nd | 250 | fw | 9 | 92 | A | R | very fine ground | nd | ICP-OES | [20] |
4.96 | French press | 5 | 17 | 300 | nd | fw | 1–2 | 92 | A | R | medium ground | nd | ICP-OES | [20] |
Content Av. (mg/100 g) | Method of Brewing | Time of Brewing (min) | Coffee (g) | Water (mL) | The Volume of a Cup (mL) | Type of Water | Pressure (Ba) | Temperature of Water (°C) | Methods of Analysis | References |
---|---|---|---|---|---|---|---|---|---|---|
Na | ||||||||||
7.14 | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | FAAS | [42] |
1.70 | Pouring water | nd | 2 | nd | 30 | up dw | nd | hot | HR-CS-FAAS | [23] |
K | ||||||||||
283.99 | Pouring water | nd | 2 | nd | 30 | up dw | nd | hot | HR-CS-FAAS | [23] |
50.60 | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | FAAS | [42] |
Ca | ||||||||||
6.96 | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | FAAS | [42] |
1.61 | Pouring water | nd | 2 | nd | 30 | up dw | nd | hot | HR-CS-FAAS | [23] |
Mg | ||||||||||
29.09 | Pouring water | nd | 2 | nd | 30 | up dw | nd | hot | HR-CS-FAAS | [23] |
6.80 | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | FAAS | [42] |
P | ||||||||||
24.78 | Pouring water | nd | 6 | 150 | nd | nd | nd | hot | FAAS | [42] |
7.76 | Pouring water | nd | 2 | nd | 30 | up dw | nd | hot | HR-CS-FAAS | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olechno, E.; Puścion-Jakubik, A.; Socha, K.; Zujko, M.E. Coffee Brews: Are They a Source of Macroelements in Human Nutrition? Foods 2021, 10, 1328. https://doi.org/10.3390/foods10061328
Olechno E, Puścion-Jakubik A, Socha K, Zujko ME. Coffee Brews: Are They a Source of Macroelements in Human Nutrition? Foods. 2021; 10(6):1328. https://doi.org/10.3390/foods10061328
Chicago/Turabian StyleOlechno, Ewa, Anna Puścion-Jakubik, Katarzyna Socha, and Małgorzata Elżbieta Zujko. 2021. "Coffee Brews: Are They a Source of Macroelements in Human Nutrition?" Foods 10, no. 6: 1328. https://doi.org/10.3390/foods10061328