Exploring Tools for Designing Dysphagia-Friendly Foods: A Review
Abstract
:1. Introduction
2. Textural Characterization of Dysphagia Food Products
2.1. Empirical Methods of Measuring Rheological Properties
2.2. Fundamental Methods of Measuring the Rheological Properties of Dysphagia Foods
2.2.1. Rotational Shear Rheometer
Steady Flow Sweep Tests
Dynamic Oscillatory Tests
2.2.2. Extensional Rheometer
2.2.3. Tribometer
2.2.4. Texture Analyzer
3. Thickeners
4. Texture-Modification Technologies
4.1. HPP
4.2. 3D Printing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohan, R.; Mohapatra, B. Shedding light on dysphagia associated with COVID-19: The what and why. OTO Open 2020, 4, 1–2. [Google Scholar] [CrossRef]
- Clavé, P.; Shaker, R. Dysphagia: Current reality and scope of the problem. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 259–270. [Google Scholar] [CrossRef]
- Rofes, L.; Arreola, V.; Almirall, J.; Cabré, M.; Campins, L.; García-Peris, P.; Speyer, R.; Clavé, P. Diagnosis and management of oropharyngeal dysphagia and its nutritional and respiratory complications in the elderly. Gastroenterol. Res. Pract. 2011, 2011. [Google Scholar] [CrossRef]
- Logemann, J.A. Swallowing disorders. Best Pract. Res. Clin. Gastroenterol. 2007, 21, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Andersen, U.T.; Beck, A.M.; Kjaersgaard, A.; Hansen, T.; Poulsen, I. Systematic review and evidence based recommendations on texture modified foods and thickened fluids for adults (≥18 years) with oropharyngeal dysphagia. ESPEN J. 2013, 8, e127–e134. [Google Scholar] [CrossRef]
- Sura, L.; Madhavan, A.; Carnaby, G.; Crary, M.A. Dysphagia in the elderly: Management and nutritional considerations. Clin. Interv. Aging 2012, 7, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Tulunay-Ugur, O.E.; Eibling, D. Geriatric dysphagia. Clin. Geriatr. Med. 2018, 34, 183–189. [Google Scholar] [CrossRef]
- Cichero, J.A.Y.; Steele, C.; Duivestein, J.; Clavé, P.; Chen, J.; Kayashita, J.; Dantas, R.; Lecko, C.; Speyer, R.; Lam, P.; et al. The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Clavé, P.; De Kraa, M.; Arreola, V.; Girvent, M.; Farré, R.; Palomera, E.; Serra-Prat, M. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Aliment. Pharmacol. Ther. 2006, 24, 1385–1394. [Google Scholar] [CrossRef]
- Cichero, J.A.Y.; Lam, P.; Steele, C.M.; Hanson, B.; Chen, J.; Dantas, R.O.; Duivestein, J.; Kayashita, J.; Lecko, C.; Murray, J.; et al. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: The IDDSI framework. Dysphagia 2017, 32, 293–314. [Google Scholar] [CrossRef] [Green Version]
- IDDSI Complete International Dysphagia Diet Standardisation Initiative. Iddsi 2019, 26. Available online: https://iddsi.org/ (accessed on 9 June 2021).
- Hadde, E.K.; Chen, J. Texture and texture assessment of thickened fluids and texture-modified food for dysphagia management. J. Texture Stud. 2020, 1–12. [Google Scholar] [CrossRef]
- Vieira, J.M.; Oliveira, F.D.; Salvaro, D.B.; Maffezzolli, G.P.; de Mello, J.D.B.; Vicente, A.A.; Cunha, R.L. Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Curr. Res. Food Sci. 2020, 3, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Hadde, E.K.; Chen, J. Shear and extensional rheological characterization of thickened fluid for dysphagia management. J. Food Eng. 2019, 245, 18–23. [Google Scholar] [CrossRef]
- Waqas, M.Q.; Wiklund, J.; Altskär, A.; Ekberg, O.; Stading, M. Shear and extensional rheology of commercial thickeners used for dysphagia management. J. Texture Stud. 2017, 48, 507–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munialo, C.D.; Kontogiorgos, V.; Euston, S.R.; Nyambayo, I. Rheological, tribological and sensory attributes of texture-modified foods for dysphagia patients and the elderly: A review. Int. J. Food Sci. Technol. 2020, 55, 1862–1871. [Google Scholar] [CrossRef]
- Zargaraan, A.; Rastmanesh, R.; Fadavi, G.; Zayeri, F.; Mohammadifar, M.A. Rheological aspects of dysphagia-oriented food products: A mini review. Food Sci. Hum. Wellness 2013, 2, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Tokifuji, A.; Matsushima, Y.; Hachisuka, K.; Yoshioka, K. Texture, sensory and swallowing characteristics of high-pressure-heat-treated pork meat gel as a dysphagia diet. Meat Sci. 2013, 93, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Yamamoto, A.; Matsushima, Y.; Hachisuka, K. Effects of high pressure on the textural and sensory properties of minced fish meat gels for the dysphagia diet. Food Nutr. Sci. 2016, 7, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.; Bhandari, B.; Dong, X.; Prakash, S. Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocoll. 2020, 107. [Google Scholar] [CrossRef]
- Pant, A.; Lee, A.Y.; Karyappa, R.; Lee, C.P.; An, J.; Hashimoto, M.; Tan, U.X.; Wong, G.; Chua, C.K.; Zhang, Y. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocoll. 2021, 114, 106546. [Google Scholar] [CrossRef]
- Kim, S.G.; Yoo, W.; Yoo, B. Relationship between apparent viscosity and line-spread test measurement of thickened fruit juices prepared with a xanthan gum-based thickener. Prev. Nutr. Food Sci. 2014, 19, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Merino, G.; Gómez, I.; Marín-Arroyo, M.R.; Beriain, M.J.; Ibañez, F.C. Methodology for design of suitable dishes for dysphagic people. Innov. Food Sci. Emerg. Technol. 2020, 64, 102383. [Google Scholar] [CrossRef]
- Garcia, J.M.; Chambers, E.; Cook, K. Visualizing the consistency of thickened liquids with simple tools: Implications for clinical practice. Am. J. Speech Lang. Pathol. 2018, 27, 270–277. [Google Scholar] [CrossRef]
- Côté, C.; Giroux, A.; Villeneuve-Rhéaume, A.; Gagnon, C.; Germain, I. Is iddsi an evidence-based framework? A relevant question for the frail older population. Geriatrics 2020, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lin, Y. Effect of thermal processing on flow properties and stability of thickened fluid matrices formulated by tapioca starch, hydroxyl distarch phosphate (E-1442), and xanthan gum associating dysphagia-friendly potential. Polymers 2021, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Sopade, P.A.; Halley, P.J.; Cichero, J.A.Y.; Ward, L.C.; Liu, J.; Varliveli, S. Rheological characterization of food thickeners marketed in Australia in various media for the management of dysphagia. III. Fruit juice as a dispersing medium. J. Food Eng. 2008, 86, 604–615. [Google Scholar] [CrossRef]
- Hadde, E.K.; Nicholson, T.M.; Cichero, J.A.Y. Rheological characterisation of thickened fluids under different temperature, pH and fat contents. Nutr. Food Sci. 2015, 45, 270–285. [Google Scholar] [CrossRef]
- Sukkar, S.G.; Maggi, N.; Travalca Cupillo, B.; Ruggiero, C. Optimizing texture modified foods for oro-pharyngeal dysphagia: A difficult but possible target? Front. Nutr. 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Marconati, M.; Ramaioli, M. The role of extensional rheology in the oral phase of swallowing: An in vitro study. Food Funct. 2020, 11, 4363–4375. [Google Scholar] [CrossRef]
- Ong, J.J.X.; Steele, C.M.; Duizer, L.M. Challenges to assumptions regarding oral shear rate during oral processing and swallowing based on sensory testing with thickened liquids. Food Hydrocoll. 2018, 84, 173–180. [Google Scholar] [CrossRef]
- Gallegos, C.; Brito-de la Fuente, E.; Clavé, P.; Costa, A.; Assegehegn, G. Chapter Eight- Nutritional Aspects of Dysphagia Management. Adv. Food Nutr. Res. 2017, 81, 271–318. [Google Scholar]
- Cho, H.M.; Yoo, B. Rheological characteristics of cold thickened beverages containing xanthan gum-based food thickeners used for dysphagia diets. J. Acad. Nutr. Diet. 2015, 115, 106–111. [Google Scholar] [CrossRef]
- Kim, C.Y.; Yoo, B. Rheological characterization of thickened protein-based beverages under different food thickeners and setting times. J. Texture Stud. 2018, 49, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Talens, P.; Castells, M.L.; Verdú, S.; Barat, J.M.; Grau, R. Flow, viscoelastic and masticatory properties of tailor made thickened pea cream for people with swallowing problems. J. Food Eng. 2021, 292, 110265. [Google Scholar] [CrossRef]
- Sharma, M.; Kristo, E.; Corredig, M.; Duizer, L. Effect of hydrocolloid type on texture of pureed carrots: Rheological and sensory measures. Food Hydrocoll. 2017, 63, 478–487. [Google Scholar] [CrossRef]
- Suebsaen, K.; Suksatit, B.; Kanha, N.; Laokuldilok, T. Instrumental characterization of banana dessert gels for the elderly with dysphagia. Food Biosci. 2019, 32, 100477. [Google Scholar] [CrossRef]
- Herranz, B.; Criado, C.; Pozo-Bayón, M.Á.; Álvarez, M.D. Effect of addition of human saliva on steady and viscoelastic rheological properties of some commercial dysphagia-oriented products. Food Hydrocoll. 2021, 111. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, Y.; Li, R.; Ma, A.; Zhang, H. Rheological characterization of polysaccharide thickeners oriented for dysphagia management: Carboxymethylated curdlan, konjac glucomannan and their mixtures compared to xanthan gum. Food Hydrocoll. 2021, 110, 106198. [Google Scholar] [CrossRef]
- Nishinari, K.; Ishihara, S.; Hori, K.; Fang, Y. Tongue-palate squeezing of soft gels in food oral processing. Trends Food Sci. Technol. 2020, 99, 117–132. [Google Scholar] [CrossRef]
- Moelants, K.R.N.; Cardinaels, R.; Jolie, R.P.; Verrijssen, T.A.J.; Van Buggenhout, S.; Zumalacarregui, L.M.; Van Loey, A.M.; Moldenaers, P.; Hendrickx, M.E. Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol. 2013, 6, 1127–1143. [Google Scholar] [CrossRef]
- Ross, A.I.V.; Tyler, P.; Borgognone, M.G.; Eriksen, B.M. Relationships between shear rheology and sensory attributes of hydrocolloid-thickened fluids designed to compensate for impairments in oral manipulation and swallowing. J. Food Eng. 2019, 263, 123–131. [Google Scholar] [CrossRef]
- Abu Zarim, N.; Zainul Abidin, S.; Ariffin, F. Rheological studies on the effect of different thickeners in texture-modified chicken rendang for individuals with dysphagia. J. Food Sci. Technol. 2018, 55, 4522–4529. [Google Scholar] [CrossRef] [PubMed]
- Shewan, H.M.; Pradal, C.; Stokes, J.R. Tribology and its growing use toward the study of food oral processing and sensory perception. J. Texture Stud. 2020, 51, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Steele, C.M.; Alsanei, W.A.; Ayanikalath, S.; Barbon, C.E.A.; Chen, J.; Cichero, J.A.Y.; Coutts, K.; Dantas, R.O.; Duivestein, J.; Giosa, L.; et al. The influence of food texture and liquid consistency modification on swallowing physiology and function: A systematic review. Dysphagia 2015, 30, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.C. Texture, viscosity, and food. Food Texture Viscosity 1982, 1–23. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, S.; Yoo, B.; Nam, K. Effects of texture properties of semi-solid food on the sensory test for pharyngeal swallowing effort in the older adults. BMC Geriatr. 2020, 20, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wada, S.; Kawate, N.; Mizuma, M. What type of food can older adults masticate?: Evaluation of Mastication performance using color-changeable chewing gum. Dysphagia 2017, 32, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhao, W.; Yu, W.; Lin, X.; Tao, S.; Prakash, S.; Dong, X. Validating the textural characteristics of soft fish-based paste through International Dysphagia Diet Standardisation Initiative recommended tests. J. Texture Stud. 2021, 52, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, L.; Keller, H.H.; Duizer, L.M. Characterizing commercial pureed foods: Sensory, nutritional, and textural analysis. J. Nutr. Gerontol. Geriatr. 2014, 33, 179–197. [Google Scholar] [CrossRef]
- Côté, C.; Germain, I.; Dufresne, T.; Gagnon, C. Comparison of two methods to categorize thickened liquids for dysphagia management in a clinical care setting context: The Bostwick consistometer and the IDDSI Flow Test. Are we talking about the same concept? J. Texture Stud. 2019, 50, 95–103. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jeong, G.Y.; Yoo, B. Comparative study of IDDSI flow test and line-spread test of thickened water prepared with different dysphagia thickeners. J. Texture Stud. 2018, 49, 653–658. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients. Future Foods 2021, 3, 100006. [Google Scholar] [CrossRef]
- Funami, T.; Ishihara, S.; Nakauma, M.; Kohyama, K.; Nishinari, K. Texture design for products using food hydrocolloids. Food Hydrocoll. 2012, 26, 412–420. [Google Scholar] [CrossRef]
- Cichero, J.A.Y. Thickening agents used for dysphagia management: Effect on bioavailability of water, medication and feelings of satiety. Nutr. J. 2013, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Moret-Tatay, A.; Rodríguez-García, J.; Martí-Bonmatí, E.; Hernando, I.; Hernández, M.J. Commercial thickeners used by patients with dysphagia: Rheological and structural behaviour in different food matrices. Food Hydrocoll. 2015, 51, 318–326. [Google Scholar] [CrossRef]
- Sharma, M.; Duizer, L. Characterizing the dynamic textural properties of hydrocolloids in pureed foods—A comparison between TDS and TCATA. Foods 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Popa Nita, S.; Murith, M.; Chisholm, H.; Engmann, J. Matching the rheological properties of videofluoroscopic contrast agents and thickened liquid prescriptions. Dysphagia 2013, 28, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Rofes, L.; Arreola, V.; Mukherjee, R.; Swanson, J.; Clavé, P. The effects of a xanthan gum-based thickener on the swallowing function of patients with dysphagia. Aliment. Pharmacol. Ther. 2014, 39, 1169–1179. [Google Scholar] [CrossRef]
- Vieira, J.M.; Mantovani, R.A.; Raposo, M.F.J.; Coimbra, M.A.; Vicente, A.A.; Cunha, R.L. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 2019, 213, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Yamada, A.; Rigby, N.M.; Hanawa, T.; Kawano, Y.; Sarkar, A. Gellan gum: A new member in the dysphagia thickener family. Biotribology 2019, 17, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Vilardell, N.; Rofes, L.; Arreola, V.; Speyer, R.; Clavé, P. A Comparative study between modified starch and xanthan gum thickeners in post-stroke oropharyngeal dysphagia. Dysphagia 2016, 31, 169–179. [Google Scholar] [CrossRef]
- Matta, Z.; Chambers IV, E.; Garcia, J.M.; Helverson, J.M.G. Sensory characteristics of beverages prepared with commercial thickeners used for dysphagia diets. J. Am. Diet. Assoc. 2006, 106, 1049–1054. [Google Scholar] [CrossRef]
- Sharpe, K.; Ward, L.; Cichero, J.; Sopade, P.; Halley, P. Thickened fluids and water absorption in rats and humans. Dysphagia 2007, 22, 193–203. [Google Scholar] [CrossRef]
- Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 2011, 106, 1–12. [Google Scholar] [CrossRef]
- Steele, C.M.; Molfenter, S.M.; Péladeau-Pigeon, M.; Polacco, R.C.; Yee, C. Variations in tongue-palate swallowing pressures when swallowing xanthan gum-thickened liquids. Dysphagia 2014, 29, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Stephen, A.M.; Phillips, G.O.; Williams, P.A. Food Polysaccharides and Their Applications, 2006th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006; ISBN 0-8247-5922-2. [Google Scholar]
- Nishinari, K.; Turcanu, M.; Nakauma, M.; Fang, Y. Role of fluid cohesiveness in safe swallowing. npj Sci. Food 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Strother, H.; Moss, R.; McSweeney, M.B. Comparison of 3D printed and molded carrots produced with gelatin, guar gum and xanthan gum. J. Texture Stud. 2020, 51, 852–860. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—A review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.M.; Andrade, C.C.P.; Santos, T.P.; Okuro, P.K.; Garcia, S.T.; Rodrigues, M.I.; Vicente, A.A.; Cunha, R.L. Flaxseed gum-biopolymers interactions driving rheological behaviour of oropharyngeal dysphagia-oriented products. Food Hydrocoll. 2021, 111, 106257. [Google Scholar] [CrossRef]
- Hanson, B.; Cox, B.; Kaliviotis, E.; Smith, C.H. Effects of saliva on starch-thickened drinks with acidic and neutral pH. Dysphagia 2012, 27, 427–435. [Google Scholar] [CrossRef]
- Garin, N.; De Pourcq, J.T.; Martín-Venegas, R.; Cardona, D.; Gich, I.; Mangues, M.A. Viscosity differences between thickened beverages suitable for elderly patients with dysphagia. Dysphagia 2014, 29, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Cichero, J.; Lam, P. Thickened liquids for children and adults with oropharyngeal dysphagia: The complexity of rheological considerations. J. Gastroenterol. Hepatol. Res. 2014, 3, 1073–1079. [Google Scholar] [CrossRef]
- Kim, S.G.; Yoo, B. Viscosity of dysphagia-oriented cold-thickened beverages: Effect of setting time at refrigeration temperature. Int. J. Lang. Commun. Disord. 2015, 50, 397–402. [Google Scholar] [CrossRef]
- González, M.L.G.; Raurich, J.G.; Santamaría, M.R.; Mora, M.A. Viscosidad en la dieta de pacientes diagnosticados de disfagia orofaríngea. Acta Bioquim. Clin. Latinoam. 2016, 50, 45–60. [Google Scholar]
- MacHado, A.S.; Lenz, D.; De Souza, R.D.S.; Eugênio, R.M.; De Andrade, T.U.; Pereira, T.C.; Endringer, D.C. Lack of standardization in commercial thickeners used in the management of dysphagia. Ann. Nutr. Metab. 2020, 75, 246–251. [Google Scholar] [CrossRef]
- Fam, S.N.; Khosravi-Darani, K.; Massoud, R.; Massoud, A. High-pressure processing in food. Biointerface Res. Appl. Chem. 2021, 11, 11553–11561. [Google Scholar] [CrossRef]
- Sungsinchai, S.; Niamnuy, C.; Wattanapan, P.; Charoenchaitrakool, M.; Devahastin, S. Texture Modification technologies and their opportunities for the production of dysphagia foods: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1898–1912. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, L.; Cao, R.; Fan, H.; Wang, M. In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydr. Polym. 2016, 144, 1–8. [Google Scholar] [CrossRef]
- Landl, A.; Abadias, M.; Sárraga, C.; Viñas, I.; Picouet, P.A. Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innov. Food Sci. Emerg. Technol. 2010, 11, 557–564. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, M.; Bhandari, B. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3074–3081. [Google Scholar] [CrossRef]
- Hamilton, C.A.; Alici, G.; in het Panhuis, M. 3D printing Vegemite and Marmite: Redefining “breadboards”. J. Food Eng. 2018, 220, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Kouzani, A.Z.; Adams, S.; Whyte, D.J.; Oliver, R.; Hemsley, B.; Palmer, S.; Balandin, S. 3D printing of food for people with swallowing difficulties. KnE Eng. 2017, 2, 23. [Google Scholar] [CrossRef]
- Aguilera, J.M.; Park, D.J. Texture-modified foods for the elderly: Status, technology and opportunities. Trends Food Sci. Technol. 2016, 57, 156–164. [Google Scholar] [CrossRef]
Empirical methods | Instruments | Parameters Measured | Characteristics | Applications | References |
Line spread test | Viscosity | Measure the flow distance in centimeters traveled by the thickened fluid, across a flat surface, in 1 min | Commercial pureed foods | [50] | |
Bostwick consistometer | Viscosity | Measure the flow distance in centimeters traveled by a thickened fluid, across a flat surface, in 30 s | Commercial pre-prepared thickened liquids | [51] | |
Water | |||||
Juices (apple, cranberries, orange) | |||||
IDDSI syringe flow test | Viscosity | Measure the viscosity of dysphagia drinks by the gravity flow test (levels 0–4) | Commercial pre-prepared, thickened liquids | [51,52] | |
Water | |||||
Juices (apple, cranberries, orange) | |||||
IDDSI spoon tilt test | Food cohesiveness | Determine the adhesiveness and cohesiveness of the sample (levels 4–5) | 3D-printed fresh vegetables | [21] | |
Adhesiveness | |||||
IDDSI fork pressure test spoon pressure test | Firmness | Determine the firmness of the sample | 3D-printed pork paste | [20] | |
Fundamental methods | Rotational Shear Rheometer | Viscosity | Measure the viscosity of various thickened fluids at a wide range of shear rates by performing Steady Flow Sweep tests | Water | [33,35,36] |
Fruit juices | |||||
Milk | |||||
Pureed foods | |||||
Viscoelasticity (Complex modulus G*, tan δ and Yield stress) | Measured by Oscillation Frequency Sweep tests and Oscillation Amplitude Sweep tests | Commercial thickeners | [35,36,39] | ||
Pureed foods | |||||
Extensional rheometer | Extensional flow | The maximum extensional viscosity is related to the cohesiveness of the fluid | Commercial thickeners | [15] | |
Tribometer | Slipperiness | Measures the degree of lubrication | Commercial thickeners mixed with water, milk and orange | [13] | |
Texture analyzer | Hardness | Measures the mechanical properties of pureed foods and texture-modified foods by performing back-extrusion tests in pureed foods and TPA tests in texture-modified foods | Various thickened pureed foods for dysphagia patients: chickpea stew, chicken stew, lentils with rice, halibut with green sauce, pasta bolognese, beef pastes | [23,53] | |
Cohesiveness | |||||
Adhesiveness | |||||
Gumminess |
Thickener Type | General Properties | Thickeners | Uses | Characteristics | References |
---|---|---|---|---|---|
Starch-based | Consistency alters over time | Corn starch | Pureed carrots | High adhesiveness; therefore, a bolus difficult to swallow | [36] |
Susceptible to hydrolysis | Tapioca starch | Distilled water | Good thickening agent for instant consumption due to its solubility | [26] | |
Increased prevalence of pharyngeal residue | Sport drinks | ||||
Grainy texture | Orange juice | ||||
Cloudy appearance | |||||
Gum-based | Stable over the time Amylase-resistant Temperature and pH stability Low oropharyngeal residue Soft uniform texture Clear appearance Tasteless Odorless | Xanthan gum | Fruit juices Milk Water Pork paste Pureed vegetables | Amylase-resistant | [21,33,36,42,54,58,59] |
Temperature and pH stability | |||||
Low oropharyngeal residue | |||||
Clear appearance | |||||
Tasteless | |||||
Odorless | |||||
Shear-thinning behavior | |||||
The banana gel containing agar was considered suitable for the elderly | |||||
Agar | Banana dessert gels | Capacity to form soft gels | [37] | ||
Carboxymethyl cellulose | Tailor-made thickened pea cream | Therapeutic properties: prevent the occurrence of colorectal cancer, promoting an improvement in postprandial glycemia and weight control Presents phenolic compounds that could exhibit pharmacological properties including antidiabetic, antihypertensive, immunomodulatory, anti-inflammatory and neuro-protective properties. | [35] | ||
Flaxseed gum | Water Milk Orange-flavored soy juice | Good lubrication profile α-amylase resistance | [13,60] | ||
Gellan gum | Water Pureed carrots | Provide a suitable texture for people with chewing and swallowing difficulties | [36,61] | ||
Guar gum | Pork paste | Provide a good viscous component and a bolus easier to swallow | [20] | ||
Konjac gum | Tailor-made thickened pea cream | Provide a good viscous component and a bolus easier to swallow | [35] | ||
Tara gum | Tailor-made thickened pea cream | [35] |
Technology | Characteristics | Food Product Applications | Suggested Processing Conditions | Results | References |
---|---|---|---|---|---|
High-pressure processing (HPP) | Improve the gelation behavior of protein by modifying its conformational structure | Pork meat gel | Pressurization parameters: 400 MPa for 20 min at 17 ± 2 °C | Gel to meat/water ratio of 1:1 were those with the lowest residue in the oropharynx and highest smoothness, softness and elasticity and could be used to create dishes for a dysphagia diet | [18,79,86] |
Retain flavors and nutrients Improve bioavailability of bioactive compounds | Minced fish meat gel | Pressurization parameters: 400 MPa for 20 min at 17 ± 2 °C | Gel to meat/water ratios of 1:1 and 1:1.5 were slightly elastic and smooth and, in consequence, suitable for a dysphagia diet | [19] | |
3D Printing | 3D printing is a potential alternative technique for the elaboration of sensorial attractive dishes and contribution to the formulation of innovative food products | Tuna fish, molded carrots, pork paste, fresh vegetables, beef paste | The texture of the feeding material should be adapted to the 3D-printing processing: | 3D printing is an emerging technology that can be used to create attractive dishes that maintain the shape of foods and their sensory and textural properties The method reduced the time and cost of design and fabrication, reduced the reliance on a skilled cook and improved the visual appearance, consistency and repeatability of the foods produced | [20,21,53,69,85] |
Preparation of the sample (material, formulation, amount of thickener | |||||
Ensure the shear thinning behavior | |||||
Nozzle size | |||||
Layer height | |||||
Layer height | |||||
Layer height | |||||
Print speed | |||||
Structure maintenance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giura, L.; Urtasun, L.; Belarra, A.; Ansorena, D.; Astiasarán, I. Exploring Tools for Designing Dysphagia-Friendly Foods: A Review. Foods 2021, 10, 1334. https://doi.org/10.3390/foods10061334
Giura L, Urtasun L, Belarra A, Ansorena D, Astiasarán I. Exploring Tools for Designing Dysphagia-Friendly Foods: A Review. Foods. 2021; 10(6):1334. https://doi.org/10.3390/foods10061334
Chicago/Turabian StyleGiura, Larisa, Leyre Urtasun, Amanda Belarra, Diana Ansorena, and Icíar Astiasarán. 2021. "Exploring Tools for Designing Dysphagia-Friendly Foods: A Review" Foods 10, no. 6: 1334. https://doi.org/10.3390/foods10061334
APA StyleGiura, L., Urtasun, L., Belarra, A., Ansorena, D., & Astiasarán, I. (2021). Exploring Tools for Designing Dysphagia-Friendly Foods: A Review. Foods, 10(6), 1334. https://doi.org/10.3390/foods10061334