Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Canola Oil Oleogels
2.2. Determination of Solid Fat Content
2.3. Preparation of Imitation Cheese
2.4. Color Measurement
2.5. Texture Measurement
2.6. Viscoelastic Measurement
2.7. T2 Relaxation Time Analysis by Proton NMR
2.8. Determination of Meltability
2.9. Determination of Fatty Acid Composition
2.10. Statistical Analysis
3. Results and Discussion
3.1. Determination of Solid Fat Content
3.2. Color Measurement
3.3. Texture Analysis
3.4. Dynamic Viscoelastic Measurement
3.5. Transient Viscoelastic Measurement
3.6. Determination of T2 Relaxation Times
3.7. Determination of Cheese Meltability
3.8. Analysis of Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saari, U.A.; Herstatt, C.; Tiwari, R.; Dedehayir, O.; Mäkinen, S.J. The vegan trend and the microfoundations of institutional change: A commentary on food producers’ sustainable innovation journeys in Europe. Trends Food Sci. Technol. 2021, 107, 161–167. [Google Scholar] [CrossRef]
- Radnitz, C.; Beezhold, B.; DiMatteo, J. Investigation of lifestyle choices of individuals following a vegan diet for health and ethical reasons. Appetite 2015, 90, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Guirguis, A.; El-Neshawy, A. Peanut curd in the manufacture of processed cheese-like spread. Dairy Ind. Int. 1985, 50, 37. [Google Scholar]
- Oyeyinka, A.T.; Odukoya, J.; Adebayo, Y.S. Nutritional composition and consumer acceptability of cheese analog from soy and cashew nut milk. J. Food Process. Preserv. 2019, 43, 14285. [Google Scholar] [CrossRef]
- Lee, S.Y.K.; Park, P.S.W.; Rhee, K.C. Textural properties of cheese analogs containing proteolytic enzyme-modified soy protein isolates. J. Am. Oil Chem. Soc. 1992, 69, 755–759. [Google Scholar] [CrossRef]
- Bachmann, H.-P. Cheese analogues: A review. Int. Dairy J. 2001, 11, 505–515. [Google Scholar] [CrossRef]
- Ahmad, N.; Li, L.; Yang, X.-Q.; Ning, Z.-X.; Randhawa, M.A. Improvements in the flavour of soy cheese. Food Technol. Biotechnol. 2008, 46, 252–261. [Google Scholar]
- Li, Q.; Xia, Y.; Zhou, L.; Xie, J. Evaluation of the rheological, textural, microstructural and sensory properties of soy cheese spreads. Food Bioprod. Process. 2013, 91, 429–439. [Google Scholar] [CrossRef]
- Rinaldoni, A.N.; Palatnik, D.R.; Zaritzky, N.; Campderrós, M.E. Soft cheese-like product development enriched with soy protein concentrates. LWT 2014, 55, 139–147. [Google Scholar] [CrossRef]
- Khiabanian, N.O.; Motamedzadegan, A.; Raisi, S.N.; Alimi, M. Chemical, textural, rheological, and sensorial properties of wheyless feta cheese as influenced by replacement of milk protein concentrate with pea protein isolate. J. Texture Stud. 2020, 51, 488–500. [Google Scholar] [CrossRef]
- Hanaková, Z.; Buňka, F.; Pavlinek, V.; Hudečková, L.; Janiš, R. The effect of selected hydrocolloids on the rheological properties of processed cheese analogues made with vegetable fats during the cooling phase. Int. J. Dairy Technol. 2013, 66, 484–489. [Google Scholar] [CrossRef]
- Sołowiej, B.; Dylewska, A.; Kowalczyk, D.; Sujka, M.; Tomczyńska-Mleko, M.; Mleko, S. The effect of pH and modified maize starches on texture, rheological properties and meltability of acid casein processed cheese analogues. Eur. Food Res. Technol. 2016, 242, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Zulkurnain, M.; Goh, M.-H.; Karim, A.A.; Liong, M.-T. Development of a soy-based cream cheese. J. Texture Stud. 2008, 39, 635–654. [Google Scholar] [CrossRef]
- Tindall, A.M.; Petersen, K.; Skulas-Ray, A.C.; Richter, C.K.; Proctor, D.N.; Kris-Etherton, P.M. Replacing Saturated Fat WITH Walnuts or Vegetable Oils Improves Central Blood Pressure and Serum Lipids in Adults at Risk for Cardiovascular Disease: A Randomized Controlled-Feeding Trial. J. Am. Heart Assoc. 2019, 8, e011512. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Bertram, H.C.; Bonjour, J.-P.; De Groot, L.C.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [Green Version]
- McMahon, D.; Alleyne, M.; Fife, R.; Oberg, C. Use of Fat Replacers in Low Fat Mozzarella Cheese. J. Dairy Sci. 1996, 79, 1911–1921. [Google Scholar] [CrossRef]
- Karimi, R.; Azizi, M.H.; Ghasemlou, M.; Vaziri, M. Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr. Polym. 2015, 119, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Noronha, N.; O’Riordan, E.; O’Sullivan, M. Replacement of fat with functional fibre in imitation cheese. Int. Dairy J. 2007, 17, 1073–1082. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.M.; Guo, S.D. Comparison of full-fat and low-fat cheese analogues with or without pectin gel through microstructure, texture, rheology, thermal and sensory analysis. Int. J. Food Sci. Technol. 2008, 43, 1581–1592. [Google Scholar] [CrossRef]
- Romeih, E.A.; Michaelidou, A.; Biliaderis, C.; Zerfiridis, G.K. Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: Chemical, physical and sensory attributes. Int. Dairy J. 2002, 12, 525–540. [Google Scholar] [CrossRef]
- Kupiec, M.; Zbikowska, A.; Marciniak-Lukasiak, K.; Kowalska, M. Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture 2020, 10, 211. [Google Scholar] [CrossRef]
- Doan, C.D.; Van De Walle, D.; Dewettinck, K.; Patel, A.R. Erratum to: Evaluating the Oil-Gelling Properties of Natural Waxes in Rice Bran Oil: Rheological, Thermal, and Microstructural Study. J. Am. Oil Chem. Soc. 2015, 92, 1739. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, I.; Żbikowska, A.; Kowalska, M. Physical stability of model emulsions based on ethyl cellulose oleogels. Int. Agrophys. 2020, 34, 289–300. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.; Zhang, Q.; Ju, X.; Wang, Z.; He, R. Study of monoglycerides enriched with unsaturated fatty acids at sn-2 position as oleogelators for oleogel preparation. Food Chem. 2021, 354, 129534. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.C.; Okuro, P.K.; Badan, A.P.; Cunha, R.L. Role of the oil on glyceryl monostearate based oleogels. Food Res. Int. 2019, 120, 610–619. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Kim, S.; Singh, M.; Winkler-Moser, J.; Liu, S.X. Organogel Formation of Soybean Oil with Waxes. J. Am. Oil Chem. Soc. 2012, 89, 639–647. [Google Scholar] [CrossRef]
- de Freitas, C.A.S.; de Sousa, P.H.M.; Soares, D.J.; da Silva, J.Y.G.; Benjamin, S.R.; Guedes, M.I.F.; de Freitas, C.A.S.; de Sousa, P.H.M.; da Silva, J.Y.G. Carnauba wax uses in food—A review. Food Chem. 2019, 291, 38–48. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. J. Food Sci. Technol. 2020, 57, 1609–1618. [Google Scholar] [CrossRef]
- Wolfer, T.L.; Acevedo, N.C.; Prusa, K.J.; Sebranek, J.G.; Tarté, R. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Sci. 2018, 145, 352–362. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.S.; Grędowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van De Walle, D.; Dewettinck, K. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef]
- Pehlivanoğlu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1330–1341. [Google Scholar] [CrossRef]
- Jung, D.; Oh, I.; Lee, J.; Lee, S. Utilization of butter and oleogel blends in sweet pan bread for saturated fat reduction: Dough rheology and baking performance. LWT 2020, 125, 109194. [Google Scholar] [CrossRef]
- AOCS. AOCS Official Method Cd 16b—Solid fat Content (SFC) by Low Resolution Magnetic Resonance; AOCS Press: Urbana, IL, USA, 1993. [Google Scholar]
- Lim, J.; Jeong, S.; Lee, J.; Park, S.; Lee, J.; Lee, S. Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. J. Sci. Food Agric. 2017, 97, 3727–3732. [Google Scholar] [CrossRef]
- Mounsey, J.; O’Riordan, E. Empirical and Dynamic Rheological Data Correlation to Characterize Melt Characteristics of Imitation Cheese. J. Food Sci. 1999, 64, 701–703. [Google Scholar] [CrossRef]
- Aini, N.; Prihananto, V.; Sustriawan, B.; Romadhon, D.; Ramadhan, R.N. The Formulation of Cheese Analogue from Sweet Corn Extract. Int. J. Food Sci. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aini, I.N.; Miskandar, M.S. Utilization of palm oil and palm products in shortenings and margarines. Eur. J. Lipid Sci. Technol. 2007, 109, 422–432. [Google Scholar] [CrossRef]
- Yi, B.; Kim, M.-J.; Lee, S.Y.; Lee, J. Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Sci. Biotechnol. 2017, 26, 79–87. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Ibrahim, O.; Kholif, A.M.M. Characterization of novel Ras cheese supplemented with Jalapeno red pepper. J. Food Process. Preserv. 2020, 44, 14535. [Google Scholar] [CrossRef]
- Foegeding, E.; Drake, M. Invited Review: Sensory and Mechanical Properties of Cheese Texture. J. Dairy Sci. 2007, 90, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, Y.-R. Food Rheology; Soohaksa: Seoul, Korea, 2017. [Google Scholar]
- Guinee, T.; Carić, M.; Kaláb, M. Pasteurized processed cheese and substitute/imitation cheese products. In Major Cheese Groups; Elsevier B.V.: Amsterdam, The Netherlands, 2004; Volume 2, pp. 349–394. [Google Scholar]
- Lim, J.; Jeong, S.; Oh, I.K.; Lee, S. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT 2017, 84, 788–794. [Google Scholar] [CrossRef]
- Singh, H.; Rockall, A.; Martin, C.; Chung, O.; Lookhart, G. The analysis of stress relaxation data of some viscoelastic foods using a texture analyzer. J. Texture Stud. 2006, 37, 383–392. [Google Scholar] [CrossRef]
- Park, Y.; Oh, I.K.; Park, S.W.; Ryu, K.; Lee, S. Elucidation of rheological, microstructural, water mobility, and noodle-making properties of rice flour affected by turanose. Food Chem. 2019, 276, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Budiman, M.; Stroshine, R.L.; Campanella, O. Stress relaxation and low field proton magnetic resonance studies of cheese analog. J. Texture Stud. 2000, 31, 477–498. [Google Scholar] [CrossRef]
- El-Bakry, M.; Duggan, E.; O’Riordan, E.; O’Sullivan, M. Small scale imitation cheese manufacture using a Farinograph. LWT 2010, 43, 1079–1087. [Google Scholar] [CrossRef]
- Noronha, N.; Duggan, E.; Ziegler, G.; O’Riordan, E.; O’Sullivan, M. Investigation of imitation cheese matrix development using light microscopy and NMR relaxometry. Int. Dairy J. 2008, 18, 641–648. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of carnauba wax (E 903) as a food additive. EFSA J. 2012, 10, 2880. [Google Scholar] [CrossRef]
- Galus, S.; Gaouditz, M.; Kowalska, H.; Debeaufort, F. Effects of Candelilla and Carnauba Wax Incorporation on the Functional Properties of Edible Sodium Caseinate Films. Int. J. Mol. Sci. 2020, 21, 9349. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.; Bae, W.; Hwang, H.-S.; Lee, H.G.; Lee, S. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 2015, 187, 525–529. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lim, J.; Lee, J.; Hwang, H.-S.; Lee, S. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. J. Food Sci. 2017, 82, 445–452. [Google Scholar] [CrossRef]
Palm Oil | 3% Oleogel | 6% Oleogel | 9% Oleogel | |
---|---|---|---|---|
Visual appearance | ||||
L | 71.95 ± 0.11 a | 68.04 ± 0.19 d | 69.18 ± 0.15 c | 69.81 ± 0.26 b |
a | −0.26 ± 0.04 a | −0.30 ± 0.03 a | −0.26 ± 0.01 a | −0.25 ± 0.04 a |
b | 14.55 ± 0.05 c | 14.25 ± 0.13 d | 14.88 ± 0.09 b | 15.11 ± 0.04 a |
Palm Oil | 3% Oleogel | 6% Oleogel | 9% Oleogel | |
---|---|---|---|---|
Fracturability (N) | 6.88 ± 0.56 c | 8.88 ± 0.36 b | 9.79 ± 0.90 a | 9.94 ± 0.57 a |
Hardness (N) | 7.06 ± 0.31 d | 8.09 ± 0.21 c | 9.36 ± 0.31 b | 9.99 ± 0.29 a |
Adhesiveness (N·mm) | 1.60 ± 0.55 a | 1.06 ± 0.42 a | 1.55 ± 0.55 a | 1.48 ± 0.69 a |
Springiness | 0.32 ± 0.03 a | 0.33 ± 0.06 a | 0.35 ± 0.05 a | 0.36 ± 0.05 a |
Cohesiveness | 0.14 ± 0.01 b | 0.14 ± 0.01 b | 0.15 ± 0.01 b | 0.17 ± 0.01 a |
Chewiness (N·mm) | 0.57 ± 0.11 b | 0.60 ± 0.10 b | 0.82 ± 0.15 a | 0.99 ± 0.23 a |
Palm Oil | 3% Oleogel | 6% Oleogel | 9% Oleogel | |
---|---|---|---|---|
Fmax (N) | 8.43 ± 1.05 b | 9.95 ± 0.65 a | 10.15 ± 0.90 a | 10.26 ± 0.46 a |
%SR | 25.97 ± 3.17 c | 28.54 ± 1.42 bc | 29.49 ± 2.11 b | 34.24 ± 2.23 a |
RT (sec) | 9.07 ± 2.19 c | 10.99 ± 1.20 bc | 12.54 ± 1.77 b | 18.11 ± 3.76 a |
k1 (sec) | 3.34 ± 0.64 c | 3.95 ± 0.31 bc | 4.44 ± 0.34 ab | 4.93 ± 0.49 a |
k2 | 1.21 ± 0.03 b | 1.22 ± 0.02 b | 1.23 ± 0.03 b | 1.30 ± 0.03 a |
R2 | 0.9998 | 0.9998 | 0.9996 | 0.9997 |
Palm oil | 3% Oleogel | 6% Oleogel | 9% Oleogel | |
---|---|---|---|---|
Meltability (mm) | 82.75 ± 1.26 a | 82.25 ± 0.50 a | 80.50 ± 1.29 ab | 78.50 ± 2.38 b |
Fatty Acid (%) | Palm Oil | 3% Oleogel | 6% Oleogel | 9% Oleogel |
---|---|---|---|---|
C12:0 | 0.25 ± 0.03 | - | - | - |
C14:0 | 0.94 ± 0.12 | - | - | - |
C16:0 | 40.65 ± 0.44 a | 3.15 ± 0.81 c | 4.22 ± 0.67 b | 3.90 ± 0.34 bc |
C18:0 | 3.86 ± 0.14 a | 1.34 ± 0.06 b | 1.30 ± 0.14 b | 1.42 ± 0.12 b |
C22:0 | - | 0.35 ± 0.07 a | 0.46 ± 0.05 a | 0.42 ± 0.09 a |
C24:0 | - | 0.36 ± 0.05 b | 0.51 ± 0.07 ab | 0.43 ± 0.07 ab |
C16:1 | - | 0.05 ± 0.01 a | 0.06 ± 0.02 a | 0.06 ± 0.04 a |
C18:1 | 42.72 ± 0.44 c | 61.79 ± 1.13 a | 60.35 ± 0.22 b | 60.43 ± 0.27 b |
C18:2 | 11.38 ± 0.09 c | 22.60 ± 0.51 b | 23.07 ± 0.10 a | 22.97 ± 0.06 ab |
C18:3 | - | 9.97 ± 0.29 a | 9.61 ± 0.23 a | 9.81 ± 0.13 a |
C20:4 | 0.20 ± 0.02 c | 0.39 ± 0.08 b | 0.43 ± 0.04 b | 0.56 ± 0.08 a |
SFA | 45.70 ± 0.47 a | 5.20 ± 0.92 c | 6.48 ± 0.52 b | 6.17 ± 0.18 b |
USFA | 54.30 ± 0.47 c | 94.80 ± 0.92 a | 93.52 ± 0.52 b | 93.83 ± 0.18 b |
SFA/USFA | 0.84 ± 0.02 a | 0.06 ± 0.01 b | 0.07 ± 0.01 b | 0.07 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, K.; Choi, K.-O.; Jeong, S.; Kim, Y.-W.; Lee, S. Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods 2021, 10, 1351. https://doi.org/10.3390/foods10061351
Moon K, Choi K-O, Jeong S, Kim Y-W, Lee S. Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods. 2021; 10(6):1351. https://doi.org/10.3390/foods10061351
Chicago/Turabian StyleMoon, Kyungwon, Kyeong-Ok Choi, Sungmin Jeong, Young-Wan Kim, and Suyong Lee. 2021. "Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat" Foods 10, no. 6: 1351. https://doi.org/10.3390/foods10061351
APA StyleMoon, K., Choi, K. -O., Jeong, S., Kim, Y. -W., & Lee, S. (2021). Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods, 10(6), 1351. https://doi.org/10.3390/foods10061351