Effect of Sorghum on Rheology and Final Quality of Western Style Breads: A Literature Review
Abstract
:1. Introduction
2. Classification and Morphology of Sorghum
3. Chemical and Nutritional Properties of Sorghum
3.1. Protein
3.2. Carbohydrate
3.3. Fat
3.4. Micronutrients
3.5. Secondary Plant Products
4. Physical Properties and Dough Rheology of Wheat-Sorghum Blends
4.1. Thermal Properties of Sorghum
4.2. Water Absorption and Mechanical Stress Measurement of Wheat Sorghum Doughs
4.3. Extensibility Properties of Wheat Sorghum Doughs
5. Effects of Sorghum Addition in Baking Products
5.1. Bread
5.2. Cakes
6. Introducing Sorghum into the Western Diet: Evaluation of Potential
- Sorghum variety selection
- Sorghum milling and fractionation
- Sorghum pretreatment
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Semerádová, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M. Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Sci. Adv. 2019, 5, eaau2406. [Google Scholar] [CrossRef] [Green Version]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of genotype, growing season and nitrogen level on gluten protein assembly of durum wheat grown under mediterranean conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Salim-ur-Rehman Ahmad, M.; Bhatti, I.; Shafique, R.; Mueen-ud-Din, G.; Murtaza, M. Effect of pearling on physico-chemical, rheological characteristics and phytate content of wheat-sorghum flour. Pak. J. Bot. 2006, 38, 711–719. [Google Scholar]
- Rizk, I.R.; Hemat, E.E.; Gadallah, E.; Abou-Elazm, M.; Bedeir, H. Quality characteristics of sponge cake and biscuit prepared using composite flour. J. Agric. Soc. Sci. 2015, 23, 537–547. [Google Scholar]
- Istianah, N.; Ernawati, L.; Anal, A.K.; Gunawan, S. Application of modified sorghum flour for improving bread properties and nutritional values. Int. Food Res. J. 2018, 25, 166–173. [Google Scholar]
- Ognean, C.-F. Technological and sensorial effects of sorghum addition at wheat bread. Agric. Food 2015, 3, 209–217. [Google Scholar]
- Sibanda, T.; Ncube, T.; Ngoromani, N. Rheological properties and bread making quality of white grain sorghum-wheat flour composites. Int. J. Food Sci. Nutr. Eng. 2015, 5, 176–182. [Google Scholar]
- Osman, M.A.; Gassem, M. Effects of domestic processing on trypsin inhibitor, phytic, acid, tannins and in vitro protein digestibility of three Sorghum varieties. Int. J. Agric. Technol. 2013, 9, 1187–1198. [Google Scholar]
- Emmambux, M.N.; Taylor, J.R.N. Properties of heat-treated sorghum and maize meal and their prolamin proteins. J. Agric. Food Chem. 2009, 57, 1045–1050. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Bugusu, B.A. Workshop on the Proteins of Sorghum and Millets: Enhancing Nutritional and Functional Properties for Africa [CD]; Scientific Research: Pretoria, South Africa, 2003. [Google Scholar]
- Cruickshank, A. Sorghum grain, its production and uses: Overview. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2015; pp. 153–158. [Google Scholar]
- Taylor, J.R.N. Sorghum and millets: Taxonomy, history, distribution, and production. In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes, 2nd ed.; Taylor, J., Duodu, K.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–21. [Google Scholar]
- Awika, J.M.; McDonough, C.M.; Rooney, L.W. Decorticating sorghum to concentrate healthy phytochemicals. J. Agric. Food Chem. 2005, 53, 6230–6234. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.N. Overview: Importance of sorghum in Africa. In Proceedings of the Workshop on the Proteins of Sorghum and Millets: Enhancing Nutritional and Functional Properties for Africa, Pretoria, South Africa, 2–4 April 2003. [Google Scholar]
- Rumler, R.; Bender, D.; Speranza, S.; Frauenlob, J.; Gamper, L.; Hoek, J.; Jäger, H.; Schönlechner, R. Chemical and physical characterization of sorghum milling fractions and sorghum whole meal flours obtained via stone or roller milling. Foods 2021, 10, 870. [Google Scholar] [CrossRef]
- Seleem, H.A.; Omran, A.A. Evaluation quality of one layer flat bread supplemented with beans and sorghum baked on hot metal surface. Food Nutr. Sci. 2014, 5, 2246–2256. [Google Scholar] [CrossRef] [Green Version]
- Tasie, M.M.; Gebreyes, B.G. Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in Ethiopia. Int. J. Food Sci. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Galán, M.G.; Llopart, E.E.; Drago, S.R. Losses of nutrients and anti-nutrients in red and white sorghum cultivars after decorticating in optimised conditions. Int. J. Food Sci. Nutr. 2017, 69, 283–290. [Google Scholar] [CrossRef]
- Yousif, A.; Nhepera, D.; Johnson, S. Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chem. 2012, 134, 880–887. [Google Scholar] [CrossRef]
- Srichuwong, S.; Curti, D.; Austin, S.; King, R.; Lamothe, L.; Gloria-Hernandez, H. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chem. 2017, 233, 1–10. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Schussler, L.; van der Walt, W.H. Fractionation of proteins from low-tannin sorghum grain. J. Agric. Food Chem. 1984, 32, 149–154. [Google Scholar]
- Belton, P.S.; Delgadillo, I.; Halford, N.G.; Shewry, P.R. Kafirin structure and functionality. J. Cereal Sci. 2006, 44, 272–286. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Gassem, M.A.A.; Osman, M.A. Proximate composition and the content of sugars, amino acids and anti-nutritional factors of three sorghum varieties. Agric. Res. Cent. King Saud Univ. Res. Bull. 2003, 125, 5–19. [Google Scholar]
- Emmambux, N.M.; Taylor, J.R.N. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 2003, 83, 402–407. [Google Scholar] [CrossRef]
- Pontieri, P.; Di Fiore, R.; Troisi, J.; Bean, S.R.; Roemer, E.; Okot, J.; Alifano, P.; Pignone, D.; Del Giudice, L.; Massardo, D.R. Chemical composition and fatty acid content of white food sorghums grown in different environments. Maydica 2011, 56, 1–7. [Google Scholar]
- Sang, Y.; Bean, S.; Seib, P.A.; Pedersen, J.; Shi, Y.-C. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 2008, 56, 6680–6685. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Sodhi, N.S.; Singh, N. Characterisation of starches separated from sorghum cultivars grown in India. Food Chem. 2010, 119, 95–100. [Google Scholar] [CrossRef]
- Miafo, A.-P.T.; Koubala, B.B.; Kansci, G.; Muralikrishna, G. Free sugars and non-starch polysaccharides–phenolic acid complexes from bran, spent grain and sorghum seeds. J. Cereal Sci. 2019, 87, 124–131. [Google Scholar] [CrossRef]
- MartinoI, H.S.D.; Tomaz, P.A.; Moraes, É.A.; ConceiçãoI, L.L.d.; Oliveira, D.d.S.; Queiroz, V.A.V.; Rodrigues, J.A.S.; Pirozi, M.R.; Pinheiro-Sant’Ana, H.M.; Ribeiro, S.M.R. Chemical characterization and size distribution of sorghum genotypes for human consumption. Rev. Inst. Adolfo Lutz (Impresso) 2012, 71, 337–344. [Google Scholar]
- Moraes, É.A.; Marineli, R.d.S.; Lenquiste, S.A.; Steel, C.J.; Menezes, C.B.d.; Queiroz, V.A.V.; Maróstica Júnior, M.R. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem. 2015, 180, 116–123. [Google Scholar] [CrossRef]
- Osman, R.O.; Abd El-Gelil, F.M.; El-Noamany, H.M.; Dawood, M.G. Oil content and fatty acid composition of some varieties of barley and sorghum grains. Grasas Y Aceites 2000, 51, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Meera, M.S.; Bhashyam, M.K.; Ali, S.Z. Effect of heat treatment of sorghum grains on storage stability of flour. LWT-Food Sci. Technol. 2011, 44, 2199–2204. [Google Scholar] [CrossRef]
- Motlhaodi, T.; Bryngelsson, T.; Chite, S.; Fatih, M.; Ortiz, R.; Geleta, M. Nutritional variation in sorghum [Sorghum bicolor (L.) Moench] accessions from southern Africa revealed by protein and mineral composition. J. Cereal Sci. 2018, 83, 123–129. [Google Scholar] [CrossRef]
- Makawi, A.B.; Mustafa, A.I.; Adiamo, O.Q.; Mohamed Ahmed, I.A. Physicochemical, nutritional, functional, rheological, and microbiological properties of sorghum flour fermented with baobab fruit pulp flour as starter. Food Sci. Nutr. 2019, 7, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.L.; Awika, J.M. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J. Cereal Sci. 2018, 84, 112–124. [Google Scholar] [CrossRef]
- Beta, T.; Corke, H.; Rooney, L.W.; Taylor, J.R.N. Starch properties as affected by sorghum grain chemistry. J. Sci. Food Agric. 2000, 81, 245–251. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain structure and grain chemical composition. In Sorghum and Millets; Elsevier: Amsterdam, The Netherlands, 2019; pp. 85–129. [Google Scholar]
- Wedad, H.A.; El Tinay, A.H.; Mustafa, A.I.; Babiker, E.E. Effect of fermentation, malt-pretreatment and cooking on antinutritional factors and protein digestibility of sorghum cultivars. Pak. J. Nutr 2008, 7, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Przybylska-Balcerek, A.; Frankowski, J.; Stuper-Szablewska, K. Bioactive compounds in sorghum. Eur Food Res. Technol 2019, 245, 1075–1080. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting properties of starch and protein in selected cereals and quality of their food products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Hugo, L.F.; Rooney, L.W.; Taylor, J.R.N. Fermented sorghum as a functional ingredient in composite breads. Cereal Chem. 2003, 80, 495–499. [Google Scholar] [CrossRef]
- Ajanaku, K.O.; Ajanaku, C.O.; Edobor-Osoh, A.; Nwinyi, O.C. Nutritive value of sorghum ogi fortified with groundnut seed (Arachis) hypogaea. Nutr. Value Sorghum Ogi Fortif. Groundn. Seed (Arachis) Hypogaea 2012, 7, 82–88. [Google Scholar] [CrossRef]
- Akingbala, J.O.; Gomez, M.H.; Rooney, L.W.; Sweat, V.E. Thermal properties of sorghum starch. Starch-Stärke 1988, 40, 375–378. [Google Scholar] [CrossRef]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.J.; van Berkel, W.J.H. Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395. [Google Scholar]
- Mohamed, E.R.M.; Halaby, M.S.; Nadir, A.S.; El-Masry, H.G. The effect of alpha-amylase and ascorbic acid as improvers on pan bread quality. Middle East J. Appl. Sci. 2019, 9, 906–913. [Google Scholar]
- Beta, T.; Corke, H. Effect of ferulic acid and catechin on sorghum and maize starch pasting properties. Cereal Chem. 2004, 81, 418–422. [Google Scholar] [CrossRef]
- Amoako, D.B.; Awika, J.M. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chem. 2016, 208, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dube, N.M.; Xu, F.; Zhao, R.; Chen, J. Effect of using Zimbabwean Marcia sorghum and high-gluten flour on composite bread specific volume. J. Food Process. Preserv. 2021, 45, e15367. [Google Scholar] [CrossRef]
- Abdelghafor, R.F.; Mustafa, A.I.; Ibrahim, A.M.; Chen, Y.R.; Krishnan, P.G. Effects of sorghum flour addition on chemical and rheological properties of hard white winter wheat. Adv. J. Food Sci. Technol. 2013, 5, 1407–1412. [Google Scholar] [CrossRef]
- Torbica, A.; Mocko Blažek, K.; Belović, M.; Janić Hajnal, E. Quality prediction of bread made from composite flours using different parameters of empirical rheology. J. Cereal Sci. 2019, 89, 102812. [Google Scholar] [CrossRef]
- Al-Rabadi, G.J.; Torley, P.J.; Williams, B.A.; Bryden, W.L.; Gidley, M.J. Particle size heterogeneity in milled barley and sorghum grains: Effects on physico-chemical properties and starch digestibility. J. Cereal Sci. 2012, 56, 396–403. [Google Scholar] [CrossRef]
- Dayakar Rao, B.; Anis, M.; Kalpana, K.; Sunooj, K.V.; Patil, J.V.; Ganesh, T. Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT-Food Sci. Technol. 2016, 67, 8–13. [Google Scholar] [CrossRef]
- Adebowale, A.A.; Adegoke, M.T.; Sanni, S.A.; Adegunwa, M.O.; Fetuga, G.O. Functional properties and biscuit making potentials of sorghum-wheat flour composite. Am. J. Food Technol. 2012, 7, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Elkhalifa, A.O.; El-Tinay, A.H. Effect of cysteine on bakery products from wheat–sorghum blends. Food Chem. 2002, 77, 133–137. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Effects of pressure treatment of hydrated oat, finger millet and sorghum flours on the quality and nutritional properties of composite wheat breads. J. Cereal Sci. 2012, 56, 713–719. [Google Scholar] [CrossRef]
- AwadElkareem, A.M.; Taylor, J.R.N. Protein quality and physical characteristics of kisra (fermented sorghum pancake-like flatbread) made from tannin and non-tannin sorghum cultivars. Cereal Chem. 2011, 88, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Akin, P.A.; Bean, S.R.; Smith, B.M.; Tilley, M. Factors Influencing zein–whole sorghum flour dough formation and bread quality. J. Food Sci. 2019, 84, 3522–3534. [Google Scholar] [CrossRef]
- Trappey, E.F.; Khouryieh, H.; Aramouni, F.; Herald, T. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Food Sci. Technol. Int. 2015, 21, 188–202. [Google Scholar] [CrossRef]
- Karrar, E.; Musa, A.; Sheth, S.; Huang, W.; Sarpong, F.; Wang, X. Effect of sorghum sourdough and nabag (zizyphus spina-christi) pulp powder on dough fermentation and quality characteristics of bread. Food Meas. 2020, 14, 455–464. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.-S.; Zannini, E.; Czerny, M.; Arendt, E.K. Impact of sourdough fermented with Lactobacillus plantarum FST 1.7 on baking and sensory properties of gluten-free breads. Eur. Food Res. Technol. 2014, 239, 1–12. [Google Scholar] [CrossRef]
- Marston, K.; Khouryieh, H.; Aramouni, F. Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT-Food Sci. Technol. 2016, 65, 637–644. [Google Scholar] [CrossRef]
- Rahman, I.E.A.; Osman, M.A.W. Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. J. Food Agric. Environ. 2011, 9, 163–166. [Google Scholar]
- Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 2006, 94, 369–376. [Google Scholar] [CrossRef]
- Pineli, L.d.L.d.O.; Zandonadi, R.P.; Botelho, R.B.A.; De Oliveira, V.R.; Figueiredo, L.F.d.A. The use of sorghum to produce gluten-free breads: A systematic review. J. Adv. Nutr. Hum. Metab. 2015, 2, e944. [Google Scholar]
Parameter | Decreasing Value | Increasing Value | Irregular Trend |
---|---|---|---|
Water absorption (%) | X [3,6,7,19,49,50] | X [4] | |
Dough development time (min) | X [49,50] | X [6,7] | X [3,4,19] |
Dough stability (min) | X [4,7,19,50] | X [3,16] | |
Dough softening (B.U) | X [3,7,49,50] | X [4,16] | |
Dough extensibility (mm) | X [49] | X [4,16,50] | |
Dough resistance to extension (B.U) | X [4,16,49] | X [50] | |
Resistance/Extensibility Ratio | X [4] | X [50] | X [16] |
Energy (cm2) | X [4,16,49,50] |
Product | Sorghum (%) | Findings How Sorghum Influenced Wheat Standard Products | Reference |
---|---|---|---|
Bread | 15% | Volume and specific volume decreased, weight increased | [55] |
Bread | 30% | Volume decreased, crust and crumb color got darker, pores became irregular | [7] |
Bread | 30% | Volume decreased | [49] |
Bread | 40% | Volume decreased, porosity decreased, elasticity decreased | [6] |
Bread | 40% | Specific volume decreased, crumb firmness increased, cohesiveness decreased | [56] |
Biscuit | 15% | Sensory characteristics decreased | [55] |
Biscuit | 15% | Volume and specific volume decreased, width decreased, sensory characteristics decreased | [4] |
Sponge cake | 15% | Sensory characteristics decreased | [4] |
Flat bread | 15% | Freshness over storage decreased | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumler, R.; Schönlechner, R. Effect of Sorghum on Rheology and Final Quality of Western Style Breads: A Literature Review. Foods 2021, 10, 1392. https://doi.org/10.3390/foods10061392
Rumler R, Schönlechner R. Effect of Sorghum on Rheology and Final Quality of Western Style Breads: A Literature Review. Foods. 2021; 10(6):1392. https://doi.org/10.3390/foods10061392
Chicago/Turabian StyleRumler, Rubina, and Regine Schönlechner. 2021. "Effect of Sorghum on Rheology and Final Quality of Western Style Breads: A Literature Review" Foods 10, no. 6: 1392. https://doi.org/10.3390/foods10061392
APA StyleRumler, R., & Schönlechner, R. (2021). Effect of Sorghum on Rheology and Final Quality of Western Style Breads: A Literature Review. Foods, 10(6), 1392. https://doi.org/10.3390/foods10061392