Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Honey Samples
2.3. Agar Well Diffusion Assay
2.4. Determination of Minimum Inhibitory and Bactericidal Concentrations (MIC, MBC) of Each Honey
2.5. pH and aw Measurements
2.6. Determination of HMF and Diastase Levels
2.7. Determination of the Botanical Origin of Honeys through Melissopalynological Analysis
2.8. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Carter, D.A.; Blair, S.E.; Cokcetin, N.N.; Bouzo, D.; Brooks, P.; Schothauer, R.; Harry, E.J. Therapeutic manuka honey: No longer so alternative. Front. Microbiol. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddocks, S.E.; Jenkins, R.E. Honey: A sweet solution to the growing problem of antimicrobial resistance? Future Microbiol. 2013, 8, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another alternative in the fight against antibiotic-resistant bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef]
- Sauer, S.; Plauth, A. Health-beneficial nutraceuticals-myth or reality? Appl. Microbiol. Biotechnol. 2017, 101, 951–961. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial activity of bee-collected pollen and beebread: State of the art and future perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef]
- Pasias, I.N.; Kiriakou, I.K.; Kaitatzis, A.; Koutelidakis, A.E.; Proestos, C. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem. 2018, 242, 513–518. [Google Scholar] [CrossRef]
- Anthimidou, E.; Mossialos, D. Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey. J. Med. Food 2013, 16, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, O.; Dolan, A.; Athman, R.; Power, A.; Gethin, G.; Cowman, S.; Humphreys, H. Comparison of the antimicrobial activity of ulmo honey from Chile and manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas Aeruginosa. BMC Complement. Altern. Med. 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, R. Greece’s secret to perfect honey. The Craftsmanship Initiative 2019, San Francisco, CA, USA. Available online: https://craftsmanship.net/greeces-secret-to-perfect-honey/ (accessed on 12 June 2021).
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Kostoglou, D.; Tsaklidou, P.; Iliadis, I.; Garoufallidou, N.; Skarmoutsou, G.; Koulouris, I.; Giaouris, E. Advanced killing potential of thymol against a time and temperature optimized attached Listeria monocytogenes population in lettuce broth. Biomolecules 2021, 11, 397. [Google Scholar] [CrossRef] [PubMed]
- International Honey Commission. World Network of Honey Science. Harmonised Methods of the International Honey Commission. 2009. Available online: http://ihc-platform.net/ihcmethods2009.pdf (accessed on 12 June 2021).
- White, J.W. Spectrophotometric method for hydroxymethylfurfural in honey. J. Assoc. Offic. Anal. Chem. 1979, 62, 509–514. [Google Scholar] [CrossRef]
- Schade, J.E.; Marsh, G.L.; Eckert, J.E. Diastase activity and hydroxy-methyl-furfural in honey and their usefulness in detecting heat adulteration. J. Food Sci. 1958, 23, 446–463. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Method 958.09-1977. In Diastatic Activity of Honey; AOAC International: Rockville, MD, USA, 2010. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Moar, N.T. Pollen analysis of New Zealand honey. N. Z. J. Agric. Res. 1985, 28, 39–70. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Wright, J.E.E.; Cox, J.A.G. Clinical significance of manuka and medical-grade honey for antibiotic-resistant infections: A systematic review. Antibiotics 2020, 9, 766. [Google Scholar] [CrossRef]
- Stagos, D.; Soulitsiotis, N.; Tsadila, C.; Papaeconomou, S.; Arvanitis, C.; Ntontos, A.; Karkanta, F.; Adamou-Androulaki, S.; Petrotos, K.; Spandidos, D.A.; et al. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int. J. Mol. Med. 2018, 42, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Voidarou, C.; Alexopoulos, A.; Plessas, S.; Karapanou, A.; Mantzourani, I.; Stavropoulou, E.; Fotou, K.; Tzora, A.; Skoufos, I.; Bezirtzoglou, E. Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe 2011, 17, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Park, Y.K.; Koo, M.H.; Oliveira, I.M. Biochemical characteristics of osmophilic yeasts isolated from pollens and honey. Biosci. Biotechnol. Biochem. 1996, 60, 1872–1873. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32001L0110 (accessed on 12 June 2021).
- Axiotis, E.; Halabalaki, M.; Skaltsounis, L.A. An ethnobotanical study of medicinal plants in the Greek islands of north Aegean region. Front. Pharmacol. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Panitsa, M.; Snogerup, B.; Snogerup, S.; Tzanoudakis, D. Floristic investigation of Lemnos island (NE Aegean area, Greece). Willdenowia 2003, 33, 79–105. [Google Scholar] [CrossRef] [Green Version]
- Vica, M.L.; Glevitzky, M.; Dumitrel, G.A.; Junie, L.M.; Popa, M. Antibacterial activity of different natural honeys from Transylvania, Romania. J. Environ. Sci. Health B 2014, 49, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef] [Green Version]
- Basualdo, C.; Sgroy, V.; Finola, M.S.; Marioli, J.M. Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Vet. Microbiol. 2007, 124, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Morroni, G.; Alvarez-Suarez, J.M.; Brenciani, A.; Simoni, S.; Fioriti, S.; Pugnaloni, A.; Giampieri, F.; Mazzoni, L.; Gasparrini, M.; Marini, E.; et al. Comparison of the antimicrobial activities of four honeys from three countries (New Zealand, Cuba, and Kenya). Front. Microbiol. 2018, 9, 1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial activity of different blossom honeys: New Findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
s/n | Sample | Conc. | Gram− | Gram+ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. Enterit. | S. Typhim. | E. coli | V. parah. | P. aerugin. | S. aureus | S. epiderm. | E. faecal. | L. monoc. | B. cereus | |||
1 | Lemnos honey No. 1 | 25% (v/v) | 22.0 efghj ± 2.0 | 18.0 cd ± 0.0 | 22.0 efghj ± 0.0 | 22.0 efghj ± 1.6 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 17.0 DEF ± 4.2 | 19.3 FGH ± 5.8 | 19.3 FGH ± 1.2 | 19.5 FGH ± 0.7 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
2 | Lemnos honey No. 2 | 25% (v/v) | 21.3 efgh ± 3.1 | 19.0 cde ± 1.4 | 21.3 efgh ± 3.1 | 20.7 defg ± 3.1 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 19.0 FGH ± 1.4 | 14.5 CDE ± 5.5 | 18.7 FH ± 3.1 | 19.3 FH ± 3.2 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
3 | Lemnos honey No. 3 | 25% (v/v) | 20.7 defg ± 1.2 | 25.0 ijklm ± 4.2 | 21.3 efgh ± 1.2 | 23.0 ghij ± 2.6 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 17.5 DEF ± 3.5 | 9.5 B ± 3.5 | 19.3 FGH ± 1.2 | 18.3 F ± 2.1 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
4 | Lemnos honey No. 4 | 25% (v/v) | 24.0 hijk ± 3.5 | 20.0 cdefg ± 2.8 | 21.3 efgh ± 4.2 | 20.0 cdefg ± 2.8 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 19.7 FGH ± 4.5 | 18.3 FH ± 2.9 | 18.3 FH ± 3.5 | 18.0 EFH ± 2.8 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
5 | Lemnos honey No. 5 | 25% (v/v) | 23.0 fghijk ± 1.4 | 22.0 efghj ± 2.0 | 21.3 efgh ± 4.6 | 23.0 fghijk ± 1.4 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 20.0 FGHI ± 0.0 | 12.0 BC ± 3.0 | 21.0 FGHIJL ± 1.4 | 21.0 FGHIJL ± 1.4 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
6 | Lemnos honey No. 6 | 25% (v/v) | 20.0 cdef ± 2.0 | 23.0 fghijk ± 4.2 | 22.0 efghj ± 2.0 | 21.0 defgh ± 1.4 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 5.0 A ± 0.0 | 12.0 BC ± 4.2 | 20.0 FGHI ± 2.0 | 18.0 EFH ± 2.8 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
7 | Lemnos honey No. 7 | 25% (v/v) | 27.3 lmno ± 1.2 | 22.0 efghj ± 2.0 | 28.7 nop ± 1.2 | 26.0 klmn ± 2.0 | 5.0 a ± 0.0 | 30.0 op ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 22.7 GIJKL ± 2.3 | 21.0 FGHIJL ± 1.4 | 26.0 KMN ± 0.0 | 21.7 GHIJL ± 5.9 | 5.0 A ± 0.0 | 24.0 JKLM ± 3.5 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
8 | Lemnos honey No. 8 | 25% (v/v) | 22.0 efghj ± 2.0 | 24.7 ijkl ± 1.2 | 28.0 mno ± 0.0 | 26.0 klmn ± 2.0 | 5.0 a ± 0.0 | 30.0 op ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 20.0 FGHI ± 4.0 | 20.0 FGHI ± 0.0 | 24.7 KLM ± 1.2 | 23.3 IJKLM ± 3.1 | 5.0 A ± 0.0 | 26.7 MN ± 2.3 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
9 | Manuka honey | 25% (v/v) | 24.0 hijk ± 2.0 | 22.0 efghj ± 0.0 | 28.0 lmno ± 0.0 | 22.0 efghj ± 0.0 | 5.0 a ± 0.0 | 30.0 op ± 3.5 | 5.0 a ± 0.0 | 32.0 pq ± 5.7 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 21.0 FGHIJL ± 1.4 | 20.0 FGHI ± 0.0 | 25.0 KLMN ± 1.4 | 20.0 FGHI ± 0.0 | 5.0 A ± 0.0 | 25.3 KMN ± 4.2 | 5.0 A ± 0.0 | 29.0 N ± 4.2 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
10 | Glucose syrup (82% v/v) | 25% (v/v) | 11.5 b ± 6.4 | 12.0 b ± 4.2 | 16.5 c ± 2.1 | 21.3 efgh ± 1.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 | 5.0 a ± 0.0 |
12.5% (v/v) | 10.0 B ± 0.0 | 5.0 A ± 0.0 | 14.0 CD ± 3.5 | 18.7 FH ± 3.2 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | 5.0 A ± 0.0 | ||
11 | Kanamycin | 50 μg/μL | 35.8 rP ± 3.2 | 33.9 qO ± 2.9 | 35.7 rP ± 3.2 | 32.9 qO ± 3.1 | 13.3 bB ± 2.1 | 24.5 ikKM ± 2.1 | 33.7 qO ± 2.0 | 21.6 efghGIJ ± 1.0 | 25.1 iklKM ± 2.4 | 27.7 mnoN ± 1.6 |
s/n | Sample | MIC | MBC | ||
---|---|---|---|---|---|
S. Typhimurium | S. aureus | S. Typhimurium | S. aureus | ||
1 | Lemnos honey No. 1 | >25% | >25% | >25% | >25% |
2 | Lemnos honey No. 2 | 12.50% | 12.50% | 12.50% | 12.50% |
3 | Lemnos honey No. 3 | >25% | >25% | >25% | >25% |
4 | Lemnos honey No. 4 | 25% | 25% | 25% | 25% |
5 | Lemnos honey No. 5 | >25% | >25% | >25% | >25% |
6 | Lemnos honey No. 6 | >25% | 25% | >25% | 25% |
7 | Lemnos honey No. 7 | 25% | 25% | 25% | 25% |
8 | Lemnos honey No. 8 | 25% | 25% | 25% | 25% |
9 | Manuka honey | >25% | 25% | >25% | 25% |
10 | Glucose syrup (82% v/v) | >25% | >25% | >25% | >25% |
s/n | Sample | pH | aw | HMF (mg/kg) | Diastase (DN) | Dominant Pollen Grains Composition (%) |
---|---|---|---|---|---|---|
1 | Lemnos honey No. 1 | 3.55 a ± 0.00 | 0.574 | 25.71 | 15.45 | Antillis hermanniae 48.3%; Sinapis arvensis 12.1%; Melia azedarah 8.7%; Thymus capitatus 2.5% |
2 | Lemnos honey No. 2 | 3.61 b ± 0.02 | 0.587 | 28.56 | 14.61 | Antillis hermanniae 29.1%; Arctium lappa 13.7%; Thymus capitatus 4.2%; Melia azedarah 4.2%; Ferula communis 1/3% |
3 | Lemnos honey No. 3 | 3.60 b ± 0.03 | 0.568 | 25.08 | 15.90 | Echium vulgare 33.0%; Antillis hermanniae 23.0%; Pyrus amigdaliformis 11.0%; Melia azedarah 8.0; Arctium lappa 7.5%; Thymus capitatus 1.5% |
4 | Lemnos honey No. 4 | 3.62 b ± 0.02 | 0.574 | 19.22 | 18.79 | Antillis hermanniae 25.3%; Echium vulgare 18.4%; Sinapis arvensis 16.3%; Melia azedarah 8.6%; Arctium lappa 5.3%; Thymus capitatus 2.5% |
5 | Lemnos honey No. 5 | 3.60 b ± 0.02 | 0.597 | 20.74 | 20.11 | Rubus fruticosus 11.9%; Pyrus amigdaliformis 8.6%; Thymus capitatus 4.8%; Echium vulgare 3.3%; Melia azedarah 1.9%; Antillis hermanniae 1.0% |
6 | Lemnos honey No. 6 | 3.67 c ± 0.01 | 0.551 | 24.52 | 13.60 | Echium vulgare 18.3%; Antillis hermanniae 10.2%; Pyrus amigdaliformis 8.8%; Arctium lappa 7.3%; Rubus fruticosus 6.8%; Thymus capitatus 6.8%; Melia azedarah 5.9%; Silybum marianum 3.1% |
7 | Lemnos honey No. 7 | 3.62 b ± 0.03 | 0.570 | 10.20 | 32.09 | Thymus capitatus 23.3%; Melia azedarah 7.0%; Rubus fruticosus 7.0%; Antillis hermanniae 5.8%; Silybum marianum 3.5%; Hypericum perforatum 3.5% |
8 | Lemnos honey No. 8 | 3.63 b ± 0.02 | 0.604 | 15.47 | 28.55 | Echium vulgare 19.5%; Antillis hermanniae 13.7%; Rubus fruticosus 12.7%. Thymus capitatus 10.2%; Pyrus amigdaliformis 9.3% |
9 | Manuka honey | 4.26 d ± 0.03 | 0.627 | 16.42 | 19.03 | Leptospermum scoparium 75.8%, Trifolium repens, 14.2%, Lotus type 9.2% |
10 | Glucose syrup (82% v/v) | 4.85 e ± 0.03 | 0.731 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkoutzouvelidou, M.; Panos, G.; Xanthou, M.N.; Papachristoforou, A.; Giaouris, E. Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria. Foods 2021, 10, 1402. https://doi.org/10.3390/foods10061402
Gkoutzouvelidou M, Panos G, Xanthou MN, Papachristoforou A, Giaouris E. Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria. Foods. 2021; 10(6):1402. https://doi.org/10.3390/foods10061402
Chicago/Turabian StyleGkoutzouvelidou, Maria, Georgios Panos, Maria Nefertiti Xanthou, Alexandros Papachristoforou, and Efstathios Giaouris. 2021. "Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria" Foods 10, no. 6: 1402. https://doi.org/10.3390/foods10061402
APA StyleGkoutzouvelidou, M., Panos, G., Xanthou, M. N., Papachristoforou, A., & Giaouris, E. (2021). Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria. Foods, 10(6), 1402. https://doi.org/10.3390/foods10061402