Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review
Abstract
:1. Introduction
2. Methods
3. Botanical and Agronomical Diversity of Basil
- Kingdom: Plantae—plants
- Sub-kingdom: Tracheobionta—vascular plants
- Superdivision: Spermatophyta—seed plants
- Division: Magnoliophyta—flowering plants
- Class: Magnoliopsida—dicotyledons
- Sub-class: Ateridae
- Order: Lamiales
- Family: Lamiaceae—mint family
- Genus: Ocimum L.—basil
- Species: basilicum
- Binomial name: Ocimum basilicum—sweet basil
4. Morphological and Physical Characterization of Basil Seed
5. Biochemical and Nutritional Composition of Basil Seed
5.1. Carbohydrates
5.2. Proteins
5.3. Lipids
5.4. Minerals
6. Beneficial Properties of Basil Seeds
6.1. Antioxidant Activity
6.2. Antimicrobial Activity
6.3. Benefits of Fatty Acids from Basil Seeds
6.4. Uses of Basil Seeds in Traditional Medicine
6.5. Other Benefits
7. Uses of Basil Seeds and By-Products
7.1. Food Uses
7.2. Others Uses of Basil Seeds
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bilal, A.; Jahan, N.; Ahmed, A.; Bilal, S.N.; Habib, S.; Hajra, S. Phytochemical and pharmacological studies on Ocimum basilicum Linn-A review. Int. J. Curr. Res. Rev. 2012, 4, 73–83. [Google Scholar]
- Putievsky, E.; Galambosi, B. Production systems of sweet basil. In Basil: The Genus Ocimum; Hiltunen, R., Holm, Y., Eds.; Medicinal and Aromatic Plants—Industrial Profiles; Taylor and Francis: Amsterdam, The Netherlands, 2005; Volume 10, pp. 37–63. [Google Scholar]
- Nadeem, F.; Hanif, M.A.; Bhatti, I.A.; Jilani, M.I.; Al-Yahyai, R. Chapter 4: Basil. In Medicinal Plants of South Asia; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 47–62. [Google Scholar]
- Pushpangadan, P.; George, V. Basil. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 55–72. [Google Scholar]
- Khaliq, R.; Tita, O.; Sand, C. A comparative study between seeds of sweet basil and psyllium on the basis of proximate analysis. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2017, 17, 189–194. [Google Scholar]
- Rezapour, R.; Ghiassi Tarzi, B.; Movahed, S. The effect of adding sweet basil seed powder (Ocimum basilicum L.) on rheological properties and staling of baguette bread. J. Food Biosci. Technol. 2016, 6, 41–46. [Google Scholar]
- Hajmohammadi, A.; Pirouzifard, M.; Shahedi, M.; Alizadeh, M. Enrichment of a fruit-based beverage in dietary fiber using basil seed: Effect of Carboxymethyl cellulose and Gum Tragacanth on stability. LWT 2016, 74, 84–91. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Razavi, S.M.A. Functional properties and applications of basil seed gum: An overview. Food Hydrocoll. 2017, 73, 313–325. [Google Scholar] [CrossRef]
- Osano, J.P.; Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocoll. 2014, 37, 40–48. [Google Scholar] [CrossRef]
- Mathews, S.; Singhal, R.S.; Kulkarni, P.R. Ocimum basilicum: A new non-conventional source of fiber. Food Chem. 1993, 47, 399–401. [Google Scholar] [CrossRef]
- Kim, S.Y.; Hyeonbin, O.; Lee, P.; Kim, Y.-S. The quality characteristics, antioxidant activity, and sensory evaluation of reduced-fat yogurt and nonfat yogurt supplemented with basil seed gum as a fat substitute. J. Dairy Sci. 2020, 103, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Naji-Tabasi, S.; Razavi, S.M.A. New studies on basil (Ocimum bacilicum L.) seed gum: Part II—Emulsifying and foaming characterization. Carbohydr. Polym. 2016, 149, 140–150. [Google Scholar] [CrossRef]
- Gajendiran, A.; Abraham, J.; Thangaraman, V.; Thangamani, S.; Ravi, D. Antimicrobial, antioxidant and anticancer screening of Ocimum basilicum seeds. Bull. Pharm. Res. 2016, 6, 114–119. [Google Scholar] [CrossRef]
- Imam, H.; Lian, S.; Kasimu, R.; Rakhmanberdyeva, R.K.; Aisa, H.A. Extraction of an antidiabetic polysaccharide from seeds of Ocimum basilicum and determination of the monosaccharide composition by precolumn high-efficiency capillary electrophoresisa. Chem. Nat. Compd. 2012, 48, 653–654. [Google Scholar] [CrossRef]
- Sharma, V.; Chanda, D. Ocimum: The holy basil against cardiac anomalies. In The Ocimum Genome; Shasany, A.K., Kole, C., Eds.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2018; pp. 25–36. [Google Scholar]
- Simon, J.E.; Morales, M.R.; Phippen, W.B.; Vieira, R.F.; Hao, Z. Basil: A source of aroma compounds and a popular culinary and ornamental herb. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 499–505. [Google Scholar]
- Srivastava, A.; Gupta, A.; Sarkar, S.; Lal, R.; Yadav, A.; Gupta, P.; Chanotiya, C. Genetic and chemotypic variability in basil (Ocimum basilicum L.) germplasm towards future exploitation. Ind. Crop. Prod. 2018, 112, 815–820. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Kumar, S.; Sharma, R.S. Ocimum as a promising commercial crop. In The Ocimum Genome, Shasany; Shasany, A.K., Kole, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–7. [Google Scholar]
- A Duke, J.; Hurst, S.J. Ecological amplitudes of herbs, spices, and medicinal plants. Lloydia 1975, 38, 404–410. [Google Scholar] [PubMed]
- Paton, A.; Harley, M.R.; Harley, M.M. Ocimum: An overview of classification and relationships. In Basil: The Genus Ocimum; Hiltunen, R., Holm, Y., Hardman, R., Eds.; Medicinal and Aromatic Plants—Industrial Profiles; Harwood Academic Publishers: Amsterdam, The Netherlands, 2006; Volume 10, pp. 1–36. [Google Scholar]
- Koshla, M.K. Study of inter-relationship, phylogeny and evolutionary tendencies in genus Ocimum. Indian J. Genet. 1995, 55, 71–83. [Google Scholar]
- United Stated Department of Agriculture. The PLANTS Database. Available online: http://plants.usda.gov (accessed on 10 September 2020).
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Darrah, H. The Cultivated Basils; Buckeye Print. Co.: Independence, MO, USA, 1980. [Google Scholar]
- Darrah, H. Investigation of the cultivars of the basils (Ocimum). Econ. Bot. 1974, 28, 63–67. [Google Scholar] [CrossRef]
- Bahl, J.R.; Singh, A.K.; Lal, R.K.; Gupta, A.K. High-Yielding Improved Varieties of Medicinal and Aromatic Crops for Enhanced Income. In New Age Herbals: Resource, Quality and Pharmacognosy; Singh, B., Peter, K.V., Eds.; Springer Singapore: Singapore, 2018; pp. 247–265. [Google Scholar]
- Razavi, S.M.A.; Mortazavi, S.A.; Matia-Merino, L.; Hosseini-Parvar, S.H.; Motamedzadegan, A.; Khanipour, E. Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). Int. J. Food Sci. Technol. 2009, 44, 1755–1762. [Google Scholar] [CrossRef]
- Uematsu, Y.; Ogata, F.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Removing Sr(II) and Cs(I) from the aqueous phase using basil seed and elucidating the adsorption mechanism. Sustainability 2020, 12, 2895. [Google Scholar] [CrossRef] [Green Version]
- Kišgeci, J.; Jelačic, S.; Beatovic, D.; Levic, J.; Moravčevic, D.; Zaric, V.; Gojkovic, L. Evaluation of basil seed (Ocimum basilicum L.). Acta Fytotech. Zootech. 2011, 14, 41–44. [Google Scholar]
- Choi, J.-Y.; Heo, S.; Bae, S.; Kim, J.; Moon, K.-D. Discriminating the origin of basil seeds (Ocimum basilicum L.) using hyperspectral imaging analysis. LWT 2020, 118, 108715. [Google Scholar] [CrossRef]
- Hosseini-Parvar, S.; Matia-Merino, L.; Goh, K.K.; Razavi, S.; Mortazavi, S.A. Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. J. Food Eng. 2010, 101, 236–243. [Google Scholar] [CrossRef]
- Razavi, S.M.; Bostan, A.; Rezaie, M. Image processing and physico-mechanical properties of basil seed (Ocimum basilicum). J. Food Process. Eng. 2010, 33, 51–64. [Google Scholar] [CrossRef]
- Mostafavi, S.; Asadi-Gharneh, H.A.; Miransari, M. The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chem. 2019, 276, 700–706. [Google Scholar] [CrossRef]
- Munir, M.; Qayyum, A.; Raza, S.; Siddiqui, N.R.; Mumtaz, A.; Safdar, N.; Shible, S.; Afzal, S.; Bashir, S. Nutritional assessment of basil seed and its utilization in development of value added beverage. Pak. J. Agric. Res. 2017, 30, 266–271. [Google Scholar] [CrossRef]
- Nazir, S.; Wani, I.A.; Masoodi, F.A. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. J. Adv. Res. 2017, 8, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Safraz, Z.; Anjum, F.; Khan, M.; Arshad, M.; Nadeem, M. Characterization of Basil (Ocimum basilicum L.) parts for antioxidant potential. Afr. J. Food Sci. Technol. 2011, 2, 204–213. [Google Scholar]
- Salehi, F.; Kashaninejad, M.; Tadayyon, A.; Arabameri, F. Modeling of extraction process of crude polysaccharides from Basil seeds (Ocimum basilicum L.) as affected by process variables. J. Food Sci. Technol. 2014, 52, 5220–5227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahmandfar, R.; Naji-Tabasi, S. Influence of different salts on rheological and functional properties of basil (Ocimum bacilicum L.) seed gum. Int. J. Biol. Macromol. 2020, 149, 101–107. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Amid, B.T. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res. Int. 2012, 46, 387–398. [Google Scholar] [CrossRef]
- Razavi, S.M.; Moghaddam, T.M.; Emadzadeh, B.; Salehi, F. Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocoll. 2012, 29, 205–210. [Google Scholar] [CrossRef]
- Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Effect of basil seed gum (BSG) on textural, rheological and microstructural properties of model processed cheese. Food Hydrocoll. 2015, 43, 557–567. [Google Scholar] [CrossRef]
- Idris, A.A.; Nour, A.H.; Ali, M.M.; Erwa, I.Y.; Ishag, O.A.O.; Nour, A.H. Physicochemical properties and fatty acid composition of Ocimum basilicum L. seed oil. Asian J. Phys. Chem. Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hastreiter, A.A.; Dos Santos, G.G.; Santos, E.W.C.; Makiyama, E.N.; Borelli, P.; Fock, R.A. Protein malnutrition impairs bone marrow endothelial cells affecting hematopoiesis. Clin. Nutr. 2020, 39, 1551–1559. [Google Scholar] [CrossRef]
- Food and Nutrition Board. Nutrient Recommendations: Dietary Reference Intakes (DRI). DRI Table: Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly (accessed on 25 November 2020).
- Karnchanatat, A.; Semanit, K.; Noitang, S.; Piapukiew, J. Comparative study on antioxidative activity of the seeds of hoary basil (Ocimum basilicum) protein hydrolysates produced by papain, pepsin and Protease G6 (alcalase). In Proceedings of the 5th International Conference on Natural Products for Health and Beauty, Phuket, Thailand, 6–8 May 2014; pp. 83–89. [Google Scholar]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Ocimum tenuiflorum seeds and Salvia hispanica seeds: Mineral and amino acid composition, physical properties, and use in gluten-free bread. CyTA J. Food 2019, 17, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Ghaleshahi, A.; Ezzatpanah, H.; Rajabzadeh, G.; Ghavami, M. Comparison and analysis characteristics of flax, perilla and basil seed oils cultivated in Iran. J. Food Sci. Technol. Mysore 2020, 57, 1258–1268. [Google Scholar] [CrossRef]
- Choo, W.-S.; Birch, J.; Dufour, J.-P. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J. Food Compos. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind. Crop. Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Zhang, S.-B.; Zhang, Y.-P.; Kitajima, K. Effects of phylogeny and climate on seed oil fatty acid composition across 747 plant species in China. Ind. Crop. Prod. 2015, 63, 1–8. [Google Scholar] [CrossRef]
- Angers, P.; Morales, M.R.; Simon, J.E. Fatty acid variation in seed oil among Ocimum species. J. Am. Oil Chem. Soc. 1996, 73, 393–395. [Google Scholar] [CrossRef]
- Nour, A.H.; Elhussein, S.A.; Osman, N. Characterization and chemical composition of the fixed oil of fourteen basil (Ocimum basilicum L.) accessions grown in Sudan. Int. J. Chem. Technol. 2009, 1, 52–58. [Google Scholar] [CrossRef]
- Kakaraparthi, P.S.; Srinivas, K.V.N.S.; Kumar, J.K.; Kumar, A.N.; Kumar, A. Composition of herb and seed oil and antimicrobial activity of the essential oil of two varieties of Ocimum basilicum harvested at short time. J. Plant Dev. 2015, 22, 59–76. [Google Scholar]
- Parashar, A. Lipid content and fatty acid composition of seed oils from six pomegranate cultivars. Int. J. Fruit Sci. 2010, 10, 425–430. [Google Scholar] [CrossRef]
- Yu, L.; Choe, U.; Li, Y.; Zhang, Y. Oils from fruit, spice, and herb seeds. In Bailey’s Industrial Oil and Fat Products, 7th ed.; Shahidi, F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 3, pp. 313–348. [Google Scholar]
- Agunbiade, S.; Ojezele, M.; Alao, O. Evaluation of the nutritional, phytochemical compositions and likely medicinal benefits of Vernomia amygdalina, Talinum triangulare and Ocimum basilicum leafy-vegetables. Adv. Biol. Res. 2015, 9, 447–452. [Google Scholar]
- Özcan, M. Mineral contents of some plants used as condiments in Turkey. Food Chem. 2004, 84, 437–440. [Google Scholar] [CrossRef]
- Pachkore, G.; Dhale, D. Phytochemicals, vitamins and minerals content of three Ocimum species. IJSID 2012, 2, 201–207. [Google Scholar]
- Karaköy, T.; Erdem, H.; Baloch, F.S.; Toklu, F.; Eker, S.; Kilian, B.; Özkan, H. Diversity of macro- and micronutrients in the seeds of lentil landraces. Sci. World J. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef]
- Costello, R.; Wallace, T.C.; Rosanoff, A. Magnesium. Adv. Nutr. 2016, 7, 199–201. [Google Scholar] [CrossRef]
- Capozzi, A.; Scambia, G.; Lello, S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020, 140, 55–63. [Google Scholar] [CrossRef]
- Shin, D.; Joh, H.-K.; Kim, K.H.; Park, S.M. Benefits of potassium intake on metabolic syndrome: The fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Atherosclerosis 2013, 230, 80–85. [Google Scholar] [CrossRef]
- Guerrero, J.G.; Martınez, J.G.; Isasa, M.T. Mineral nutrient composition of edible wild plants. J. Food Compos. Anal. 1998, 11, 322–328. [Google Scholar] [CrossRef]
- Özcan, M.; Akgül, A. Influence of species, harvest date and size on composition of capers (Capparis spp.) flower buds. Food/Nahrung 1998, 42, 102–105. [Google Scholar] [CrossRef]
- Boudet, A.-M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Mabood, F.; Gilani, S.A.; Hussain, J.; Alshidani, S.; Alghawi, S.; Albroumi, M.; Alameri, S.; Jabeen, F.; Hussain, Z.; Al-Harrasi, A.; et al. New design of experiment combined with UV–Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 14–18. [Google Scholar] [CrossRef]
- Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003, 83, 547–550. [Google Scholar] [CrossRef]
- Mezeyová, I.; Hegedűsová, A.; Hegedűs, O.; Vargová, A.; Timoracká, M.; Šlosár, M.; Andrejiová, A.; Juríková, T.; Mezey, J. Basil seeds as a source of antioxidants affected by fortification with selenium. Folia Hortic. 2020, 32, 11–20. [Google Scholar] [CrossRef]
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef]
- Cherian, R. Health benefits of basil seeds. Int. J. Sci. Res. Sci. Eng. Technol. 2019, 511–515. [Google Scholar] [CrossRef]
- Afifah, B.S.S.N.H.; Gan, C.-Y. Antioxidative and Amylase Inhibitor Peptides from Basil Seeds. Int. J. Pept. Res. Ther. 2016, 22, 3–10. [Google Scholar] [CrossRef]
- Singh, S.; Malhotra, M.; Majumdar, D.K. Antibacterial activity of Ocimum sanctum L. fixed oil. Indian J. Exp. Biol. 2005, 43, 835–837. [Google Scholar] [PubMed]
- Majdinasab, M.; Niakousari, M.; Shaghaghian, S.; Dehghani, H. Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf-life extension of refrigerated chicken fillets. Food Hydrocoll. 2020, 108, 106011. [Google Scholar] [CrossRef]
- Singh, S.; Nair, V.; Jain, S.; Gupta, Y.K. Evaluation of anti-inflammatory activity of plant lipids containing alpha-linolenic acid. Indian J. Exp. Biol. 2008, 46, 453–456. [Google Scholar]
- Singh, S.; Agrawal, S.S. Anti-asthmatic and anti-inflammatory activity of Ocimum sanctum. Int. J. Pharmacogn. 1991, 29, 306–310. [Google Scholar] [CrossRef]
- Singh, S.; Majumdar, D.K. Anti-inflammatory and antipyretic activities of Ocimum sanctum fixed oil. Int. J. Pharmacogn. 1995, 33, 288–292. [Google Scholar] [CrossRef]
- Singh, S.; Majumdar, D.K. Analgesic activity of Ocimum sanctum and its possible mechanism of action. Int. J. Pharmacogn. 1995, 33, 188–192. [Google Scholar] [CrossRef]
- Singh, S.; Majumdar, D.K. Effect of fixed oil of Ocimum sanctum against experimentally induced arthritis and joint edema in laboratory animals. Int. J. Pharmacogn. 1996, 34, 218–222. [Google Scholar] [CrossRef]
- Singh, S.; Majumdar, D.K. Evaluation of the gastric antiulcer activity of fixed oil of Ocimum sanctum (Holy Basil). J. Ethnopharmacol. 1999, 65, 13–19. [Google Scholar] [CrossRef]
- Gupta, S.; Mediratta, P.K.; Singh, S.; Sharma, K.K.; Shukla, R. Antidiabetic, antihypercholesterolaemic and antioxidant effect of Ocimum sanctum (Linn) seed oil. Indian J. Exp. Biol. 2006, 44, 300–304. [Google Scholar]
- Singh, S.; Rehan, H.M.; Majumdar, D.K. Effect of Ocimum sanctum fixed oil on blood pressure, blood clotting time and pentobarbitone-induced sleeping time. J. Ethnopharmacol. 2001, 78, 139–143. [Google Scholar] [CrossRef]
- Prakash, J.; Gupta, S.K. Chemopreventive activity of Ocimum sanctum seed oil. J. Ethnopharmacol. 2000, 72, 29–34. [Google Scholar] [CrossRef]
- Singh, S.; Taneja, M.; Majumdar, D.K. Biological activities of Ocimum sanctum L. fixed oil: An overview. Indian J. Exp. Biol. 2007, 45, 403–412. [Google Scholar]
- Singh, N.; Verma, P.; Pandey, B.; Bhalla, M. Therapeutic potential of Ocimum sanctum in prevention and treatment of cancer and exposure to radiation: An overview. Int. J. Pharm. Sci. Drug Res. 2012, 4, 97–104. [Google Scholar]
- Pandey, G.; Madhuri, S. Pharmacological activities of Ocimum sanctum (tulsi): A review. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 61–66. [Google Scholar]
- Vieira, R.F.; Simon, J.E. Chemical Characterization of basil (Ocimum spp.) found in the markets and used in traditional medicine in Brazil. Econ. Bot. 2000, 54, 207–216. [Google Scholar] [CrossRef]
- Dastur, J. Medicinal Plants of India and Pakistan; DB Taraporevala Sons and Co. Private ltd.: Bombay, India, 1962; pp. 1–262. [Google Scholar]
- Puccinelli, M.; Malorgio, F.; Rosellini, I.; Pezzarossa, B. Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. J. Sci. Food Agric. 2019, 99, 5601–5605. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Chin, K.B. Physical Properties and structural changes of myofibrillar protein gels prepared with basil seed gum at different salt levels and application to sausages. Foods 2020, 9, 702. [Google Scholar] [CrossRef]
- Song, K.Y.; Joung, K.Y.; Shin, S.Y.; Kim, Y.S. Effects of basil (Ocimum basilicum L.) seed mucilage substituted for fat source in sponge cake: Physicochemical, structural and retrogradation properties. Ital. J. Food Sci. 2017, 29, 681–696. [Google Scholar]
- Bahram Parvar, M.; Razavi, S.M.A.; Mazaheri Tehrani, M. Optimising the ice cream formulation using basil seed gum (Ocimum basilicum L.) as a novel stabiliser to deliver improved processing quality. Int. J. Food Sci. Technol. 2012, 47, 2655–2661. [Google Scholar] [CrossRef]
- Song, K.Y.; Kim, Y.S. Effect of mucilage extracted from Basil (Ocimum basilicum L.) seeds on physicochemical and rheological properties in low-fat milk protein gel. J. Food Process. Preserv. 2019, 43, e14191. [Google Scholar] [CrossRef]
- Israr, T.; Rakha, A.; Rashid, S.; Shehzad, A.; Ahmed, W.; Sohail, M. Effect of basil seed gum on physico-chemical and rheological properties of bread. J. Food Process. Preserv. 2017, 41, e13128. [Google Scholar] [CrossRef]
- Thessrimuang, N.; Prachayawarakorn, J. Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage. J. Sci. Food. Agric. 2019, 99, 5508–5515. [Google Scholar] [CrossRef]
- Khazaei, N.; Esmaiili, M.; Emam-Djomeh, Z. Application of active edible coatings made from basil seed gum and thymol for quality maintenance of shrimp during cold storage. J. Sci. Food. Agric. 2017, 97, 1837–1845. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.; Karjikar, M.; Nair, J. Biosorption of copper using mucilaginous seeds of Ocimum basilicum. Acta Biol. Indica 2012, 1, 113–119. [Google Scholar]
- Chakraborty, D.; Maji, S.; Bandyopadhyay, A.; Basu, S. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol. 2007, 98, 2949–2952. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, B.; Arzani, K.; Souri, M.K.; Barzegar, M. Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Ind. Crop. Prod. 2019, 138. [Google Scholar] [CrossRef]
- Petrescu, I.; Sarac, I.; Bonciu, E.; Madosa, E.; Rosculete, C.A.; Butnariu, M. Study regarding the cytotoxic potential of cadmium and zinc in meristematic tissues of basil (Ocimum basilicum L.). Caryologia Int. J. Cytol. Cytosystematics Cytogenet. 2020, 73. [Google Scholar] [CrossRef]
- Dinu, C.; Vasile, G.-G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.-M. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Kunwar, G.; Tewari, G.; Pande, C.; Singh, C.; Kharkwal, G.C. Family lamiaceae: Phytoremediation aspects. J. Indian Chem. Soc. 2014, 91, 107–112. [Google Scholar]
Origin | Length (mm) | Width (mm) | Thickness (mm) | Species | Reference |
---|---|---|---|---|---|
Iran | 3.11 | 1.82 | 1.34 | O. basilicum | [31] |
Iran | 3.22 | 1.84 | 1.37 | O. basilicum | [32] |
Serbia | 2.31–2.64 | 1.30–1.54 | 0.99–1.14 | O. basilicum | [29] |
India | 1.97 | 1.06 | ND | O. basilicum | [10] |
References | [10] | [35] | [27] | [6] | [7] | [36] | [34] | [5] | [30] | |
---|---|---|---|---|---|---|---|---|---|---|
Component | India | India | Iran | Iran | Iran | Pakistan | Pakistan | Romania | Various Countries ** | |
Origin | ||||||||||
Moisture | 9.6 | 9.4 | 5.02–6.24 | 4.0 | ND | 5.2 | 9.2 | 7.0 | 5.9–7.8 | |
Protein | 14.8 | 10 | 17.9–20.16 | 20.4 | 22.5 | 11.4 | 17.3 | 15.4 | ND | |
Lipid | 13.8 | 33.0 | 22.0–24.5 | 16.6 | ND | 20.2 | 9.7 | 29.0 | 9.5–19.6 | |
Ash | 7.7 | 5.6 | 4.7–5.5 | 8.9 | 5.11 | 6.3 | 5.8 | 6.5 | ND | |
Carbohydrate | 63.8 | 43.9 | 47.2–50.1 | 40.1 * | ND | 56.9 * | 58 * | 47.0 | ND | |
Fiber | 22.6 | ND | ND | 26.2 | ND | ND | 7.11 | ND | ND |
Reference | [45] | [46] |
---|---|---|
Amino Acids | Hoary Basil (O. basilicum) | Holy Basil (O. tenuiflorum) |
Aspartic acid | 4.61 | 1.45 |
Serine | 3.58 | 1.00 |
Glutamic acid | 10.55 | 3.16 |
Glycine | 3.12 | 0.89 |
Histidine | 1.70 | 0.65 |
Arginine | 8.48 | 2.05 |
Threonine | 2.16 | 0.60 |
Alanine | 2.65 | 0.80 |
Proline | 2.25 | 0.66 |
Tyrosine | 2.08 | 0.52 |
Valine | 2.63 | 0.77 |
Lysine | 1.56 | 0.54 |
Isoleucine | 1.91 | 0.54 |
Leucine | 4.02 | 1.13 |
Phenylalanine | 3.49 | 0.93 |
Cysteic acid | ND | 0.58 |
Methionine sulfone | ND | 0.90 |
Tryptophan | ND | 0.96 |
References | [51] | [52] | [53] | [47] | [33] | [30] | [42] | |
---|---|---|---|---|---|---|---|---|
Fatty Acids | Canada | Various Countries * | India | Iran | Iran | Various Countries ** | Sudan | |
Origin | ||||||||
Palmitic acid (C16:0) | 6.8–8.8 | 5–13 | 8.0–9.2 | 4.9 | 6.23–10.16 | 5.6–7.7 | 13.38 | |
Stearic acid (C18:0) | 2.0–2.8 | 2–3 | 3.6–3.8 | 2.5 | 2.97–4.9 | 2.2–4.4 | 6.6 | |
Oleic acid (C18:19) | 8.7–11.6 | 6–10 | 10.3–12.3 | 7.55 | 6.2–19.9 | 5.6–19.4 | 4.0 | |
Linoleic acid (C18:2n6c) | 18.3–21.7 | 12–32 | 23.6–26 | 20.2 | 16.7–24.9 | 18.6–85.6 | 32.2 | |
Linolenic acid (C18:3n3) | 57.4–62.5 | 49–75 | 49.3–52.4 | 63.8 | 42.4–61.9 | 0.3–66.0 | 44.0 |
Reference | [34] | [46] |
---|---|---|
Minerals | Ocimum basilicum | Ocimum tenuiflorum |
Fe | 2.27 | 8.73 |
Zn | 1.58 | 5.52 |
Mg | 31.55 | 293.0 |
Mn | 1.01 | 1.95 |
K | ND | 481.0 |
Na | ND | 2.01 |
Ca | ND | 636.0 |
Basil Species Variety | Origin | Solvent (Extraction) | Method AOA | Total AOA | Method TPC | TPC (µg GA/g) | References | |
---|---|---|---|---|---|---|---|---|
% | (mmol Trolox/Kg) | |||||||
O. tenuiflorum “Tulsi” | Slovakia | methanol | DPPH | 968.49 | 26.67 | Folin–Ciocalteu | 1506.55 | [69] |
O. basilicum “Cinamonette” | Slovakia | methanol | DPPH | 850.49 | 26.97 | Folin–Ciocalteu | 1567.60 | [69] |
O. basilicum “Dark Green” | Slovakia | methanol | DPPH | 869.09 | 26.26 | Folin–Ciocalteu | 1681.75 | [69] |
O. basilicum L. | Oman | methanol | - | - | - | Folin–Ciocalteu | 7857.6 | [67] |
O. basilicum L. | Iran | acetone | ABTS | 10.8–35.7 | Folin–Ciocalteu | 22,900–65,500 | [68] | |
O. basilicum L. | Pakistan | ethanol | - | - | - | Folin–Ciocalteu | 63,780 | [34] |
O. basilicum L. | Pakistan | n-hexane | DPPH | 57.35 | - | Folin–Ciocalteu | 4890 | [36] |
O. basilicum L | Pakistan | methanol | DPPH | 84.59 | - | Folin–Ciocalteu | 5670 | [36] |
O. basilicum L. | India | petroleum ether | DPPH | 73.85 | - | - | - | [13] |
O. basilicum L. | India | methanol | DPPH | 34.20 | - | - | - | [13] |
Component/Constituents | Biological Activity | Type of Study | Doses | Results | Reference | |
---|---|---|---|---|---|---|
Fixed oil (Petroleum ether extract of basil seeds) | α-linolenic acid fatty acids | Anti-inflammatory | Models of carrageenan, leukotriene, and arachidonic acid-induced paw edema in rats. | 1.0, 2.0, and 3.0 mL/kg of fixed oil | Significant inhibition of paw edema with 3.0 mL/kg dose. Higher α-linolenic acid content produced a greater inhibition of paw edema. | [75] |
Anti-asthmatic | Histamine-induced bronchospasm in guinea pigs. | 0.2 mL and 0.5 mL/kg of fixed oil | Maximum activity observed at 0.5 mL/kg dose of fixed oil for histamine- and acetylcholine-induced bronchospasm. | [76] | ||
Acetylcholine-induced bronchospasm in guinea pigs. | 0.5 mL/kg of fixed oil | |||||
Anti-inflammatory | Induction of paw edema in rats, viz. carrageenan, serotonin, histamine and prostaglandins (PGE2). | 0.1 mL/100 g of fixed oil | Fixed oil inhibited hind paw edema induced in rats by treatment with carrageenan, serotonin, histamine, and PGE2. | |||
Antipyretic | Testing it against typhoid-paratyphoid fever A/B vaccine induced pyrexia in rats. | 1.0, 2.0, and 3.0 mL/kg of fixed oil | At doses of 1.0 mL/kg or higher, the oil exhibited a defined antipyretic property. The activity at a dose of 3.0 mL/kg was similar to that of aspirin. | [77] | ||
Analgesic | Methods of tail flapping, tail clip, tail dip, and twisting induced by Acetic acid. | 1.0, 2.0, and 3.0 mL/kg of fixed oil | Using an acetic acid-induced writhing method, the oil showed significant inhibition in a dose-dependent manner suggesting its possible mechanism related to the peripheral system. | [78] | ||
Anti-arthritics | Induction, by injecting a Mycobacterium tuberculosis suspension and by injecting a formaldehyde solution into rats. | 1.0, 2.0, and 3.0 mL/kg of fixed oil | The fixed oil presented greater anti-arthritis activity at a dose of 3.0 mL/kg, which was similar to the effect of aspirin. | [79] | ||
Antiulcer | Aspirin-, indomethacin-, alcohol-, histamine-, reserpine-, serotonin-, and stress-induced ulceration in rats and guinea pigs. | 1.0, 2.0, and 3.0 mL/kg of fixed oil | The fixed oil possesses greater antiulcer activity at a dose of 3.0 mL/kg | [80] | ||
Antihyperlipidemic and antioxidant | Application of a diet together with fixed oil and cholesterol in rabbits. | 0.8 g/kg of fixed oil | The fixed oil presented a hypocholesterolaemic effect when it was added to the diet for five weeks. | [81] | ||
Antimicrobial | Determination by paper disc diffusion method. | Fixed oil has good antibacterial activity against S. aureus, B. pumilus and P. aeruginosa, where S. aureus was the most sensitive organism (zone of inhibition 0.8 mm). | [83] | |||
Anticoagulant | Intraperitoneal application of fixed oil to rats. | 3.0 mL/kg of fixed oil | Fixed oil increased the blood-clotting time and the percentage increase was comparable to aspirin. | [82] | ||
Anticancer | 20-Methylcholanthrene-induced fibrosarcoma tumors injected subcutaneously in the thigh region of mice. | 100 mL/kg of fixed oil | The fixed oil presented chemopreventive efficacy at a dose of 100 mL/kg, which was comparable to the effect of Vitamin E | [83] | ||
Phytochemical (petroleum ether extract of basil seeds) | Alkaloids, flavonoids, carbohydrates, tannins, terpenoids | Antioxidant | DPPH radical scavenging assay | 73.85% of the antioxidant capacity of O. basilicum seeds results from the contribution of phenolic compounds. | [13] | |
Anticancer | MTT (3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium Bromide) assay. | The cell viability percentage showed a maximum activity at a lower concentration, i.e., 12.5 μg/mL. | ||||
Antimicrobial | Determination by using the well diffusion method. | Highest zone of inhibition was observed at 100 mg/mL concentration against P. aeruginosa. | ||||
Water soluble polysaccharides (aqueous extracts) | Glucose, galacturonic acid, rhamnose, mannose, arabinose, glucuronic acid, and galactose | Antidiabetic | Measuring the inhibitory activity for protein tyrosine phosphatase 1B in vitro. | Inhibitory activity for protein tyrosine phosphatase 1B IC50 = 8.20 µg/mL | [14] | |
Peptides (Hydrolyzed and non-hydrolyzed extracts) | P1 (ACGNLPRMC) P2 (ACNLPRMC) P3 (AGCGCEAMFAGA) | Antioxidant activity α-amylase inhibitory activity. | DPPH and FRAP methodPotential α-amylases inhibitor peptides | Peptides can be used as therapeutic agents to reduce the risk of oxidative stress and to prevent type-2 diabetes. | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón Bravo, H.; Vera Céspedes, N.; Zura-Bravo, L.; Muñoz, L.A. Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review. Foods 2021, 10, 1467. https://doi.org/10.3390/foods10071467
Calderón Bravo H, Vera Céspedes N, Zura-Bravo L, Muñoz LA. Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review. Foods. 2021; 10(7):1467. https://doi.org/10.3390/foods10071467
Chicago/Turabian StyleCalderón Bravo, Héctor, Natalia Vera Céspedes, Liliana Zura-Bravo, and Loreto A. Muñoz. 2021. "Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review" Foods 10, no. 7: 1467. https://doi.org/10.3390/foods10071467
APA StyleCalderón Bravo, H., Vera Céspedes, N., Zura-Bravo, L., & Muñoz, L. A. (2021). Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review. Foods, 10(7), 1467. https://doi.org/10.3390/foods10071467