Application of Low Temperature during the Malaxation Phase of Virgin Olive Oil Mechanical Extraction Processes of Three Different Italian Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. VOO Mechanical Extraction Process
- Control (C-VOO) heat exchanger at 25 °C, malaxer at 25 °C for 30 min;
- Test 1 (T1-VOO) heat exchanger at 18 °C, malaxer at 25 °C for 30 min;
- Test 2 (T2-VOO) heat exchanger at 18 °C, malaxer at 18 °C for 30 min;
- Test 3 (T3-VOO) heat exchanger at 18 °C, malaxer at 18 °C for 15 min + 15 min at 25 °C.
2.3. VOO Chemical Analysis
2.3.1. Legal Quality Parameters
2.3.2. Phenolic Compounds
2.3.3. Volatile Compounds
2.4. Statistical Analysis
3. Results and Discussion
3.1. Test 1―Use of Low Temperature after Crushing Phase
3.2. Tests 2 and 3―Use of Low Temperature during the Malaxation Phase
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical Strategies to Increase Nutritional and Sensory Quality of Virgin Olive Oil by Modulating the Endogenous Enzyme Activities. Compr. Rev. Food Sci. Food Saf. 2014, 13, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Luaces, P.; Sanz, C.; Pérez, A.G. Thermal Stability of Lipoxygenase and Hydroperoxide Lyase from Olive Fruit and Repercussion on Olive Oil Aroma Biosynthesis. J. Agric. Food Chem. 2007, 55, 6309–6313. [Google Scholar] [CrossRef] [PubMed]
- Marx, Í.M.; Rodrigues, N.; Veloso, A.C.; Casal, S.; Pereira, J.A.; Peres, A.M. Effect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. LWT 2021, 137, 110426. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four Italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef] [PubMed]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Urbani, S.; Selvaggini, R.; Servili, M. The influence of the malaxation temperature on the activity of polyphenoloxidase and peroxidase and on the phenolic composition of virgin olive oil. Food Chem. 2013, 136, 975–983. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcala, S.; De Torres, A.; Moya, M.; Espinola, J.M.; Espinola, F. Fresh and aromatic virgin olive oil obtained from Arbequina, Koroneiki, and Arbosana cultivars. Molecules 2019, 24, 3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Sordini, B.; Servili, M. Flash Thermal Conditioning of Olive Pastes during the Oil Mechanical Extraction Process: Cultivar Impact on the Phenolic and Volatile Composition of Virgin Olive Oil. J. Agric. Food Chem. 2015, 63, 6066–6074. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Servili, M. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT 2018, 87, 523–528. [Google Scholar] [CrossRef]
- Miho, H.; Moral, J.; López-González, M.A.; Díez, C.M.; Priego-Capote, F. The phenolic profile of virgin olive oil is influenced by malaxation conditions and determines the oxidative stability. Food Chem. 2020, 314, 126183. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Influence of malaxation temperature and time on the quality of virgin olive oils. Food Chem. 2001, 72, 19–28. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Synthesis of Volatile Compounds of Virgin Olive Oil Is Limited by the Lipoxygenase Activity Load during the Oil Extraction Process. J. Agric. Food Chem. 2012, 60, 812–822. [Google Scholar] [CrossRef]
- Ridolfi, M.; Terenziani, S.; Patumi, M.; Fontanazza, G. Characterization of the Lipoxygenases in Some Olive Cultivars and Determination of Their Role in Volatile Compounds Formation. J. Agric. Food Chem. 2002, 50, 835–839. [Google Scholar] [CrossRef]
- Salas, J.J.; Sanchez, J. The decrease of virgin olive oil flavor produced by high malaxation temperature is due to inactivation of hydroperoxide lyase. J. Agric. Food Chem. 1999, 47, 809–812. [Google Scholar] [CrossRef]
- Luaces, P.; Pérez, A.G.; Sanz, C. Effect of the blanching process and olive fruit temperature at milling on the biosynthesis of olive oil aroma. Eur. Food Res. Technol. 2006, 224, 11–17. [Google Scholar] [CrossRef]
- Padilla, M.N.; Martínez-Rivas, J.M.; Pérez, A.G.; Sanz, C. Thermal Inactivation Kinetics of Recombinant Proteins of the Lipoxygenase Pathway Related to the Synthesis of Virgin Olive Oil Volatile Compounds. J. Agric. Food Chem. 2012, 60, 6477–6482. [Google Scholar] [CrossRef] [PubMed]
- Dourou, A.-M.; Brizzolara, S.; Meoni, G.; Tenori, L.; Famiani, F.; Luchinat, C.; Tonutti, P. The inner temperature of the olives (cv. Leccino) before processing affects the volatile profile and the composition of the oil. Food Res. Int. 2020, 129, 108861. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Di Maio, I.; Sordini, B.; Servili, M. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality. Food Chem. 2017, 221, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Caporaso, N. Virgin Olive Oils: Environmental Conditions, Agronomical Factors and Processing Technology Affecting the Chemistry of Flavor Profile. J. Food Chem. Nanotechnol. 2016, 2, 21–31. [Google Scholar] [CrossRef]
- Caponio, F.; Leone, A.; Squeo, G.; Tamborrino, A.; Summo, C. Innovative technologies in virgin olive oil extraction process: Influence on volatile compounds and organoleptic characteristics. J. Sci. Food Agric. 2019, 99, 5594–5600. [Google Scholar] [CrossRef]
- Cecchi, L.; Bellumori, M.; Corbo, F.; Milani, G.; Clodoveo, M.L.; Mulinacci, N. Implementation of the sono-heat-exchanger in the extra virgin olive oil extraction process: End-user validation and analytical evaluation. Molecules 2019, 24, 2379–2391. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Esposto, S.; Tamborrino, A.; Romaniello, R.; Taticchi, A.; Urbani, S.; Servili, M. Using a tubular heat exchanger to improve the conditioning process of the olive paste: Evaluation of yield and olive oil quality. Eur. J. Lipid Sci. Technol. 2016, 118, 308–317. [Google Scholar] [CrossRef]
- OJEC-Commission Delegated Regulation (EU). 2015/1830 of 8 July 2015 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union. 2015, 266, 9–13. [Google Scholar]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Minnocci, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Daidone, L.; Sebastiani, L.; Servili, M. High vacuum-assisted extraction affects virgin olive oil quality: Impact on phenolic and volatile compounds. Food Chem. 2021, 342, 128369. [Google Scholar] [CrossRef] [PubMed]
- Aprea, E.; Gasperi, F.; Betta, E.; Sani, G.; Cantini, C. Variability in volatile compounds from lipoxygenase pathway in extra virgin olive oils from Tuscan olive germoplasm by quantitative SPME/GC-MS. J. Mass Spec. 2018, 53, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Esposto, S.; Veneziani, G.; Taticchi, A.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Sordini, B.; Servili, M. Flash thermal conditioning of olive pastes during the olive oil mechanical extraction process: Impact on the structural modifications of pastes and oil quality. J. Agric. Food Chem. 2013, 61, 4953–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Vico, L.; Belaj, A.; Sánchez-Ortiz, A.; Martínez-Rivas, J.M.; Pérez, A.; Sanz, C. Volatile compound profiling by HS-SPME/GC-MS-FID of a core olive cultivar collection as a tool for aroma improvement of virgin olive oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [Green Version]
- Hbaieb, R.H.; Kotti, F.; Vichi, S.; Gargouri, M. Evolution of endogenous enzyme activities and virgin olive oil characteristics during Chétoui and Chemlali olive ripening. Eur. J. Lipid Sci. Technol. 2017, 119, 1600150. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Yan, J.; Alewijn, M.; Van Ruth, S.M. From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor. Molecules 2020, 25, 2469. [Google Scholar] [CrossRef]
- Pérez, A.G.; de la Rosa, R.; Pascual, M.; Sánchez-Ortiz, A.; Romero-Segura, C.; León, L.; Sanz, C. Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual × Arbequina cultivars. J. Chromatogr. A 2016, 1428, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, G.; Morales, M.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Priego-Capote, F. Cultivar influence on the volatile components of olive oil formed in the lipoxygenase pathway. LWT 2021, 147, 111485. [Google Scholar] [CrossRef]
- Cherfaoui, M.; Cecchi, T.; Keciri, S.; Boudriche, L. Volatile and Sensory Profiles of Algerian Extra-Virgin Olive Oil from Souidi and Zeletni Cultivars. Chem. Biodivers. 2019, 16, e1900297. [Google Scholar] [CrossRef]
- Kalogianni, E.P.; Georgiou, D.; Hasanov, J.H. Olive oil processing: Current knowledge, literature gaps, and future perspectives. J. Am. Oil Chem. Soc. 2019, 96, 481–507. [Google Scholar] [CrossRef]
- Pérez, M.; López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Lamuela-Raventós, R.M.; Martin-Belloso, O.; Vallverdú-Queralt, A. Impact of Novel Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants 2021, 10, 417. [Google Scholar] [CrossRef]
- Taticchi, A.; Selvaggini, R.; Esposto, S.; Sordini, B.; Veneziani, G.; Servili, M. Physicochemical characterization of virgin olive oil obtained using an ultrasound-assisted extraction at an industrial scale: Influence of olive maturity index and malaxation time. Food Chem. 2019, 289, 7–15. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Sordini, B.; Lorefice, A.; Daidone, L.; Pagano, M.; Tomasone, R.; Servili, M. Extra-Virgin Olive Oil Extracted Using Pulsed Electric Field Technology: Cultivar Impact on Oil Yield and Quality. Front. Nutr. 2019, 6, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C-VOO | T1-VOO | T2-VOO | T3-VOO | |
---|---|---|---|---|
Canino | ||||
Free fatty acid (% oleic acid) 1 | 0.29 ± 0.01a | 0.28 ± 0.01a | 0.26 ± 0.01a | 0.26 ± 0.01a |
Peroxide value (meqO2/kg) | 8.9 ± 2.8a | 6.8 ± 1.1a | 8.4 ± 0.3a | 6.7 ± 0.1a |
K232 | 1.78 ± 0.32a | 1.63 ± 0.04a | 1.71 ± 0.03a | 1.64 ± 0.08a |
K270 | 0.11 ± 0.004a | 0.13 ± 0.01a | 0.12 ± 0.01a | 0.14 ± 0.003a |
∆K | −0.002 ± 0.0004a | −0.002 ± 0.0002a | −0.002 ± 0.0004a | −0.003 ± 0.0004a |
Moraiolo | ||||
Free fatty acid (% oleic acid) 1 | 0.29 ± 0.01a | 0.29 ± 0.01a | 0.32 ± 0.02a | 0.3 ± 0.01a |
Peroxide value (meqO2/kg) | 6.1 ± 1.1a | 5.5 ± 0.3a | 7.3 ± 1.3a | 5.8 ± 0.5a |
K232 | 1.81 ± 0.08a | 1.72 ± 0.04a | 1.72 ± 0.1a | 1.68 ± 0.02a |
K270 | 0.12 ± 0.01a | 0.12 ± 0.01a | 0.12 ± 0.01a | 0.11 ± 0a |
∆K | −0.003 ± 0.0004a | −0.003 ± 0.0004a | −0.003 ± 0.0004a | −0.003 ± 0.0004a |
Peranzana | ||||
Free fatty acid (% oleic acid) 1 | 0.28 ± 0.01a | 0.28 ± 0.01a | 0.3 ± 0.01a | 0.3 ± 0.01a |
Peroxide value (meqO2/kg) | 8.1 ± 2.3a | 8.2 ± 2.6a | 8.9 ± 0.7a | 6.4 ± 0.1a |
K232 | 2.07 ± 0.21a | 1.9 ± 0.16a | 1.93 ± 0.08a | 1.71 ± 0.02a |
K270 | 0.16 ± 0.002a | 0.14 ± 0.01a | 0.15 ± 0.001a | 0.12 ± 0.002a |
∆K | −0.002 ± 0.0002a | −0.002 ± 0.003a | −0.003 ± 0.0002a | −0.002 ± 0.0004a |
C-VOO | T1-VOO | T2-VOO | T3-VOO | |
---|---|---|---|---|
Canino | ||||
3,4-DHPEA 1 | 1.2 ± 0.1a | 1.1 ± 0.1a | 1.1 ± 0.8a | 1.9 ± 0.1a |
p-HPEA | 1.1 ± 0.2a | 1.6 ± 0.5ab | 1.5 ± 0.1ab | 2.4 ± 0b |
Vanilic acid | 0.1 ± 0a | 0.2 ± 0.1a | 0.2 ± 0a | 0.3 ± 0a |
p-Cumaric acid | n.d. | n.d. | n.d. | n.d. |
3,4-DHPEA-EDA | 87.6 ± 5.4a | 129.2 ± 14.1b | 78.4 ± 3.6a | 126.5 ± 5.8b |
p-HPEA-EDA | 20 ± 0.6a | 31.4 ± 2.4b | 19 ± 1.3a | 26.8 ± 2bc |
(+)-1-acetoxypinoresinol | 9.8 ± 1.1a | 11.1 ± 0.8a | 10.1 ± 1.1a | 12 ± 0.1a |
(+)-pinoresinol | 10.4 ± 1.1a | 11.3 ± 0a | 9.2 ± 1.4a | 12 ± 1a |
3,4-DHPEA-EA | 9.4 ± 0.8a | 15.2 ± 1.3b | 9.9 ± 1.3a | 22.6 ± 0.6c |
Ligstroside aglycone | 6 ± 0.3a | 9 ± 3.3a | 8.3 ± 2.1a | 9.3 ± 0.4a |
Total phenols | 145.6 ± 5.8a | 210.1 ± 14.8b | 137.7 ± 5.1a | 213.8 ± 6.3b |
Moraiolo | ||||
3,4-DHPEA 1 | 0.9 ± 0.2a | 1 ± 0.1a | 1 ± 0a | 1.3 ± 0.2a |
p-HPEA | 1.2 ± 0.4a | 1.3 ± 0.1a | 1.7 ± 0.1a | 1.6 ± 0a |
Vanilic acid | 0.2 ± 0a | 0.2 ± 0a | 0.3 ± 0.1a | 0.3 ± 0a |
p-Cumaric acid | 0.3 ± 0.1a | 0.3 ± 0a | 0.4 ± 0a | 0.4 ± 0a |
3,4-DHPEA-EDA | 536.3 ± 12ac | 570.7 ± 3.3a | 417.8 ± 13.6b | 481.7 ± 22.3c |
p-HPEA-EDA | 62.1 ± 3.9a | 60.7 ± 3.9a | 56 ± 1.1a | 57.5 ± 2.1a |
(+)-1-acetoxypinoresinol | 29.8 ± 0.6a | 28.2 ± 0.7a | 30.1 ± 0.3a | 23.6 ± 9.7a |
(+)-pinoresinol | 3.7 ± 0.5a | 7.3 ± 5.8a | 15.1 ± 0.9a | 13.5 ± 0.3a |
3,4-DHPEA-EA | 71.2 ± 4.6a | 97.6 ± 6.4b | 99.6 ± 2.9b | 93.8 ± 4.7b |
Ligstroside aglycone | 15.2 ± 0.2a | 12.7 ± 0.8a | 14.7 ± 3.1a | 14.2 ± 0.2a |
Total phenols | 720.8 ± 14.2ac | 780.2 ± 12a | 636.7 ± 14.6b | 687.7 ± 25.3bc |
Peranzana | ||||
3,4-DHPEA 1 | 1.1 ± 0.1a | 0.9 ± 0.4a | 0.9 ± 0.1a | 1 ± 0.2a |
p-HPEA | 3.2 ± 0.4a | 2.3 ± 0.6a | 2 ± 0.3a | 3 ± 0.5a |
Vanilic acid | 0.5 ± 0.1a | 0.3 ± 0.2a | 0.2 ± 0.1a | 0.6 ± 0.2a |
p-Cumaric acid | 0.3 ± 0a | 0.2 ± 0.1a | 0 ± 0b | 0 ± 0b |
3,4-DHPEA-EDA | 231.2 ± 1.6ac | 279.6 ± 6.1b | 213.8 ± 13.1a | 240.5 ± 7.3a |
p-HPEA-EDA | 70.4 ± 2.4a | 71.8 ± 3.9a | 60.2 ± 1.1b | 60.4 ± 0.7b |
(+)-1-acetoxypinoresinol | 10.8 ± 2.5a | 7.9 ± 0.1a | 5.6 ± 0.4a | 6.8 ± 0.4a |
(+)-pinoresinol | 4.6 ± 0.5a | 4.3 ± 0.3a | 4.5 ± 0.3a | 4.2 ± 0.2a |
3,4-DHPEA-EA | 53.5 ± 0.5ab | 63.9 ± 4.4a | 50.2 ± 4b | 63.5 ± 2.9ab |
Ligstroside aglycone | 12.1 ± 0.7a | 13.9 ± 1.8a | 12.4 ± 1.1a | 13 ± 1.1a |
Total phenols | 387.6 ± 4ac | 445 ± 9.8b | 349.7 ± 14.3a | 393.1 ± 8.5c |
C-VOO | T1-VOO | T2-VOO | T3-VOO | |
---|---|---|---|---|
Aldehydes 1 | ||||
Pentanal | 13 ± 1a | 13 ± 2a | 15 ± 1a | 10 ± 1a |
(E)-2-Pentenal | 24 ± 1a | 24 ± 2a | 35 ± 3b | 26 ± 2ab |
Hexanal | 1072 ± 79a | 1075 ± 78a | 1124 ± 36a | 961 ± 37a |
(E)-2-Hexenal | 23635 ± 1162a | 26416 ± 1671ac | 35712 ± 2257b | 31580 ± 987bc |
(E,E)-2,4-Hexadienal | 110 ± 7a | 120 ± 16a | 120 ± 5a | 87 ± 0a |
Ʃ of aldehydes | 24855 ± 1164a | 27647 ± 1673ac | 37006 ± 2257b | 32665 ± 988bc |
Alcohols | ||||
1-Pentanol | 37 ± 3a | 22 ± 2bc | 26 ± 2b | 16 ± 0c |
1-Penten-3-ol | 96 ± 9a | 103 ± 11bc | 139 ± 8b | 165 ± 18c |
(E)-2-Penten-1-ol | 11 ± 1a | 12 ± 1a | 15 ± 2a | 39 ± 3b |
(Z)-2-Penten-1-ol | 91 ± 5a | 101 ± 7ab | 134 ± 12bc | 153 ± 8c |
1-Hexanol | 252 ± 12a | 180 ± 18b | 129 ± 7b | 184 ± 19b |
(E)-2-Hexen-1-ol | 652 ± 28a | 669 ± 35a | 367 ± 24b | 517 ± 14c |
(Z)-3-Esen-1-olo | 99 ± 9a | 102 ± 5a | 125 ± 8a | 182 ± 8b |
Benzyl alcohol | 69 ± 8a | 74 ± 6a | 77 ± 1a | 71 ± 1a |
Pheniletyl alcohol | 32 ± 3a | 32 ± 3a | 45 ± 1b | 39 ± 3ab |
Ʃ of C5 and C6 alcohols | 1238 ± 33a | 1189 ± 41a | 935 ± 30b | 1256 ± 32a |
Esters | ||||
Hexyl acetate | 14 ± 0a | 8 ± 1b | 5 ± 1b | 11 ± 1a |
(Z)-3-Hexenyl acetate | 9 ± 1a | 6 ± 1ab | 7 ± 0ab | 6 ± 1b |
Ʃ of esters | 23 ± 1a | 14 ± 1bc | 11 ± 1b | 17 ± 1c |
Ketones | ||||
3-Pentanone + 2-Pentanone | 32 ± 2a | 32 ± 2a | 31 ± 3a | 31 ± 1a |
1-Penten-3-one | 195 ± 14a | 181 ± 8a | 295 ± 15b | 230 ± 14a |
6-Methyl-5-hepten-2-one | 11 ± 0a | 10 ± 1a | 8 ± 1a | 5 ± 0b |
Ʃ of ketones | 238 ± 14a | 223 ± 8a | 334 ± 15b | 266 ± 14a |
C-VOO | T1-VOO | T2-VOO | T3-VOO | |
---|---|---|---|---|
Aldehydes 1 | ||||
Pentanal | 18 ± 2a | 18 ± 1a | 24 ± 3a | 22 ± 0a |
(E)-2-Pentenal | 52 ± 5a | 44 ± 4a | 45 ± 12a | 49 ± 2a |
Hexanal | 830 ± 1a | 865 ± 53a | 903 ± 94a | 657 ± 68a |
(E)-2-Hexenal | 22141 ± 800a | 22432 ± 719a | 24060 ± 1344a | 22091 ± 1320a |
(E,E)-2,4-Hexadienal | 86 ± 5ab | 75 ± 6a | 99 ± 4b | 96 ± 7ab |
Ʃ of aldehydes | 23128 ± 800a | 23435 ± 721a | 25131 ± 1348a | 22915 ± 1321a |
Alcohols | ||||
1-Pentanol | 23 ± 3a | 20 ± 4a | 22 ± 1a | 19 ± 2a |
1-Penten-3-ol | 294 ± 21a | 262 ± 11ab | 216 ± 7b | 274 ± 7a |
(E)-2-Penten-1-ol | 30 ± 2a | 24 ± 5a | 19 ± 2a | 27 ± 1a |
(Z)-2-Penten-1-ol | 307 ± 21a | 280 ± 14ab | 223 ± 15b | 290 ± 4a |
1-Hexanol | 450 ± 7a | 467 ± 18a | 549 ± 52a | 450 ± 35a |
(E)-2-Hexen-1-ol | 679 ± 8a | 551 ± 21bc | 515 ± 33b | 665 ± 41ac |
(Z)-3-Esen-1-olo | 449 ± 42a | 426 ± 41a | 515 ± 12a | 460 ± 39a |
Benzyl alcohol | 67 ± 2a | 75 ± 8a | 85 ± 8a | 77 ± 3a |
Pheniletyl alcohol | 78 ± 1a | 93 ± 7a | 87 ± 5a | 75 ± 4a |
Ʃ of C5 and C6 alcohols | 2231 ± 53a | 2031 ± 52a | 2059 ± 65a | 2184 ± 67a |
Esters | ||||
Hexyl acetate | 5 ± 0a | 5 ± 0a | 5 ± 1a | 4 ± 0a |
(Z)-3-Hexenyl acetate | 5 ± 0a | 6 ± 1a | 17 ± 2b | 8 ± 1a |
Ʃ of esters | 10 ± 1a | 12 ± 1a | 22 ± 2b | 13 ± 1a |
Ketones | ||||
3-Pentanone + 2-Pentanone | 121 ± 4a | 103 ± 13a | 114 ± 8a | 98 ± 10a |
1-Penten-3-one | 513 ± 20a | 410 ± 7b | 324 ± 25c | 453 ± 16ab |
6-Methyl-5-hepten-2-one | 6 ± 0a | 7 ± 1a | 8 ± 1a | 7 ± 1a |
Ʃ of ketones | 640 ± 20a | 520 ± 14bc | 445 ± 27b | 558 ± 19ac |
C-VOO | T1-VOO | T2-VOO | T3-VOO | |
---|---|---|---|---|
Aldehydes 1 | ||||
Pentanal | 17 ± 0a | 10 ± 1b | 15 ± 1a | 12 ± 2a |
(E)-2-Pentenal | 68 ± 3a | 42 ± 18a | 55 ± 26a | 38 ± 1a |
Hexanal | 925 ± 59a | 1321 ± 12a | 1388 ± 481a | 1150 ± 144a |
(E)-2-Hexenal | 17306 ± 1308a | 15181 ± 1771a | 18043 ± 476a | 17045 ± 935a |
(E,E)-2,4-Hexadienal | 133 ± 13a | 139 ± 30a | 143 ± 61a | 123 ± 33a |
Ʃ of aldehydes | 18450 ± 1309a | 16693 ± 1772a | 19644 ± 680a | 18368 ± 947a |
Alcohols | ||||
1-Pentanol | 18 ± 3a | 20 ± 1a | 19 ± 0a | 17 ± 2a |
1-Penten-3-ol | 340 ± 11a | 325 ± 20a | 283 ± 168a | 166 ± 3a |
(E)-2-Penten-1-ol | 28 ± 0a | 16 ± 9a | 21 ± 12a | 13 ± 0a |
(Z)-2-Penten-1-ol | 360 ± 6a | 252 ± 51ab | 178 ± 24b | 150 ± 15b |
1-Hexanol | 147 ± 7a | 103 ± 8a | 96 ± 37a | 64 ± 8a |
(E)-2-Hexen-1-ol | 143 ± 22a | 107 ± 7ab | 86 ± 8b | 74 ± 9b |
(Z)-3-Esen-1-olo | 282 ± 9a | 161 ± 21a | 177 ± 112a | 91 ± 9a |
Benzyl alcohol | 71 ± 3a | 70 ± 7a | 88 ± 31a | 63 ± 4a |
Pheniletyl alcohol | 61 ± 8a | 38 ± 3a | 45 ± 23a | 27 ± 2a |
Ʃ of C5 and C6 alcohols | 1318 ± 27a | 985 ± 60ab | 860 ± 207b | 575 ± 22b |
Esters | ||||
Hexyl acetate | 8 ± 4a | 52 ± 19ab | 28 ± 16ab | 65 ± 12b |
(Z)-3-Hexenyl acetate | 124 ± 6a | 148 ± 21a | 168 ± 9a | 159 ± 10a |
Ʃ of esters | 132 ± 7a | 201 ± 28ab | 196 ± 19ab | 224 ± 16b |
Ketones | ||||
3-Pentanone + 2-Pentanone | 26 ± 1a | 13 ± 7a | 25 ± 4a | 11 ± 2a |
1-Penten-3-one | 662 ± 29a | 367 ± 169ab | 270 ± 25b | 680 ± 40a |
6-Methyl-5-hepten-2-one | 8 ± 0a | 8 ± 1a | 8 ± 0a | 9 ± 0a |
Ʃ of ketones | 696 ± 29a | 389 ± 169ab | 303 ± 25b | 699 ± 40a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veneziani, G.; Nucciarelli, D.; Taticchi, A.; Esposto, S.; Selvaggini, R.; Tomasone, R.; Pagano, M.; Servili, M. Application of Low Temperature during the Malaxation Phase of Virgin Olive Oil Mechanical Extraction Processes of Three Different Italian Cultivars. Foods 2021, 10, 1578. https://doi.org/10.3390/foods10071578
Veneziani G, Nucciarelli D, Taticchi A, Esposto S, Selvaggini R, Tomasone R, Pagano M, Servili M. Application of Low Temperature during the Malaxation Phase of Virgin Olive Oil Mechanical Extraction Processes of Three Different Italian Cultivars. Foods. 2021; 10(7):1578. https://doi.org/10.3390/foods10071578
Chicago/Turabian StyleVeneziani, Gianluca, Davide Nucciarelli, Agnese Taticchi, Sonia Esposto, Roberto Selvaggini, Roberto Tomasone, Mauro Pagano, and Maurizio Servili. 2021. "Application of Low Temperature during the Malaxation Phase of Virgin Olive Oil Mechanical Extraction Processes of Three Different Italian Cultivars" Foods 10, no. 7: 1578. https://doi.org/10.3390/foods10071578
APA StyleVeneziani, G., Nucciarelli, D., Taticchi, A., Esposto, S., Selvaggini, R., Tomasone, R., Pagano, M., & Servili, M. (2021). Application of Low Temperature during the Malaxation Phase of Virgin Olive Oil Mechanical Extraction Processes of Three Different Italian Cultivars. Foods, 10(7), 1578. https://doi.org/10.3390/foods10071578