Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat
Abstract
:1. Introduction
- Reduction of moisture loss during storage of fresh or frozen meats.
- Prevention of drip loss when the meat is packed in a plastic tray.
- Lipid and myoglobin oxidation are reduced.
- Decrease of microbial population on the surface of coated meats.
- Effective control of volatile flavour loss and foreign odour pick-up.
2. Natural Anti-Microbials
2.1. Essential Oils and Plant Extracts
2.1.1. Thyme and Oregano
2.1.2. Rosemary
2.1.3. Cinnamon
2.1.4. Garlic
2.1.5. Pepper
2.1.6. Bay
2.1.7. Clove
2.1.8. Peppermint
2.1.9. Nutmeg
2.1.10. Lemongrass
2.1.11. Coriander—Linalool
2.1.12. Horseradish—Mustard (Allyl-Isothiocyanate (AITC))
2.1.13. Cumin
2.1.14. Turmeric
2.1.15. Hop
2.1.16. Chrysanthemum
2.2. Flavonoids
2.2.1. Grapefruit Seed Extract
2.2.2. Grape Seed Extract
2.2.3. Green Tea Extract
2.2.4. Propolis Extract
2.2.5. Cranberry
2.3. Organic Acids
2.4. Animal-Derived Anti-Microbial Compounds
Chitosan
2.5. Bacteriocins
3. Synergism Between Anti-Microbial Compounds
4. Nanotechnology and Nanomaterials
5. Regulations, Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Quintavalla, S.; Vicini, L. Antimicrobial food packaging in meat industry. Meat Sci. 2002, 62, 373–380. [Google Scholar] [CrossRef]
- Rawdkuen, S. Antimicrobial packaging for meat products. In Antimicrobial Food Packaging, 1st ed.; Barros-Velázquez, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 229–241. [Google Scholar]
- Fernandes, R. Chilled and Frozen Raw Meat, Poultry and their Products. In Microbiology Handbook: Meat Products, 2nd ed.; Fernandes, R., Ed.; Leatherhead Food International and Royal Society of Chemistry: Surrey, UK, 2009; pp. 1–44. [Google Scholar]
- Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A.C.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6. [Google Scholar] [CrossRef]
- Zhou, G.H.; Xu, X.L.; Liu, Y. Preservation technologies for fresh meat—A review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wojciak, K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- 66th World Health Assembly. Follow-Up to the Political Declaration of the High-level Meeting of the General Assembly on the Prevention and Control of Non-Communicable Diseases. Available online: https://apps.who.int/iris/bitstream/handle/10665/150161/A66_R10-en.pdf?sequence=1&isAllowed=y (accessed on 14 April 2021).
- International Agency for Research on Cancer (IARC). Red meat and processed meat. IARC Monogr. Eval. Carcinog. Risks Hum. 2018, 114, 107–422. [Google Scholar]
- European Commission. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, L295, 1–177. [Google Scholar]
- Food Chain Evaluation Consortium. Study on the Monitoring of the Implementation of Directive 2006/52/EC as Regards the Use of Nitrites by Industry in Different Categories of Meat Products. Final Report. Available online: https://www.fecic.es/img/galeria/file/BUTLLETi%20INTERNACIONAL/ARXIUS%20BUTLLETI%20INTERNACIONAL/setmana%205/05.pdf (accessed on 12 April 2021).
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Brody, A.L. Packaging of food. In The Wiley Encyclopedia of Packaging, 2nd ed.; Brody, A.L., Marsh, K.S., Eds.; Wiley: New York, NY, USA, 1997; pp. 699–704. [Google Scholar]
- Kerry, J.P.; O’Grady, M.N.; Hogan, S.A. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci. 2006, 74, 113–130. [Google Scholar] [CrossRef]
- Mondry, H. Packaging systems for processed meat. In Meat Quality and Meat Packaging; Taylor, S.A., Raimundo, A., Severini, M., Smulders, F.J.M., Eds.; ECCEAMST: Utrecht, The Netherlands, 1996; pp. 323–333. [Google Scholar]
- European Commission. Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Off. J. Eur. Union 2009, L135, 3–11. [Google Scholar]
- Han, J.H. Antimicrobial food packaging. Food Technol. 2008, 54, 56–65. [Google Scholar]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.G. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ortega, I.; Garcia-Almendarez, B.E.; Santos-Lopez, E.M.; Amaro-Reyes, A.; Barboza-Corona, J.E.; Regalado, C. Antimicrobial edible films and coatings for meat and meat products preservation. Sci. World J. 2014, 2014, 248935. [Google Scholar] [CrossRef] [PubMed]
- Gennadios, A.; Hanna, M.A.; Kurth, L.B. Application of Edible Coatings on Meats, Poultry and Seafoods: A Review. LWT Food Sci. Technol. 1997, 30, 337–350. [Google Scholar] [CrossRef]
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Martínez-Graciá, C.; González-Bermúdez, C.A.; Cabellero-Valcárcel, A.M.; Santaella-Pascual, M.; Frontela-Saseta, C. Use of herbs and spices for food preservation: Advantages and limitations. Curr. Opin. Food Sci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Krepker, M.; Shemesh, R.; Poleg, Y.D.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control 2017, 76, 117–126. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef] [Green Version]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Electronic Code of Federal Regulations-Part 182-Substances Generally Recognised as Safe. Available online: https://www.ecfr.gov/cgi-bin/text-idx?SID=68b427fc0fc1379084dc2e485cc443ec&mc=true&node=pt21.3.182&rgn=div5 (accessed on 16 April 2021).
- European Commission. Commission Implementing Regulation (EU) No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1999/217/EC. Off. J. Eur. Union 2012, L267, 1–161. [Google Scholar]
- Irkin, R.; Esmer, O.K. Control of Listeria monocytogenes in Ground Chicken Breast Meat under Aerobic, Vacuum and Modified Atmosphere Packaging Conditions with or without the Presence of Bay Essential Oil at 4 °C. Food Sci. Technol. Res. 2010, 16, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Van Haute, S.; Raes, K.; Van der Meeren, P.; Sampers, I. The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control 2016, 68, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Habashy, A.; Darwish, W.; Hussein, M.; El-Dien, W. Prevalence of Different Mould Genera in Meat and Meat Products with Some Reduction Trials using Essential Oils. Adv. Anim. Vet. Sci. 2019, 7, 79–85. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R.; Tesarowicz, I.; Banaś, J. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef. Meat Sci. 2012, 90, 842–850. [Google Scholar] [CrossRef]
- Kačániová, M.; Mellen, M.; Vukovic, N.L.; Kluz, M.; Puchalski, C.; Haščík, P.; Kunova, S. Combined Effect of Vacuum Packaging, Fennel and Savory Essential Oil Treatment on the Quality of Chicken Thighs. Microorganisms 2019, 7, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Muranyi, P.; Wunderlich, J.; Hauser, C. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015, 118, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Škaljac, S.; Ikonić, P.; Džinić, N.; Živković, N.; Jokanović, M.; Tasić, T.; Kravić, S. Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control 2015, 54, 282–286. [Google Scholar] [CrossRef]
- Moschonas, G.; Geornaras, I.; Stopforth, J.D.; Wach, D.; Woerner, D.R.; Belk, K.E.; Smith, G.C.; Sofos, J.N. Activity of caprylic acid, carvacrol, ε-polylysine and their combinations against Salmonella in not-ready-to-eat surface-browned, frozen, breaded chicken products. J. Food Sci. 2012, 77, M405–M411. [Google Scholar] [CrossRef] [PubMed]
- Jaspal, M.H.; Ijaz, M.; Haq, H.A.U.; Yar, M.K.; Asghar, B.; Manzoor, A.; Badar, I.H.; Ullah, S.; Hussain, J. Effect of oregano essential oil or lactic acid treatments combined with air and modified atmosphere packaging on the quality and storage properties of chicken breast meat. LWT Food Sci. Technol. 2021, 146. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Pan, D.D.; Cao, J.X.; Shao, X.F.; Chen, Y.J.; Sun, Y.Y.; Ou, C.R. Effect of black pepper essential oil on the quality of fresh pork during storage. Meat Sci. 2016, 117, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Hsouna, A.B.; Lahmar, A.; Ennouri, K.; Mtibaa-Chakchouk, A.; Sellem, I.; Najah, S.; Bouaziz, M.; Mellouli, L. Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Sci. 2016, 117, 196–204. [Google Scholar] [CrossRef]
- Petrová, J.; Pavelková, A.; Hleba, L.; Pochop, J.; Rovná, K.; Kačániová, M. Microbiological Quality of Fresh Chicken Breast Meat after Rosemary Essential Oil Treatment and Vacuum Packaging. J. Anim. Sci. Biotechnol. 2013, 46, 140–144. [Google Scholar]
- Kačániová, M.; Terentjeva, M.; Kántor, A.; Tokár, M.; Puchalski, C.; Ivanišová, E. Antimicrobial Effect of Sage (Salvia officinalis L.) and Rosemary (Rosmarinus officinalis L.) Essential Oils on Microbiota of Chicken Breast. Proc. Latv. Acad. Sci. 2017, 71, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Cegiełka, A.; Hać-Szymańczuk, E.; Piwowarek, K.; Dasiewicz, K.; Słowiński, M.; Wrońska, K. The use of bioactive properties of sage preparations to improve the storage stability of low-pressure mechanically separated meat from chickens. Poult. Sci. 2019, 98, 5045–5053. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Incoronato, A.L.; Conte, A.; Del Nobile, M.A. Shelf life of reduced pork back-fat content sausages as affected by antimicrobial compounds and modified atmosphere packaging. Int. J. Food Microbiol. 2011, 150, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Q.; Zhang, L.L.; Zong, K.; Wang, A.M.; Yu, X.F. Effects of Spices Essential Oils on the Spoilage-Related Microbiota in Chilled Pork Stored in Antimicrobial Pack. Food Sci. Technol. Res. 2012, 18, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int. J. Food Microbiol. 2019, 292, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Zhu, D.H.; Feng, K.; Liu, F.J.; Lou, W.Y.; Li, N.; Zong, M.H.; Wu, H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 2016, 196, 996–1004. [Google Scholar] [CrossRef]
- Raeisi, M.; Tabaraei, A.; Hashemi, M.; Behnampour, N. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. Int. J. Food Microbiol. 2016, 238, 139–145. [Google Scholar] [CrossRef]
- Muppalla, S.R.; Kanatt, S.R.; Chawla, S.P.; Sharma, A. Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packag. Shelf Life 2014, 2, 51–58. [Google Scholar] [CrossRef]
- Rajaei, A.; Hadian, M.; Mohsenifar, A.; Rahmani-Cherati, T.; Tabatabaei, M. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packag. Shelf Life 2017, 14, 137–145. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J.; Al-Attar, H.; Castro-Aguirre, E.; Arfat, Y.A.; Auras, R. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control 2017, 73, 663–671. [Google Scholar] [CrossRef]
- Kargozari, M.; Hamedi, H.; Amirnia, S.A.; Montazeri, A.; Abbaszadeh, S. Effect of bioactive edible coating based on sodium alginate and coriander (Coriandrum sativum L) essential oil on the quality of refrigerated chicken fillet. Food Health 2018, 1, 30–38. [Google Scholar]
- Talebi, F.; Misaghi, A.; Khanjari, A.; Kamkar, A.; Gandomi, H.; Rezaeigolestani, M. Incorporation of spice essential oils into poly-lactic acid film matrix with the aim of extending microbiological and sensorial shelf life of ground beef. LWT Food Sci. Technol. 2018, 96, 482–490. [Google Scholar] [CrossRef]
- Sharafati Chaleshtori, F.; Taghizadeh, M.; Rafieian-kopaei, M.; Sharafati-chaleshtori, R. Effect of Chitosan Incorporated with Cumin and Eucalyptus Essential Oils As Antimicrobial Agents on Fresh Chicken Meat. J. Food Process Preserv. 2016, 40, 396–404. [Google Scholar] [CrossRef]
- Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.A.W.A. Control of bacteria growth on ready-to-eat beef loaves by antimicrobial plastic packaging incorporated with garlic oil. Food Control 2014, 39, 214–221. [Google Scholar] [CrossRef]
- Shin, J.; Harte, B.; Ryser, E.; Selke, S. Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J. Food Sci. 2010, 75, M65–M71. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.V.; Soares, N.D.F.F.; Borges, S.V.; De Sousa, M.M.; Nunes, C.A.; De Oliveira, I.R.; Medeiros, E.A. Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem. 2013, 141, 3160–3166. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Song, K.B. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages. Korean J. Food Sci. Anim. Resour. 2016, 36, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Kiarsi, Z.; Hojjati, M.; Behbahani, B.A.; Noshad, M. In vitro antimicrobial effects of Myristica fragrans essential oil on foodborne pathogens and its influence on beef quality during refrigerated storage. J. Food Saf. 2020, 40. [Google Scholar] [CrossRef]
- Yemis, G.P.; Candogan, K. Antibacterial activity of soy edible coatings incorporated with thyme and oregano essential oils on beef against pathogenic bacteria. Food Sci. Biotechnol. 2017, 26, 1113–1121. [Google Scholar] [CrossRef]
- Emiroglu, Z.K.; Yemis, G.P.; Coskun, B.K.; Candogan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci. 2010, 86, 283–288. [Google Scholar] [CrossRef]
- Dalvandi, F.; Almasi, H.; Ghanbarzadeh, B.; Hosseini, H.; Khosroshahi, N.K. Effect of vacuum packaging and edible coating containing black pepper seeds and turmeric extracts on shelf life extension of chicken breast fillets. J. Food Bioprocess Eng. 2020, 3, 69–78. [Google Scholar]
- Sirocchi, V.; Caprioli, G.; Cecchini, C.; Coman, M.M.; Cresci, A.; Maggi, F.; Papa, F.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Biogenic amines as freshness index of meat wrapped in a new active packaging system formulated with essential oils of Rosmarinus officinalis. Int. J. Food Sci. Nutr. 2013, 64, 921–928. [Google Scholar] [CrossRef]
- Sirocchi, V.; Devlieghere, F.; Peelman, N.; Sagratini, G.; Maggi, F.; Vittori, S.; Ragaert, P. Effect of Rosmarinus officinalis L. essential oil combined with different packaging conditions to extend the shelf life of refrigerated beef meat. Food Chem. 2017, 221, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Soncu, E.D.; Ozdemir, N.; Arslan, B.; Kucukkaya, S.; Soyer, A. Contribution of surface application of chitosan-thyme and chitosan-rosemary essential oils to the volatile composition, microbial profile, and physicochemical and sensory quality of dry-fermented sausages during storage. Meat Sci. 2020, 166, 108127. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.; Speroni, E.; Cavrini, V.; Pietra, A.M.D. GC/MS evaluation of thyme (Thymus Tulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. Oxid. Med. Cell Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. Constituents of aromatic plants: Carvacrol. Fitoterapia 2004, 75, 801–804. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41–50. [Google Scholar] [CrossRef]
- Yuan, W.; Seng, Z.J.; Kohli, G.S.; Yang, L.; Yuk, H.G. Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pasqua, R.; Mauriello, G.; Mamone, G.; Ercolini, D. Expression of DnaK, HtpG, GroEL and Tf chaperones and the corresponding encoding genes during growth of Salmonella Thompson in presence of thymol alone or in combination with salt and cold stress. Food Res. Int. 2013, 52, 153–159. [Google Scholar] [CrossRef]
- García-Díez, J.; Alheiro, J.; Pinto, A.L.; Soares, L.; Falco, V.; Fraqueza, M.J.; Patarata, L. Behaviour of food-borne pathogens on dry cured sausage manufactured with herbs and spices essential oils and their sensorial acceptability. Food Control 2016, 59, 262–270. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Martin-Sanchez, A.M.; Fuentes-Zaragoza, E.; Viuda-Martos, M.; Fernandez-Lopez, J.; Sendra, E.; Sayas, E.; Alvarez, J.A.P. Role of Oregano (Origanum vulgare) essential oil as a surface fungus inhibitor on fermented sausages: Evaluation of its effect on microbial and physicochemical characteristics. J. Food Prot. 2012, 75, 104–111. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Bomfim, N.; Nakassugi, L.P.; Oliveira, J.F.P.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Nerilo, S.B.; Mallmann, C.A.; Filho, B.A.A.; Machinski, M., Jr. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015, 166, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity against Foodborne Pathogenic Bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Xing, F.; Hua, H.; Selvaraj, J.N.; Zhao, Y.; Zhou, L.; Liu, X.; Liu, Y. Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 2014, 46, 343–350. [Google Scholar] [CrossRef]
- Sheng, L.; Rasco, B.; Zhu, M.J. Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2016, 82, 6531–6540. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Liang, R.; Zhang, T.; Yuan, Y.; Shen, S.; Ye, H. Microarray analysis of the transcriptome of the Escherichia coli (E. coli) regulated by cinnamaldehyde (CMA). Food Agric. Immunol. 2017, 28, 500–515. [Google Scholar] [CrossRef]
- Yin, M.C.; Cheng, W.S. Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci. 2003, 63, 23–28. [Google Scholar] [CrossRef]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microb. Infect. 1999, 2, 125–129. [Google Scholar] [CrossRef]
- Feldberg, R.S.; Chang, S.C.; Kotik, A.N.; Nadler, M.; Neuwirth, Z.; Sundstrom, D.C.; Thompson, N.H. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob. Agents Chemother. 1988, 32, 1763–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.R.; Shi, Q.S.; Dai, H.Q.; Liang, Q.; Xie, X.B.; Huang, X.M.; Zhao, G.Z.; Zhang, L.X. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci. Rep. 2016, 6, 22805. [Google Scholar] [CrossRef] [PubMed]
- Myszka, K.; Leja, K.; Majcher, M. A current opinion on the antimicrobial importance of popular pepper essential oil and its application in food industry. J. Essent. Oil Res. 2018, 31, 457–473. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, K.P.; Zhang, X.; Pan, D.D.; Sun, Y.Y.; Cao, J.X. Antibacterial Activity and Mechanism of Action of Black Pepper Essential Oil on Meat-Borne Escherichia coli. Front. Microbiol. 2017, 7, 2094. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.Y.; Yin, W.F.; Chan, K.G. Piper nigrum, Piper betle and Gnetum gnemon-Natural Food Sources with Anti-Quorum Sensing Properties. Sensors 2013, 13, 3975–3985. [Google Scholar] [CrossRef] [Green Version]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activity of Laurus nobilis L. Essential Oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [Green Version]
- Rincon, E.; Serrano, L.; Balu, A.M.; Aguilar, J.J.; Luque, R.; Garcia, A. Effect of Bay Leaves Essential Oil Concentration on the Properties of Biodegradable Carboxymethyl Cellulose-Based Edible Films. Materials 2019, 12, 2356. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, İ.; Elmastaş, M.; Aboul-Enein, H.Y. Antioxidant activity of clove oil–A powerful antioxidant source. Arab. J. Chem. 2012, 5, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef]
- Xu, J.G.; Liu, T.; Hu, Q.P.; Cao, X.M. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus. Molecules 2016, 21, 1194. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Lee, J.H.; Gwon, G.; Kim, S.I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.K.; Yap, P.S.X.; Krishnan, T.; Yusoff, K.; Chan, K.G.; Yap, W.S.; Lai, K.S.; Lim, S.H.E. Mode of Action: Synergistic Interaction of Peppermint (Mentha x piperita L. Carl) Essential Oil and Meropenem Against Plasmid-Mediated Resistant E. coli. Rec. Nat. Prod. 2018, 12, 582–594. [Google Scholar] [CrossRef]
- Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015, 53, 1496–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovács, J.K.; Felső, P.; Horváth, G.; Schmidt, J.; Dorn, Á.; Ábrahám, H.; Cox, A.; Márk, L.; Emődy, L.; Kovács, T.; et al. Stress Response and Virulence Potential Modulating Effect of Peppermint Essential Oil in Campylobacter jejuni. Biomed. Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Brugger, B.P.; Martinez, L.C.; Plata-Rueda, A.; Castro, B.; Soares, M.A.; Wilcken, C.F.; Carvalho, A.G.; Serrao, J.E.; Zanuncio, J.C. Bioactivity of the Cymbopogon citratus (Poaceae) essential oil and its terpenoid constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2019, 9, 8358. [Google Scholar] [CrossRef]
- Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X. Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii. PLoS ONE 2016, 11, e0159006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore-Neibel, K.; Gerber, C.; Patel, J.; Friedman, M.; Ravishankar, S. Antimicrobial activity of lemongrass oil against Salmonella enterica on organic leafy greens. J. Appl. Microbiol. 2012, 112, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, A.K.; Malik, A. Morphostructural Damage in Food-Spoiling Bacteria due to the Lemon Grass Oil and Its Vapour: SEM, TEM, and AFM Investigations. Evid Based Complement. Alternat. Med. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Hager, J.V.; Rawles, S.D.; Xiong, Y.L.; Newman, M.C.; Webster, C.D. Edible Corn-zein-based Coating Incorporated with Nisin or Lemongrass Essential Oil Inhibits Listeria monocytogenes on Cultured Hybrid Striped Bass, Morone chrysops×Morone saxatilis, Fillets During Refrigerated and Frozen Storage. J. World Aquac. Soc. 2019, 50, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Hadjilouka, A.; Mavrogiannis, G.; Mallouchos, A.; Paramithiotis, S.; Mataragas, M.; Drosinos, E.H. Effect of lemongrass essential oil on Listeria monocytogenes gene expression. LWT Food Sci. Technol. 2017, 77, 510–516. [Google Scholar] [CrossRef]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, F.M.; Butt, M.S.; Hussain, S.; Nadeem, M. Characterization of Coriander (Coriandrum sativum L.) Seeds and Leaves: Volatile and Non Volatile Extracts. Int. J. Food Prop. 2012, 15, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Gaio, I.; Saggiorato, A.G.; Treichel, H.; Cichoski, A.J.; Astolfi, V.; Cardoso, R.I.; Toniazzo, G.; Valduga, E.; Paroul, N.; Cansian, R.L. Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. J. Verbrauch. Lebensm. 2015, 10, 323–329. [Google Scholar] [CrossRef]
- Guo, J.J.; Gao, Z.P.; Xia, J.L.; Ritenour, M.A.; Li, G.Y.; Shan, Y. Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China. LWT Food Sci. Technol. 2018, 97, 825–839. [Google Scholar] [CrossRef]
- Gao, Z.; Van Nostrand, J.D.; Zhou, J.; Zhong, W.; Chen, K.; Guo, J. Anti-listeria Activities of Linalool and Its Mechanism Revealed by Comparative Transcriptome Analysis. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- Freires, I.D.A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.; Rosalen, P.L. Coriandrum sativum L. (Coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS ONE 2014, 9, e99086. [Google Scholar] [CrossRef] [Green Version]
- Isshiki, K.; Tokuoka, K.; Mori, R.; Chiba, S. Preliminary Examination of Allyl Isothiocyanate Vapor for Food Preservation. Biosci. Biotechnol. Biochem. 2014, 56, 1476–1477. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J. Appl. Microbiol. 2003, 94, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Ahn, E.S.; Shin, D.H. Extension of Shelf Life by Treatment with Allyl Isothiocyanate in Combination with Acetic Acid on Cooked Rice. J. Food Sci. 2002, 67, 274–279. [Google Scholar] [CrossRef]
- Romeo, L.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018, 23, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.M.; Preston, J.F.R.; Wei, C.I. Antibacterial Mechanism of Allyl Isothiocyanate. J. Food Prot. 2000, 63, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Allahghadri, T.; Rasooli, I.; Owlia, P.; Nadooshan, M.J.; Ghazanfari, T.; Taghizadeh, M.; Astaneh, S.D. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci. 2010, 75, H54–H61. [Google Scholar] [CrossRef]
- El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 2010, 58, 8231–8237. [Google Scholar] [CrossRef]
- Gul, P.; Bakht, J. Antimicrobial activity of turmeric extract and its potential use in food industry. J. Food Sci. Technol. 2015, 52, 2272–2279. [Google Scholar] [CrossRef] [Green Version]
- Gounder, D.K.; Lingamallu, J. Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Ind. Crop. Prod. 2012, 38, 124–131. [Google Scholar] [CrossRef]
- Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE 2015, 10, e0121313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, W.J. Cambridge Prize Lecture—Studies on the sensitivity of lactic acid bacteria to hop bitter acids. J. Inst. Brew. 1993, 99, 405–411. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Wang, K.; Lim, P.N.; Tong, S.Y.; Thian, E.S. Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packag. Shelf Life 2019, 22, 100396. [Google Scholar] [CrossRef]
- Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts—Potential applications in food safety and quality. Food Res. Int. 2011, 44, 827–839. [Google Scholar] [CrossRef]
- Burdock, G.A. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Skowron, K.; Kwiecinska-Pirog, J.; Grudlewska, K.; Gryn, G.; Wiktorczyk, N.; Balcerek, M.; Zaluski, D.; Walecka-Zacharska, E.; Kruszewski, S.; Gospodarek-Komkowska, E. Antilisterial Activity of Polypropylene Film Coated with Chitosan with Propolis and/or Bee Pollen in Food Models. Biomed. Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, V.C.; Qiu, X.; de los Reyes, B.G.; Lin, C.S.; Pan, Y. Application of cranberry concentrate (Vaccinium macrocarpon) to control Escherichia coli O157:H7 in ground beef and its antimicrobial mechanism related to the downregulated slp, hdeA and cfa. Food Microbiol. 2009, 26, 32–38. [Google Scholar] [CrossRef]
- Tamkute, L.; Gil, B.M.; Carballido, J.R.; Pukalskiene, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef]
- Gniewosz, M.; Stobnicka, A. Bioactive components content, antimicrobial activity, and foodborne pathogen control in minced pork by cranberry pomace extracts. J. Food Saf. 2017, 38. [Google Scholar] [CrossRef] [Green Version]
- Sogut, E.; Seydim, A.C. The effects of Chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets. Food Packag. Shelf Life 2018, 18, 13–20. [Google Scholar] [CrossRef]
- Theivendran, S.; Hettiarachchy, N.S.; Johnson, M.G. Inhibition of Listeria monocytogenes by Nisin Combined with Grape Seed Extract or Green Tea Extract in Soy Protein Film Coated on Turkey Frankfurters. J. Food Sci. 2006, 71, M39–M44. [Google Scholar] [CrossRef]
- Ha, J.U.; Kim, Y.M.; Lee, D.S. Multilayered Antimicrobial Polyethylene Films Applied to the Packaging of Ground Beef. Packag. Technol. Sci. 2001, 15, 55–62. [Google Scholar] [CrossRef]
- Hong, Y.H.; Lim, G.O.; Song, K.B. Physical properties of Gelidium corneum-gelatin blend films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. J. Food Sci. 2009, 74, C6–C10. [Google Scholar] [CrossRef]
- Özvural, E.B.; Huang, Q.; Chikindas, M.L. The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT Food Sci. Technol. 2016, 68, 385–390. [Google Scholar] [CrossRef]
- Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Acedo-Félix, E.; Carvajal-Millán, E.; González-Córdova, A.F.; Vallejo-Galland, B.; Torres-Llanez, M.J.; Sánchez-Escalante, A. Antioxidant and antimicrobial activity of commercial propolis extract in beef patties. J. Food Sci. 2014, 79, C1499–C1504. [Google Scholar] [CrossRef]
- Ali, F.H.; Kassem, G.M.; Atta-Alla, O.A. Propolis as a natural decontaminant and antioxidant in fresh oriental sausage. Vet. Ital. 2010, 46, 167–172. [Google Scholar]
- Reagor, L.; Gusman, J.; McCoy, L.; Carino, E.; Heggers, J.P. The Effectiveness of Processed Grapefruit-Seed Extract as An Antibacterial Agent: I. An In Vitro Agar Assay. J. Altern. Complement. Med. 2002, 8, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Cvetnić, Z.; Vladimir-Knežević, S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004, 54, 243–250. [Google Scholar]
- Heggers, J.P.; Cottingham, J.; Gusman, J.; Reagor, L.; McCoy, L.; Carino, E.; Cox, R.; Zhao, J.G. The Effectiveness of Processed Grapefruit-Seed Extract as An Antibacterial Agent: II. Mechanism of Action and In Vitro Toxicity. J. Altern. Complement. Med. 2002, 8, 333–340. [Google Scholar] [CrossRef]
- Cao, S.; Xu, W.; Zhang, N.; Wang, Y.; Luo, Y.; He, X.; Huang, K. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast. PLoS ONE 2012, 7, e32943. [Google Scholar] [CrossRef] [Green Version]
- Davidov-Pardo, G.; Arozarena, I.; Navarro, M.; Marin-Arroyo, M.R. Chapter 18—Microencapsulation of Grape Seed Extracts. In Microencapsulation and Microspheres for Food Applications; Sagis, L.M.C., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 351–368. [Google Scholar]
- Baydar, N.G.; Sagdic, O.; Ozkan, G.; Cetin, S. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. Int. J. Food Sci. Technol. 2006, 41, 799–804. [Google Scholar] [CrossRef]
- Renzetti, A.; Betts, J.W.; Fukumoto, K.; Rutherford, R.N. Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure-activity relationships. Food Funct. 2020, 11, 9370–9396. [Google Scholar] [CrossRef] [PubMed]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid-Based Complement. Alternat. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.; Cardoso, S.M. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Shehu, A.; Ismail, S.; Rohin, M.; Harun, A.; Aziz, A.A.; Haque, M. Antifungal Properties of Malaysian Tualang Honey and Stingless Bee Propolis against Candida albicans and Cryptococcus neoformans. J. App. Pharm. Sci. 2016, 6, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Przybylek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Ozturk, I. Antifungal Activity of Propolis, Thyme Essential Oil and Hydrosol on Natural Mycobiota of Sucuk, a Turkish Fermented Sausage: Monitoring of Their Effects on Microbiological, Color and Aroma Properties. J. Food Process. Preserv. 2015, 39, 1148–1158. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef]
- Yan, X.; Murphy, B.T.; Hammond, G.B.; Vinson, J.A.; Neto, C.C. Antioxidant Activities and Antitumor Screening of Extracts from Cranberry Fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 2002, 50, 5844–5849. [Google Scholar] [CrossRef]
- Côté, J.; Caillet, S.; Doyon, G.; Dussault, D.; Sylvain, J.F.; Lacroix, M. Antimicrobial effect of cranberry juice and extracts. Food Control 2011, 22, 1413–1418. [Google Scholar] [CrossRef]
- Wu, V.C.H.; Qiu, X.; Bushway, A.; Harper, L. Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT Food Sci. Technol. 2008, 41, 1834–1841. [Google Scholar] [CrossRef]
- Diarra, M.S.; Block, G.; Rempel, H.; Oomah, B.D.; Harrison, J.; McCallum, J.; Boulanger, S.; Brouillette, É.; Gattuso, M.; Malouin, F. In vitro and in vivo antibacterial activities of cranberry press cake extracts alone or in combination with β-lactams against Staphylococcus aureus. BMC Complement. Altern. Med. 2013, 13, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theron, M.M.; Lues, J.R. Organic Acids and Food Preservation; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Vasudevan, P.; Marek, P.; Nair, M.K.M.; Annamalai, T.; Darre, M.; Khan, M.; Venkitanarayanan, K. In Vitro Inactivation of Salmonella Enteritidis in Autoclaved Chicken Cecal Contents by Caprylic Acid. J. Appl. Poult. Res. 2005, 14, 122–125. [Google Scholar] [CrossRef]
- Hauser, C.; Thielmann, J.; Muranyi, P. Organic Acids: Usage and Potential in Antimicrobial Packaging. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 563–580. [Google Scholar]
- Dibner, J.J.; Buttin, P. Use of Organic Acids as a Model to Study the Impact of Gut Microflora on Nutrition and Metabolism. J. Appl. Poult. Res. 2002, 11, 453–463. [Google Scholar] [CrossRef]
- Smulders, F.J.; Paulsen, P.; Vali, S.; Wanda, S. Effectiveness of a polyamide film releasing lactic acid on the growth of E. coli O157:H7, Enterobacteriaceae and Total Aerobic Count on vacuum-packed beef. Meat Sci. 2013, 95, 160–165. [Google Scholar] [CrossRef]
- De Oliveira, C.E.; Stamford, T.L.; Neto, N.J.G.; de Souza, E.L. Inhibition of Staphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids. Int. J. Food Microbiol. 2010, 137, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Drosinos, E.H.; Mataragas, M.; Kampani, A.; Kritikos, D.; Metaxopoulos, I. Inhibitory effect of organic acid salts on spoilage flora in culture medium and cured cooked meat products under commercial manufacturing conditions. Meat Sci. 2006, 73, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Crist, C.A.; Williams, J.B.; Schilling, M.W.; Hood, A.F.; Smith, B.S.; Campano, S.G. Impact of sodium lactate and vinegar derivatives on the quality of fresh Italian pork sausage links. Meat Sci. 2014, 96, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Battisti, R.; Fronza, N.; Júnior, A.V.; Silveira, S.M.d.; Damas, M.S.P.; Quadri, M.G.N. Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging. Food Packag. Shelf Life 2017, 11, 115–124. [Google Scholar] [CrossRef]
- Júnior, A.V.; Fronza, N.; Foralosso, F.B.; Dezen, D.; Huber, E.; dos Santos, J.H.Z.; Machado, R.A.F.; Quadri, M.G.N. Biodegradable Duo-functional Active Film: Antioxidant and Antimicrobial Actions for the Conservation of Beef. Food Bioprocess Technol. 2015, 8, 75–87. [Google Scholar] [CrossRef]
- Limjaroen, P.; Ryser, E.; Lockhart, H.; Harte, B. Inactivation of Listeria monocytogenes on Beef Bologna and Cheddar Cheese Using Polyvinylidene Chloride Films Containing Sorbic Acid. J. Food Sci. 2005, 70, M267–M271. [Google Scholar] [CrossRef]
- Da Rocha, M.; Loiko, M.R.; Tondo, E.C.; Prentice, C. Physical, mechanical and antimicrobial properties of Argentine anchovy (Engraulis anchoita) protein films incorporated with organic acids. Food Hydrocoll. 2014, 37, 213–220. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [Green Version]
- Reid, R.; Bolton, D.; Tiuftin, A.A.; Kerry, J.P.; Fanning, S.; Whyte, P. Controlling Blown Pack Spoilage Using Anti-Microbial Packaging. Foods 2017, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, D.; Tyuftin, A.A.; Cruz-Romero, M.C.; Bolton, D.; Fanning, S.; Pankaj, S.K.; Bueno-Ferrer, C.; Cullen, P.J.; Kerry, J.P. Surface attachment of active antimicrobial coatings onto conventional plastic-based laminates and performance assessment of these materials on the storage life of vacuum packaged beef sub-primals. Food Microbiol. 2017, 62, 196–201. [Google Scholar] [CrossRef] [Green Version]
- O’ Neill, C.M.; Cruz-Romero, M.C.; Duffy, G.; Kerry, J.P. Shelf life extension of vacuum-packed salt reduced frankfurters and cooked ham through the combined application of high pressure processing and organic acids. Food Packag. Shelf Life 2018, 17, 120–128. [Google Scholar] [CrossRef]
- Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H.G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 2008, 74, 3764–3773. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, V.E.; Stepnova, E.A.; Babak, V.G.; Yamskov, I.A.; Palma-Guerrero, J.; Jansson, H.B.; Lopez-Llorca, L.V.; Salinas, J.; Gerasimenko, D.V.; Avdienko, I.D.; et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr. Polym. 2006, 64, 66–72. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef]
- La Storia, A.; Ferrocino, I.; Torrieri, E.; Di Monaco, R.; Mauriello, G.; Villani, F.; Ercolini, D. A combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. Int. J. Food Microbiol. 2012, 158, 186–194. [Google Scholar] [CrossRef]
- Ferrocino, I.; La Storia, A.; Torrieri, E.; Musso, S.S.; Mauriello, G.; Villani, F.; Ercolini, D. Antimicrobial packaging to retard the growth of spoilage bacteria and to reduce the release of volatile metabolites in meat stored under vacuum at 1 degrees C. J. Food Prot. 2013, 76, 52–58. [Google Scholar] [CrossRef]
- Ercolini, D.; Ferrocino, I.; La Storia, A.; Mauriello, G.; Gigli, S.; Masi, P.; Villani, F. Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiol. 2010, 27, 137–143. [Google Scholar] [CrossRef]
- Batpho, K.; Boonsupthip, W.; Rachtanapun, C. Antimicrobial activity of collagen casing impregnated with nisin against foodborne microorganisms associated with ready-to-eat sausage. Food Control 2017, 73, 1342–1352. [Google Scholar] [CrossRef]
- Ferrocino, I.; Greppi, A.; La Storia, A.; Rantsiou, K.; Ercolini, D.; Cocolin, L. Impact of Nisin-Activated Packaging on Microbiota of Beef Burgers during Storage. Appl. Environ. Microbiol. 2016, 82, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Silva, P.; Soares, N.F.F.; Nóbrega, J.E.; Júnior, M.A.W.; Barbosa, K.B.F.; Volp, A.C.P.; Zerdas, E.R.M.A.; Würlitzer, N.J. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 2009, 20, 85–89. [Google Scholar] [CrossRef]
- Barbiroli, A.; Musatti, A.; Capretti, G.; Iametti, S.; Rollini, M. Sakacin-A antimicrobial packaging for decreasing Listeria contamination in thin-cut meat: Preliminary assessment. J. Sci. Food Agric. 2017, 97, 1042–1047. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Food Additives and Contaminants: Seventy-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://apps.who.int/iris/bitstream/handle/10665/98388/9789241209830_eng.pdf?sequence=1&isAllowed=y (accessed on 2 April 2021).
- De Arauz, L.J.; Jozala, A.F.; Mazzola, P.G.; Penna, T.C.V. Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar] [CrossRef]
- Sobrino-López, A.; Martín-Belloso, O. Use of nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008, 18, 329–343. [Google Scholar] [CrossRef]
- Garg, N.; Oman, T.J.; Wang, T.S.A.; De Gonzalo, C.V.; Walker, S.; Van Der Donk, W.A. Mode of action and structure-activity relationship studies of geobacillin I. J. Antibiot. 2014, 67, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papagianni, M.; Anastasiadou, S. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact. 2009, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinkidas, M.L.; Garcia-Garcera, M.J.; Driessen, A.J.M.; Ledeboer, A.M.; Nissen-Meyer, J.; Nes, I.F.; Abee, T.; Konings, W.N.; Venema, G. Pediocin PA-1, a Bacteriocin from Pediococcus acidilactici PAC1.O, Forms Hydrophilic Pores in the Cytoplasmic Membrane of Target Cells. Appl. Environ. Microbiol. 1993, 59, 3577–3584. [Google Scholar] [CrossRef] [Green Version]
- Trinetta, V.; Morleo, A.; Sessa, F.; Iametti, S.; Bonomi, F.; Ferranti, P. Purified sakacin A shows a dual mechanism of action against Listeria spp: Proton motive force dissipation and cell wall breakdown. FEMS Microbiol. Lett. 2012, 334, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Olaimat, A.N.; Holley, R.A. Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized Oriental mustard extract. Food Microbiol. 2016, 57, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Gammariello, D.; Incoronato, A.; Conte, A.; DelNobile, M. Use of Antimicrobial Treatments and Modified Atmosphere to Extend the Shelf Life of Fresh Sausages. J. Food Process Technol. 2015, 6. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y.; Zhang, P.; Ye, L.; Wu, L.; He, S. Physical Characterization and Pork Packaging Application of Chitosan Films Incorporated with Combined Essential Oils of Cinnamon and Ginger. Food Bioprocess Technol. 2017, 10, 503–511. [Google Scholar] [CrossRef]
- Saurabh, K.; Heintz, E.A.J.; Sijtsema, G.P.; Schuddemat, J.P. Preservation of Meat Products with a Composition Comprising a Vanilin and a Cinnamate Component. EP2995201A1, 10 March 2016. [Google Scholar]
- Berdahl, D.R.; Reynhout, G.S.; Schulze, M.H. Labiatae Herb Extracts and Hop Extracts for Extending the Color Life and Inhibiting the Growth of Microorganisms in Fresh Meat, Fish and Poultry. US20040131709A1, 8 July 2004. [Google Scholar]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the food industry—Recent developments, risks and regulation. Trends Food Sci. Technol. 2012, 24, 30–46. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation of 18 October 2011on the definition of nanomaterial. Off. J. Eur. Union 2011, 275, 38–40. [Google Scholar]
- Assadpour, E.; Mahdi Jafari, S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr. 2019, 59, 3129–3151. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Romero, M.C.; Murphy, T.; Morris, M.; Cummins, E.; Kerry, J.P. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 2013, 34, 393–397. [Google Scholar] [CrossRef]
- Azlin-Hasim, S.; Cruz-Romero, M.C.; Ghoshal, T.; Morris, M.A.; Cummins, E.; Kerry, J.P. Application of silver nanodots for potential use in antimicrobial packaging applications. Innov. Food Sci. Emerg. Technol. 2015, 27, 136–143. [Google Scholar] [CrossRef]
- Azlin-Hasim, S.; Cruz-Romero, M.C.; Morris, M.A.; Padmanabhan, S.C.; Cummins, E.; Kerry, J.P. The Potential Application of Antimicrobial Silver Polyvinyl Chloride Nanocomposite Films to Extend the Shelf-Life of Chicken Breast Fillets. Food Bioprocess Technol. 2016, 9, 1661–1673. [Google Scholar] [CrossRef]
- Akbar, A.; Anal, A.K. Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 2014, 38, 88–95. [Google Scholar] [CrossRef]
- Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azlin-Hasim, S.; Cruz-Romero, M.C.; Morris, M.A.; Cummins, E.; Kerry, J.P. Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packag. Shelf Life 2015, 4, 26–35. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Indirect Additives Used in Food Contact Substances. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=IndirectAdditives&sort=Sortterm_ID&order=ASC&startrow=1&type=basic&search=silver (accessed on 15 May 2021).
- Krasniewska, K.; Galus, S.; Gniewosz, M. Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications—A Review. Int. J. Mol. Sci. 2020, 21, 698. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request related to a 12th list of substances for food contact materials. EFSA J. 2006, 395–401, 1–21. [Google Scholar]
- Primožič, M.; Knez, Ž.; Leitgeb, M. (Bio)nanotechnology in Food Science-Food Packaging. Nanomaterials 2021, 11, 292. [Google Scholar] [CrossRef]
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Scientific Committee on Food. Opinion of the Scientific Committee on Food on Estragole (1-Allyl-4-Methoxybenzene). Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/fs_food-improvement-agents_flavourings-out104.pdf (accessed on 15 April 2021).
- Friedman, M.; Kozukue, N.; Harden, L.A. Cinnamaldehyde Content in Foods Determined by Gas Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2000, 48, 5702–5709. [Google Scholar] [CrossRef]
- Rehman, A.; Jafari, S.M.; Aadil, R.M.; Assadpour, E.; Randhawa, M.A.; Mahmood, S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci. Technol. 2020, 101, 106–121. [Google Scholar] [CrossRef]
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Anti-Microbial Agent—Concentration Applied | Food Product | Microorganisms Targeted | Indicative Reduction (Log10 CFU/g, Log10 CFU/mL, Log10 CFU/cm2) 1,2,3,4 | Reference |
---|---|---|---|---|
Bay—0.5% v/w | Ground chicken | Total viable counts | 0.14–0.47 | [35] |
Listeria monocytogenes | 0.07–0.36 | |||
Escherichia coli | 0.12–1.22 | |||
Cinnamon—1% w/w | Marinade on chicken | Lactic acid bacteria | 0.5 | [36] |
Yeasts and moulds | 0.8 | |||
E. coli | 0 | |||
Coliforms | 0 | |||
1% w/w | Marinade on pork | Lactic acid bacteria | 0 | [36] |
Yeasts and moulds | 2.4 | |||
E. coli | 0 | |||
Coliforms | 0 | |||
Clove—0.5%, 1% | Minced beef | Aspergillus flavus | 2.42–3.01 5 | [37] |
Coriander—0.02% v/w | Ground beef | Total viable counts | 0.1–0.4 | [38] |
Enterobacteriaceae | 1–1.5 | |||
Lactic acid bacteria, | 0–0.8 | |||
Total anaerobic counts | 0.5 | |||
Fennel—0.2% v/w | Chicken | Total viable counts | 0.9 | [39] |
Enterobacteriaceae | 2.4 | |||
Lactic acid bacteria | 0 | |||
Garlic—0.5%, 1% | Minced beef | A. flavus | 1.93–2.12 5 | [37] |
Ginger—3%, 6% w/w | Chicken | Psychrophilic bacteria | 2.7–4.5 6 | [40] |
Yeasts and moulds | 0.9–3.3 6 | |||
Hop—5000 ppm | Model marinade on pork | Mesophilic bacteria | 0.9 | [41] |
Enterobacteriaceae | 0 | |||
Listeria monocytogenes | 1.5 | |||
Lactic acid bacteria | 1.3 | |||
Hyssop—0.02% v/w | Ground beef | Total viable counts | 0–0.3 | [38] |
Enterobacteriaceae | 0.9–1 | |||
Lactic acid bacteria | 0.1 | |||
Total anaerobic counts | 0.5 | |||
Nutmeg—10, 20 ppm | Cooked Sausage | Total mesophilic bacteria | 0.13–0.38 7 | [42] |
Oregano—0.3%, 0.4%, 0.5% v/w | Chicken | Salmonella sp. | 2.7–3.8 | [43] |
0.2% w/w | Chicken | Lactic acid bacteria | 0.67–0.86 | [44] |
Pepper—0.1%, 0.5% v/v | Pork | Pseudomonas spp. | 2.1–3.05 | [45] |
Enterobacteriaceae | 1.05–1.85 | |||
Brochothrix spp. | 0 | |||
Lactic acid bacteria | 0 | |||
Peppermint—0.25%, 0.5% v/w | Minced beef | Total aerobic bacteria | 1.44–1.58 | [46] |
Psychrotrophic bacteria | 1.36–1.4 | |||
Enterobacteriaceae | 0.3–1.2 | |||
Pseudomonas spp. | 1–1.11 | |||
Rosemary—2% v/w | Chicken | Pseudomonas aeruginosa | 0 | [47] |
Lactic acid bacteria | 2.57 | |||
0.2% v/w | Chicken | Anaerobic bacteria | 1.05 | [48] |
Enterobacteriaceae | 3.62 | |||
Lactic acid bacteria | 0.69 | |||
Pseudomonas spp. | 2.72 | |||
Sage—0.2% v/w | Chicken | Anaerobic bacteria | 1.13 | [48] |
Enterobacteriaceae | 3.62 | |||
Lactic acid bacteria | 0.81 | |||
Pseudomonas spp. | 2.72 | |||
0.1% w/w | Mechanical Separated Meat (MSM) from chicken | Mesophilic bacteria | 1.2 | [49] |
Psychrotrophic bacteria | 0.3 | |||
Enterobacteriaceae | 2.4 | |||
Coliforms | 2.3 | |||
Enterococci bacteria | 1.4 | |||
Savory—0.2% v/w | Chicken | Total viable counts | 0.8 | [39] |
Enterobacteriaceae | 1 | |||
Lactic acid bacteria | 0 | |||
Sweet lemon—500 ppm | Sausage | Total viable count | 0.03 | [50] |
Pseudomonas spp. | 0.05 | |||
Psychrotrophic bacteria | 0.04 | |||
Lactic acid bacteria | 0.08 | |||
Enterobacteriaceae | 0.11 | |||
Thyme—500 ppm | Sausage | Total viable count | 1.75 | [50] |
Pseudomonas spp. | 0.85 | |||
Psychrotrophic bacteria | 1.69 | |||
Lactic acid bacteria | 1.18 | |||
Enterobacteriaceae | 0.09 | |||
0.5%, 1% | Minced beef | A. flavus | 2.25–2.64 5 | [37] |
Anti-Microbial Agent—Concentration Applied | Food Product | Packaging Material | Microorganisms Targeted | Indicative Reduction (Log10 CFU/g, Log10 CFU/mL, Log10 CFU/cm2) 1,2,3,4 | Reference |
---|---|---|---|---|---|
Angelica Root—0.1% v/w | Pork | Polyethylene (PE) film | Total counts | 2.34 | [51] |
Brochothrix thermosphacta | 1.49 | ||||
Carnobacterium spp. | 1.04 | ||||
Enterobacteriaceae | 1.95 | ||||
Staphylococcus sp. | 1.17 | ||||
Pseudomonas sp. | 0.89 | ||||
Enterococcus sp. | 0.81 | ||||
Chrysanthemum—1.5% w/v | Beef | Chitosan/nanofibers film | L. monocytogenes | 1.2–1.5 | [52] |
Cinnamon—10% w/w | Pork | Polylactic acid (PLA)/b-cyclodextrin nanofilm | Total viable counts | 4.5 5 | [53] |
5 mg/mL | Chicken | Sodium alginate (NaAlg) coating | Total viable counts | 1.4 | [54] |
Psychrotrophic bacteria | 1 | ||||
Pseudomonas spp. | 0.8 | ||||
Enterobacteriaceae | 0.6 | ||||
Lactic acid bacteria | 1.5 | ||||
Yeasts and moulds | 0.5 | ||||
L. monocytogenes | 1 | ||||
Clove—0.1% v/w | Pork | Polyethylene (PE) film | Total counts | 2.49 | [51] |
B. thermosphacta | 2.17 | ||||
Carnobacterium spp. | 1.62 | ||||
Enterobacteriaceae | 2.37 | ||||
Staphylococcus sp. | 1.73 | ||||
Pseudomonas sp. | 1.34 | ||||
Enterococcus sp. | 1.26 | ||||
3% | Ground chicken meat | Carboxymethyl cellulose–polyvinyl alcohol (CMC-PVOH) film | Total viable counts | 3 6 | [55] |
1, 2 mg/g | Beef | Chitosan-myristic acid nanogel coating | Salmonella enterica ser Enteritidis | 0.3–0.8 | [56] |
0.5 g in 9 × 5 cm film | Ground chicken | Linear-low density polyethylene (LLDPE) film | S. Typhimurium | 7 | [57] |
L. monocytogenes | 6 | ||||
Coriander—0.5%, 1% | Chicken | Sodium alginate (NaAlg)-glycerol coating | Mesophilic bacteria | 1–1.5 | [58] |
Psychrotrophic bacteria | 0.8–1.2 | ||||
Lactic acid bacteria | 1.3–2.3 | ||||
Coliforms | 1.4–2.4 | ||||
Staphylococcus aureus | 1.2–2.1 | ||||
Moulds and yeasts | 1.1–1.5 | ||||
Cumin—Black zira—0.5%, 1% v/v | Ground beef | Polylactic acid (PLA)-nanocellulose (NC) film | Total viable bacteria | 0.7 | [59] |
Lactic acid bacteria | 0.1–0.2 | ||||
Enterobacteriaceae | 0.5–0.8 | ||||
Psychrotrophic bacteria | 0.2–0.3 | ||||
S. aureus | 0.6–1.2 | ||||
Pseudomonas spp. | 0.1–0.3 | ||||
0.5%, 1%, 2% v/v | Chicken | Chitosan coating | Mesophilic bacteria | 0.45–0.59 | [60] |
Psychrotrophic bacteria | 0 | ||||
Lactic acid bacteria | 0 | ||||
Enterobacteriaceae | 0 | ||||
Yeasts and moulds | 0 | ||||
Eucalyptus—0.5%, 1%, 2% v/v | Chicken | Chitosan coating | Mesophilic bacteria | 0–0.69 | [60] |
Psychrotrophic bacteria | 1.11–1.41 | ||||
Lactic acid bacteria | 0 | ||||
Enterobacteriaceae | 0 | ||||
Yeasts and moulds | 0 | ||||
Garlic—2%, 4%, 6%, 8% w/w | Ready-to-Eat (RTE) beef loaf | Low density polyethylene (LDPE) film | L. monocytogenes | 0.2–0.5 | [61] |
E. coli | 0–0.2 | ||||
B. thermosphacta | 0–0.2 | ||||
Horseradish, mustard—0.6, 1.2 µg/h release rate | Chicken | Glass vial inside high density polyethylene (HDPE) film | S. enterica ser Typhimurium | 1–1.2 | [62] |
L. monocytogenes | 0.1–0.6 | ||||
Total aerobic bacteria | 0.5–1 | ||||
20%, 28%, 40%, 52%, 58% v/w | Cooked chicken | Cellulose film with carbon nanotube (CNT) | Salmonella Choleraesuis | 2.5–8 | [63] |
Psychrotrophic bacteria | 1.5–8 | ||||
Mesophilic bacteria | 0.7–8 | ||||
Lemongrass—2% | Pork sausage | Polylactic acid (PLA) film | L. monocytogenes | 1.47 | [64] |
Nutmeg—0.5%, 1%, 1.5%, 2% | Beef | Sage seed mucilage coating | Total viable count | 3–8 | [65] |
Psychrotrophic bacteria | 1.8–5.5 | ||||
E. coli | 0.5–2 | ||||
S. aureus | 1–3 | ||||
Yeasts and moulds | 1–5 | ||||
Oregano—1%, 2%, 3% v/v | Beef | Soy protein coating | E. coli O157:H7 | 1.2–1.83 | [66] |
L. monocytogenes | 0.9–1.9 | ||||
S. aureus | 1.8–2.86 | ||||
5% v/v | Ground beef patties | Soy protein film | Total viable count | 0 | [67] |
Lactic acid bacteria | 0 | ||||
Staphylococcus spp. | 0 | ||||
Pseudomonas spp. | 0.6 | ||||
Coliforms | 0.5 | ||||
Pepper—2% w/w | Chicken | Carboxymethyl cellulose (CMC) coating | Mesophilic bacteria | 1.5–2.2 | [68] |
Psychrotrophic bacteria | 1.5–2 | ||||
Peppermint—0.5%, 1% v/v | Ground beef | Polylactic acid (PLA)- nanocellulose (NC) film | Total viable bacteria | 0.7 | [59] |
Lactic acid bacteria | 0–0.4 | ||||
Enterobacteriaceae | 0.6–0.8 | ||||
Psychrotrophic bacteria | 0.4 | ||||
S. aureus | 0.6–0.8 | ||||
Pseudomonas spp. | 0.1–0.4 | ||||
Rosemary—4% w/w | Chicken | 3 layers film (paper-metallic layer- high density polyethylene (HDPE)) | Mesophilic bacteria | 0.3 | [69] |
Enterobacteriaceae | 0 | ||||
Pseudomonas spp. | 0.24 | ||||
B. thermosphacta | 0.37 | ||||
5 mg/mL | Chicken | Sodium alginate (NaAlg) coating | Total viable counts | 1.6 | [54] |
Psychrotrophic bacteria | 1.6 | ||||
Pseudomonas spp. | 1.3 | ||||
Enterobacteriaceae | 1.6 | ||||
Lactic acid bacteria | 1.7 | ||||
Yeasts and moulds | 0.8 | ||||
L. monocytogenes | 1.5 | ||||
0.1% v/w | Pork | Polyethylene (PE) film | Total counts | 2.53 | [51] |
B. thermosphacta | 1.95 | ||||
Carnobacterium spp. | 1.5 | ||||
Enterobacteriaceae | 2.48 | ||||
Staphylococcus sp. | 1.39 | ||||
Pseudomonas sp. | 1.08 | ||||
Enterococcus sp. | 0.98 | ||||
4% w/w | Beef | 3 layers film (paper-metallic layer- high density polyethylene (HDPE)) | Psychrotrophic bacteria | 0–0.7 7 | [70] |
B. thermosphacta | 0–1.5 7 | ||||
Pseudomonas spp. | 0–0.8 7 | ||||
Enterobacteriaceae | 0–0.8 7 | ||||
Thyme—1%, 2%, 3% v/v | Beef | Soy protein coating | E. coli O157:H7 | 1.2–1.87 | [66] |
L. monocytogenes | 1–1.97 | ||||
S. aureus | 1.6–2.6 | ||||
5% v/v | Ground beef patties | Soy protein film | Total viable count | 0 | [67] |
Lactic acid bacteria | 0 | ||||
Staphylococcus spp. | 0.2 | ||||
Pseudomonas spp. | 0.9 | ||||
Coliforms | 0.6 | ||||
1% | Sausage | Chitosan coating | Yeasts and moulds | 0.6–1.5 | [71] |
Turmeric—2% w/w | Chicken | Carboxymethyl cellulose (CMC) coating | Mesophilic bacteria | 2.2–3 | [68] |
Psychrotrophic bacteria | 3.5 |
Anti-Microbial Agent—Concentration Applied | Food Product | Packaging Material | Microorganisms Targeted | Indicative Reduction (Log10 CFU/g, Log10 CFU/mL, Log10 CFU/cm2) 1,2,3,4 | Reference |
---|---|---|---|---|---|
Bee pollen—20% v/v | Salami | Polypropylene (PP) film coated with chitosan solution | L. monocytogenes | 0.2–1.5 | [137] |
Cranberry—2.5%, 5%, 7.5% w/w | Ground beef | - | Total viable bacteria | 1.5–2.7 | [138] |
E. coli O157:H7 | 0.4–2.4 | ||||
2% | Pork slurry | - | L. monocytogenes | 4.45 | [139] |
Pseudomonas putida | 3.4–3.64 | ||||
B. thermosphacta | 5.4–7 | ||||
Aerobic mesophilic bacteria | 3–3.5 | ||||
2% | Pork burger | - | L. monocytogenes | 3.78 | [139] |
P. putida | 3.5–4 | ||||
B. thermosphacta | 4 | ||||
Aerobic mesophilic bacteria | 1.5 | ||||
Lactic acid bacteria | 1.4 | ||||
2% | Cooked ham | - | L. monocytogenes | 1.6 | [139] |
Aerobic mesophilic bacteria | 2.3–7.3 | ||||
Lactic acid bacteria | 1.7–4.5 | ||||
2.5% w/w | Minced pork | - | S. aureus | >3.7 | [140] |
L. monocytogenes | >5 | ||||
E. coli O26 | >3.32 | ||||
S. Enteritidis | >3.54 | ||||
Grape seed extract—5%, 10%, 15% w/w | Chicken | Chitosan film | Mesophilic bacteria | 1–1.5 | [141] |
Coliforms | 1–2.5 | ||||
1200 ppm | Turkey frankfurters | Soy protein coating | L. monocytogenes | 0 | [142] |
Grapefruit seed extract—0.5%, 1% | Ground beef | Low density polyethylene (LDPE) film | Total aerobic bacteria | 0.5–3 | [143] |
Coliforms | 0.6 | ||||
0.08% | Pork | Gelidium corneum–gelatin blend film | E. coli O157:H7 | 0.6 | [144] |
L. monocytogenes | 1.33 | ||||
Green tea extract—2.8% | Pork | Gelidium corneum–gelatin blend film | E. coli O157:H7 | 1 | [144] |
L. monocytogenes | 0.98 | ||||
1200 ppm | Turkey frankfurters | Soy protein coating | L. monocytogenes | 0 | [142] |
5% | Hamburger patties | - | Total mesophilic aerobic bacteria | 0.2 | [145] |
Coliforms | 0.55 | ||||
Yeasts and moulds | 0.23 | ||||
0.5% | Hamburger patties | Chitosan coating | Total mesophilic aerobic bacteria | 0.07–0.14 | [145] |
Coliforms | 0–0.10 | ||||
Yeasts and moulds | 0–0.23 | ||||
Propolis extract—20% v/v | Salami | Polypropylene (PP) film coated with chitosan solution | L. monocytogenes | 2.4–4 | [137] |
2% w/w | Beef patties | - | Mesophilic bacteria | 0.6–1 | [146] |
Psychrotrophic bacteria | 0.6–2.6 | ||||
0.6% v/w | Sausage | - | Proteolytic count | 2.92 5 | [147] |
Lipolytic count | 3.23 5 | ||||
Yeasts and moulds | 3.13 5 |
Anti-Microbial Agent—Concentration Applied | Food Product | Packaging Material | Microorganisms Targeted | Indicative Reduction (Log10 CFU/g, Log10 CFU/mL, Log10 CFU/cm2) 1,2,3,4 | Reference |
---|---|---|---|---|---|
Nisin—0.112 g/mL and 1 mL solution in 21 × 38 cm2 | Beef | High density polyethylene (HDPE) film | Total viable counts | 0.5 | [187] |
B. thermosphacta | 2.68 | ||||
Lactic acid bacteria | 3.88 | ||||
Enterobacteriaceae | 0 | ||||
Pseudomonas spp. | 0 | ||||
0.012 g/mL and 4 mL solution in 200 × 300 mm | Beef | Low density polyethylene (LDPE) bags | Total viable counts | 0 | [188] |
Lactic acid bacteria | 2.18 | ||||
B. thermosphacta | 0.5 | ||||
Carnobacterium spp. | 0.54 | ||||
Enterobacteriaceae | 0 | ||||
Pseudomonas spp. | 0 | ||||
0.1125 g/mL and 4 mL solution in 200 × 300 mm | Beef | Low density polyethylene (LDPE) bags | Total viable counts | 1.75 | [189] |
Lactic acid bacteria | 3.45 | ||||
B. thermosphacta | 2.43 | ||||
Carnobacterium spp. | 1.78 | ||||
Enterobacteriaceae | 2.10 | ||||
10,000 ppm | Sausage | Collagen casing | Total viable counts | 0.2–2 | [190] |
L. monocytogenes | 1–3.2 | ||||
0.1125 g/mL and 4 mL solution in 300 × 300 mm | Beef burger | Low density polyethylene (LDPE) bags | Total aerobic bacteria | 0.1–2.31 | [191] |
Lactic acid bacteria | 0–1.24 | ||||
Staphylococcaceae | 0–0.14 | ||||
Enterobacteriaceae | 0–0.13 | ||||
Moulds | 0 | ||||
Yeasts | 0.34 | ||||
2000 IU/mL | Chicken | Sodium alginate (NaAlg) coating | Total viable counts | 1 | [54] |
Psychrotrophic bacteria | 0.5 | ||||
Pseudomonas spp. | 0.7 | ||||
Enterobacteriaceae | 0.4 | ||||
Lactic acid bacteria | 1.8 | ||||
Yeasts and moulds | 0.4 | ||||
L. monocytogenes | 1.4 | ||||
Pediocin—25%, 50% w/w | Ham | Cellulose film | Listeria innocua | 0.8–2 | [192] |
Salmonella sp. | 0.2–0.5 | ||||
Sakasin-A—0.63 mg/cm2 | RTE Beef carpaccio | Polyethylene (PE)-coated paper sheets | Total aerobic count | 0.63 | [193] |
L. innocua | 1.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadochristopoulos, A.; Kerry, J.P.; Fegan, N.; Burgess, C.M.; Duffy, G. Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021, 10, 1598. https://doi.org/10.3390/foods10071598
Papadochristopoulos A, Kerry JP, Fegan N, Burgess CM, Duffy G. Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods. 2021; 10(7):1598. https://doi.org/10.3390/foods10071598
Chicago/Turabian StylePapadochristopoulos, Angelos, Joseph P. Kerry, Narelle Fegan, Catherine M. Burgess, and Geraldine Duffy. 2021. "Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat" Foods 10, no. 7: 1598. https://doi.org/10.3390/foods10071598
APA StylePapadochristopoulos, A., Kerry, J. P., Fegan, N., Burgess, C. M., & Duffy, G. (2021). Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods, 10(7), 1598. https://doi.org/10.3390/foods10071598