Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Sampling and Aging Assays
2.3. Experimental Procedure
2.3.1. Extraction Apparatus and Operation Mode
2.3.2. Extraction Conditions Study
2.3.3. Optimized Extraction Conditions
2.4. HPLC-DAD Analysis
2.5. Beer Color Determination
2.6. Statistical Analysis
3. Results and Discussion
3.1. Study of Temperature and Time of Extraction for DNPH and HBA
3.2. Derivatizing Agent Choice (DNPH vs. HBA)
3.3. Headspace Extraction vs. Immersed Extraction
3.4. Analytical Features of the Methodology
3.5. Influence of Natural and Forced Aging in Aldehyde Levels
3.6. Chemometric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Axcell, B.; Torline, P. Some alternative views on beer flavour. MBAA Tech. Q. 1998, 35, 91–94. [Google Scholar]
- Bamforth, C.W. A Critical Control Point Analysis for Flavor Stability of Beer. MBAA Tech. Q. 2004, 41, 91–103. [Google Scholar]
- Stewart, G.; Priest, F. Beer shelf life and stability. In Food and Beverage Stability and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2011; pp. 527–539. [Google Scholar]
- Schieberle, P.; Komarek, D. Changes in key aroma compounds during natural beer aging. ACS Publ. 2003, 5, 70–79. [Google Scholar]
- Ditrych, M.; Filipowska, W.; De Rouck, G.; Jaskula-Goiris, B.; Aerts, G.; Andersen, M.L.; De Cooman, L. Investigating the evolution of free staling aldehydes throughout the wort production process. Brew. Sci. 2019, 72, 10–17. [Google Scholar]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Saison, D.L.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Malfliet, S.; Van Opstaele, F.; De Clippeleer, J.; Syryn, E.; Goiris, K.; De Cooman, L.; Aerts, G. Flavour instability of pale lager beers: Determination of analytical markers in relation to sensory ageing. J. Inst. Brew. 2008, 114, 180–192. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Coghe, S.; Verstrepen, K.J.; Verachtert, H.; Derdelinckx, G. Evolution of chemical and sensory properties during aging of top-fermented beer. J. Agric. Food Chem. 2013, 51, 6782–6790. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, K.; Tuszyński, T. The effect of temperature on fermentation and beer volatiles at an industrial scale. J. Inst. Brew. 2018, 124, 230–235. [Google Scholar] [CrossRef]
- Trueba, P.B.; Jaskula-Goiris, B.; De Clippeleer, J.; Goiris, K.; Praet, T.; Sharma, U.K.; Van der Eycken, E.; Sanders, M.G.; Vincken, J.P.; Brabanter, D. Validation of an ultra-high-performance liquid chromatography-mass spectrometry method for the quantification of cysteinylated aldehydes and application to malt and beer samples. J. Chromatogr. A 2019, 1604, 460467. [Google Scholar] [CrossRef]
- Mutz, Y.S.; Rosario, D.K.A.; Conte-Junior, C.A. Insights into chemical and sensorial aspects to understand and manage beer aging using chemometrics. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3774–3801. [Google Scholar] [CrossRef]
- Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Huvaere, K.; Andersen, M.L. Beer and ESR spin trapping. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1043–1053. [Google Scholar]
- Stewart, G.G. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Moreira, N.; Meireles, S.; Brandao, T.; de Pinho, P.G. Optimization of the HS-SPME-GC-IT/MS method using a central composite design for volatile carbonyl compounds determination in beers. Talanta 2013, 117, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Dennenlöhr, J.; Thörner, S.; Maxminer, J.; Rettberg, N. Analysis of selected staling aldehydes in wort and beer by GC-EI-MS/MS using HS-SPME with on-fiber derivatization. J. Am. Soc. Brew. Chem. 2020, 78, 284–298. [Google Scholar] [CrossRef]
- Marsili, R.T.; Laskonis, L.C.; Kenaan, C. Evaluation of PDMS-based extraction techniques and GC-TOFMS for the analysis of off-flavor chemicals in beer. J. Am. Soc. Brew. Chem. 2007, 65, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of head space sorptive extraction method for the determination of volatile compounds in beer and comparison with stir bar sorptive extraction. Foods 2020, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Stashenko, E.E.; Martínez, J.R. Derivatization and solid-phase microextraction. Trends Anal. Chem. 2004, 23, 553–561. [Google Scholar] [CrossRef]
- Parkinson, D.R. Analitycal Derivatization Techniques. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Elsevier: Oxford, UK, 2012; Volume 2, pp. 559–595. [Google Scholar]
- De Lima, L.F.; Brandão, P.F.; Donegatti, T.A.; Ramos, R.M.; Gonçalves, L.M.; Cardoso, A.A.; Pereira, E.A.; Rodrigues, J.A. 4-hydrazinobenzoic acid as a derivatizing agent for aldehyde analysis by HPLC-UV and CE-DAD. Talanta 2018, 187, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, J.G.; Valente, I.M.; Gonçalves, L.M.; Rodrigues, J.A.; Barros, A.A. Gas-diffusion microextraction. J. Sep. Sci. 2010, 33, 3207–3212. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.M.; Magalhães, P.J.; Valente, I.M.; Pacheco, J.G.; Dostálek, P.; Sýkora, D.; Rodrigues, J.A.; Barros, A.A. Analysis of aldehydes in beer by gas-diffusion microextraction: Characterization by high-performance liquid chromatography–diode-array detection–atmospheric pressure chemical ionization–mass spectrometry. J. Chromatogr. A 2010, 1217, 3717–3722. [Google Scholar] [CrossRef]
- Cordeiro, L.; Valente, I.M.; Santos, J.R.; Rodrigues, J.A. Qualitative carbonyl profile in coffee beans through GDME-HPLC-DAD-MS/MS for coffee preliminary characterization. Food Res. Int. 2018, 107, 536–543. [Google Scholar] [CrossRef]
- EBC. 9.6. Colour of Beer: Spectrophotometric Method. In Analitica EBC. EBC Analysis Committee; Fachverlag Hans Carl: Nürnberg, Germany, 2010. [Google Scholar]
- Ramos, R.M.; Pacheco, J.G.; Gonçalves, L.M.; Valente, I.M.; Rodrigues, J.A.; Barros, A.A. Determination of free and total diacetyl in wine by HPLC–UV using gas-diffusion microextraction and pre-column derivatization. Food Control 2012, 24, 220–224. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wang, P.Y.; Hsieh, L.L.; Ku, K.H.; Yeh, Y.T.; Wu, C.H. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2, 4-dinitrophenylhydrazine derivatization. J. Chromatogr. A 2009, 1216, 6377–6381. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaegen, B.; Delvaux, F.; Daenen, L.; Verachtert, H.; Delvaux, F. Aging characteristics of different beer types. Food Chem. 2007, 103, 404–412. [Google Scholar] [CrossRef]
- Vesely, P.; Lusk, L.; Basarova, G.; Seabrooks, J.; Ryder, D. Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Biol. Chem. 2003, 51, 6941–6944. [Google Scholar] [CrossRef] [PubMed]
- Saison, D.; Vanbeneden, N.; De Schutter, D.P.; Daenen, L.; Mertens, T.; Delvaux, F.; Delvaux, F.R. Characterisation of the flavour and the chemical composition of lager beer after ageing in varying conditions. Brew. Sci. 2010, 63, 41–53. [Google Scholar]
- Fontana, M.; Buiatti, S. Amino acids in beer. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 273–284. [Google Scholar]
Compound | DNPH—Derivatives | HBA—Derivatives |
---|---|---|
Peak Area ± SD | Peak Area ± SD | |
ACET | 14.620 ± 1.168 a | 13.020 ± 0.707 a |
FURF | 0.743 ± 0.080 a | 0.015 ± 0.001 b |
2-MB | 10.822 ± 3.516 a | 2.115 ± 0.151 b |
3-MB | 6.953 ± 2.856 a | 1.472 ± 0.055 b |
2-MP | 12.192 ± 2.161 a | 2.565 ± 0.127 b |
IS | 2.400 ± 0.214 a | 4.056 ± 0.259 b |
Headspace Extraction | Immersed Extraction | |||||||
---|---|---|---|---|---|---|---|---|
Precision | Precision | |||||||
Intraday | Interday | Intraday | Interday | |||||
Compound 1 | Peak Area ± SD | RSD (%) | Peak Area ± SD | RSD (%) | Peak Area ± SD | RSD (%) | Peak Area ± SD | RSD (%) |
ACET | 75.48 ± 2.76 | 3.7 | 70.06 ± 6.83 | 9.7 | 45.33 ± 3.51 | 7.7 | 41.25 ± 6.40 | 15.5 |
FURF | 0.45 ± 0.03 | 6.3 | 0.47 ± 0.04 | 9.2 | 0.78 ± 0.08 | 10.3 | 0.63 ± 0.13 | 20.6 |
2-MB | 6.73 ± 0.24 | 3.6 | 6.81 ± 0.63 | 9.3 | 4.56 ± 0.21 | 4.6 | 3.90 ± 0.93 | 23.8 |
3-MB | 11.43 ± 0.55 | 4.8 | 11.71 ± 0.99 | 8.5 | 6.78 ± 0.67 | 9.9 | 5.70 ± 1.50 | 26.3 |
2-MP | 3.75 ± 0.10 | 2.7 | 3.77 ± 0.26 | 6.9 | 3.20 ± 0.28 | 8.8 | 2.74 ± 0.61 | 22.3 |
IS | 14.58 ± 1.18 | 8.1 | 13.90 ± 1.32 | 9.5 | 11.05 ± 0.81 | 7.3 | 10.10 ± 1.35 | 13.4 |
Compound | Linear Range (µg/L) | Calibration Curve | r2 | LOD (µg/L) | LOQ (µg/L) | Spike (µg/L) | Precision | Recovery (%) | |
---|---|---|---|---|---|---|---|---|---|
Intraday RSD (%) | Interday RSD (%) | ||||||||
ACET | 4000–30,000 | y = (1.932 ± 0.080) x + (4404.907 ± 1095.240) | 0.995 | 1857.7 | 6192.4 | * | 1.8 | 8.0 | - |
High 1 | 2.4 | 3.4 | 103 | ||||||
FURF | 100–1000 | y = (0.161 ± 0.004) x + (−6.846 ± 1.788) | 0.999 | 46.4 | 154.5 | Low 2 | 3.3 | 5.1 | 97 |
High 1 | 2.5 | 3.7 | 97 | ||||||
2-MP | 3–40 | y = (2.697 ± 0.056) x + (19.303 ±1.201) | 0.999 | 1.7 | 5.7 | Low 2 | 3.4 | 9.2 | 109 |
High 1 | 1.0 | 8.2 | 114 | ||||||
2-MB | 2–40 | y = (4.200 ± 0.067) x + (10.944 ± 1.645) | 0.999 | 1.2 | 3.9 | Low 2 | 1.7 | 3.6 | 96 |
High 1 | 1.6 | 3.7 | 97 | ||||||
3-MB | 2–40 | y = (5.324 ± 0.091) x + (11.385 ± 1.538) | 0.999 | 1.3 | 4.2 | Low 2 | 3.2 | 9.0 | 101 |
High 1 | 1.2 | 3.3 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, I.M.; Carvalho, D.O.; da Silva, M.G.; Guido, L.F. Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application. Foods 2021, 10, 1704. https://doi.org/10.3390/foods10081704
Ferreira IM, Carvalho DO, da Silva MG, Guido LF. Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application. Foods. 2021; 10(8):1704. https://doi.org/10.3390/foods10081704
Chicago/Turabian StyleFerreira, Inês M., Daniel O. Carvalho, Marco Gomes da Silva, and Luís Ferreira Guido. 2021. "Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application" Foods 10, no. 8: 1704. https://doi.org/10.3390/foods10081704
APA StyleFerreira, I. M., Carvalho, D. O., da Silva, M. G., & Guido, L. F. (2021). Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application. Foods, 10(8), 1704. https://doi.org/10.3390/foods10081704