No Glycation Required: Interference of Casein in AGE Receptor Binding Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.2.1. Preparation of Heated MP
2.2.2. Preparation of Micellar Casein and Sodium Caseinate
2.2.3. sRAGE and CD36 Inhibition ELISA
2.2.4. sRAGE Dot Blot
2.2.5. Simulated Infant In Vitro Digestion
2.2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mills, E.N.C.; Sancho, A.; Rigby, N.M.; Jenkins, J.A.; Mackie, A. Impact of food processing on the structural and allergenic properties of food allergens. Mol. Nutr. Food Res. 2009, 53, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Zenker, H.E.; Ewaz, A.; Deng, Y.; Savelkoul, H.F.J.; van Neerven, R.; De Jong, N.W.; Wichers, H.J.; Hettinga, K.A.; Teodorowicz, M. Differential effects of dry vs. wet heating of β-lactoglobulin on formation of sRAGE binding ligands and sige epitope recognition. Nutrients 2019, 11, 1432. [Google Scholar] [CrossRef] [Green Version]
- Zenker, H.E.; Teodorowicz, M.; Ewaz, A.; Van Neerven, R.J.; Savelkoul, H.F.; De Jong, N.W.; Wichers, H.J.; Hettinga, K.A. Binding of CML-modified as well as heat-glycated β-lactoglobulin to receptors for AGEs is determined by charge and hydrophobicity. Int. J. Mol. Sci. 2020, 21, 4567. [Google Scholar] [CrossRef] [PubMed]
- Kislinger, T.; Fu, C.; Huber, B.; Qu, W.; Taguchi, A.; Du Yan, S.; Hofmann, M.; Pischetsrieder, M.; Stern, D.; Schmidt, A.M. N ε-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem. 1999, 274, 31740–31749. [Google Scholar] [CrossRef] [Green Version]
- Zenker, H.E.; Raupbach, J.; Boeren, S.; Wichers, H.; Hettinga, K.A. The effect of low vs. high temperature dry heating on solubility and digestibility of cow’s milk protein. Food Hydrocoll. 2020, 109, 106098. [Google Scholar] [CrossRef]
- Deng, Y.; Govers, C.; Teodorowicz, M.; Liobyte, I.; De Simone, I.; Hettinga, K.; Wichers, H.J. Hydrophobicity drives receptor-mediated uptake of heat-processed proteins by THP-1 macrophages and dendritic cells, but not cytokine responses. PLoS ONE 2020, 15, e0236212. [Google Scholar] [CrossRef]
- Xue, J.; Rai, V.; Singer, D.; Chabierski, S.; Xie, J.; Reverdatto, S.; Burz, D.S.; Schmidt, A.M.; Hoffmann, R.; Shekhtman, A. Advanced glycation end product recognition by the receptor for AGEs. Structure 2011, 19, 722–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teodorowicz, M.; Zenker, H.E.; Ewaz, A.; Tsallis, T.; Mauser, A.; Gensberger-Reigl, S.; De Jong, N.W.; Hettinga, K.A.; Wichers, H.J.; van Neerven, R.J.J.; et al. Enhanced uptake of processed bovine β-lactoglobulin by antigen presenting cells: Identification of receptors and implications for allergenicity. Mol. Nutr. Food Res. 2021, 65, 2000834. [Google Scholar] [CrossRef] [PubMed]
- Fritz, G. RAGE: A single receptor fits multiple ligands. Trends Biochem. Sci. 2011, 36, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Teodorowicz, M.; Wichers, H.; Van Boekel, M.A.J.S.; Hettinga, K.A. Generation of soluble advanced glycation end products receptor (sRAGE)-binding ligands during extensive heat treatment of whey protein/lactose mixtures is dependent on glycation and aggregation. J. Agric. Food Chem. 2016, 64, 6477–6486. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, D.G. On the structural models of bovine casein micelles—Review and possible improvements. Soft Matter 2011, 7, 2265–2272. [Google Scholar] [CrossRef]
- Anema, S.G.; Klostermeyer, H. Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 °C. J. Agric. Food Chem. 1997, 45, 1108–1115. [Google Scholar] [CrossRef]
- Singh, H.; Creamer, L.K. Changes in size and composition of protein aggregates on heating reconstituted concentrated skim milk at 120 °C. J. Food Sci. 1991, 56, 671–677. [Google Scholar] [CrossRef]
- Bogahawaththa, D.; Chandrapala, J.; Vasiljevic, T. Modulation of milk immunogenicity by thermal processing. Int. Dairy J. 2017, 69, 23–32. [Google Scholar] [CrossRef]
- Yong, Y.H.; Foegeding, E.A. Effects of caseins on thermal stability of bovine β-lactoglobulin. J. Agric. Food Chem. 2008, 56, 10352–10358. [Google Scholar] [CrossRef] [PubMed]
- Jennes, R. Preparation and properties of a salt solution which simulates milk ultrafiltrate. Neth. Milk Dairy J. 1983, 16, 153–164. [Google Scholar]
- Moeckel, U.; Duerasch, A.; Weiz, A.; Ruck, M.; Henle, T. Glycation reactions of casein micelles. J. Agric. Food Chem. 2016, 64, 2953–2961. [Google Scholar] [CrossRef] [PubMed]
- Ménard, O.; Bourlieu, C.; De Oliveira, S.; Dellarosa, N.; Laghi, L.; Carriere, F.; Capozzi, F.; Dupont, D.; Deglaire, A. A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chem. 2018, 240, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Hellwig, M.; Henle, T.; Vieths, S. Influence of the maillard reaction on the allergenicity of food proteins and the development of allergic inflammation. Curr. Allergy Asthma Rep. 2019, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.L.; Li, W.; Park, Y.M.; Rahaman, S.O. Mechanisms of cell signaling by the scavenger receptor CD36: Implications in atherosclerosis and thrombosis. Trans. Am. Clin. Clim. Assoc. 2010, 121, 206–220. [Google Scholar]
- Anema, S.G.; de Kruif, C.G. (Kees) Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme. J. Agric. Food Chem. 2013, 61, 7142–7149. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Fox, P.; Kelly, A. The caseins: Structure, stability, and functionality. In Proteins in Food Processing; Elsevier, B.V., Ed.; Woodhead Publushing: Cambridge, UK, 2018; pp. 49–92. [Google Scholar]
- Cano-Ruiz, M.; Richter, R. Effect of homogenization pressure on the milk fat globule membrane proteins. J. Dairy Sci. 1997, 80, 2732–2739. [Google Scholar] [CrossRef]
- Verhoeckx, K.; Bøgh, K.L.; Dupont, D.; Egger, L.; Gadermaier, G.; Larré, C.; Mackie, A.; Menard, O.; Adel-Patient, K.; Picariello, G.; et al. The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST. Food Chem. Toxicol. 2019, 129, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Van Der Lugt, T.; Weseler, A.R.; Gebbink, W.A.; Vrolijk, M.F.; Opperhuizen, A.; Bast, A. Dietary Advanced Glycation Endproducts Induce an Inflammatory Response in Human Macrophages in Vitro. Nutrients 2018, 10, 1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenker, H.E.; Teodorowicz, M.; Wichers, H.J.; Hettinga, K.A. No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods 2021, 10, 1836. https://doi.org/10.3390/foods10081836
Zenker HE, Teodorowicz M, Wichers HJ, Hettinga KA. No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods. 2021; 10(8):1836. https://doi.org/10.3390/foods10081836
Chicago/Turabian StyleZenker, Hannah E., Malgorzata Teodorowicz, Harry J. Wichers, and Kasper A. Hettinga. 2021. "No Glycation Required: Interference of Casein in AGE Receptor Binding Tests" Foods 10, no. 8: 1836. https://doi.org/10.3390/foods10081836
APA StyleZenker, H. E., Teodorowicz, M., Wichers, H. J., & Hettinga, K. A. (2021). No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods, 10(8), 1836. https://doi.org/10.3390/foods10081836