Innovative Development of Pasta with the Addition of Fish By-Products from Two Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Enriched Pasta Preparation
2.3. Fatty Acids Profile
2.4. Optimal Cooking Time
2.5. Texture Profile Analysis—TPA
2.6. Pasta Color
2.7. Technological Properties
2.7.1. Weight Gain and Swelling Index
2.7.2. Cooking Losses
2.7.3. Moisture
2.8. Sensory Analysis
2.9. Statistical Analyses
3. Results
3.1. Comparison of Fatty Acids Profiles
3.2. Optimal Cooking Time
3.3. Texture Profile Analysis -TPA-
3.4. Pasta Color
3.5. Technological Properties
3.6. Sensory Analysis
4. Discussion
4.1. Fatty Acids Profile
4.2. Cooking Times
4.3. Texture Profile Analysis
4.4. Color of Pasta
4.5. Technological Parameters
4.6. Sensory Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aronson, J.K. Defining ‘nutraceuticals’: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2016, 83, 8–19. [Google Scholar] [CrossRef]
- Khan, R.S.; Grigor, J.; Winger, R.; Win, A. Functional food product development—Opportunities and challenges for food manufacturers. Trends Food Sci. Technol. 2013, 30, 27–37. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Kadam, S.; Prabhasankar, P. Marine foods as functional ingredients in bakery and pasta products. Food Res. Int. 2010, 43, 1975–1980. [Google Scholar] [CrossRef]
- Iafelice, G.; Caboni, M.F.; Cubadda, R.; Di Criscio, T.; Trivisonno, M.C.; Marconi, E. Development of Functional Spaghetti Enriched with Long Chain Omega-3 Fatty Acids. Cereal Chem. J. 2008, 85, 146–151. [Google Scholar] [CrossRef]
- Jacobsen, C. Enrichment of foods with omega-3 fatty acids: A multidisciplinary challenge. Ann. N. Y. Acad. Sci. USA 2010, 1190, 141–150. [Google Scholar] [CrossRef]
- Filipović, J.; Pezo, L.; Filipovic, V.; Brkljača, J.; Krulj, J. The effects of ω-3 fatty acids and inulin addition to spelt pasta quality. LWT 2015, 63, 43–51. [Google Scholar] [CrossRef]
- Reglamento (UE) No 116/2010 de la Comisión, de 9 de Febrero de 2010, por el que se Modifica el Reglamento (CE) no 1924/2006 del Parlamento Europeo y del Consejo en lo Relativo a la Lista de Declaraciones Nutricionales Texto Pertinente a Efectos del EEE. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2010-80235 (accessed on 13 May 2021).
- Desai, A.; Brennan, M.A.; Brennan, C.S. The effect of semolina replacement with protein powder from fish (Pseudophycis bachus) on the physicochemical characteristics of pasta. LWT 2017, 89, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Goes, E.S.D.R.; De Souza, M.L.R.; Michka, J.M.G.; Kimura, K.S.; De Lara, J.A.F.; Delbem, A.C.B.; Gasparino, E. Fresh pasta enrichment with protein concentrate of tilapia: Nutritional and sensory characteristics. Food Sci. Technol. 2016, 36, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F.J.; Lorenzo, J.M. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules 2020, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, F.N.; Exler, J.; Weihrauch, J.L. Provisional tables on the content of omega-3 fatty acids and other fat components of selected foods. J. Am. Diet. Assoc. 1986, 86, 788–793. [Google Scholar] [PubMed]
- Medina, I.; Aubourg, S.P.; Martín, R.P. Composition of phospholipids of white muscle of six tuna species. Lipids 1995, 30, 1127–1135. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bansal, S.; Mangal, M.; Dixit, A.K.; Gupta, R.K.; Mangal, A. Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 1647–1661. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2011, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibbel, A. The sustainability of functional foods. Soc. Sci. Med. 2007, 64, 554–561. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Commitee and the Commitee of the Regions on the Implementation of the Circular Economy Action Plan. 2019. EUR-Lex-52019DC0190. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0190 (accessed on 15 June 2021).
- United Nations. The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/es/goals (accessed on 15 June 2021).
- Calanche, J.; Beltrán, H.; Marquina, P.; Roncalés, P.; Beltrán, J. Eating fish in another way: Development of functional pasta with added concentrates of farmed sea bass ( Dicentrarchus labrax ). Cereal Chem. J. 2019, 96, 856–865. [Google Scholar] [CrossRef]
- Ainsa, A.; Marquina, P.; Roncalés, P.; Calanche M, J.B. Enriched Fresh Pasta with a Sea Bass By-Product, a Novel Food: Fatty Acid Stability and Sensory Properties throughout Shelf Life. Foods 2021, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Cleary, L.J.; Brennan, C. The influence of a (1?3)(1?4)-?-d-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int. J. Food Sci. Technol. 2006, 41, 910–918. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Larson-Powers, N.; Pangborn, R.M. Descriptive analysis of the sensory properties of beverages and gelatins containing sucrose or synthetic sweeteners. J. Food Sci. 1978, 43, 47–51. [Google Scholar] [CrossRef]
- UNE-EN ISO (2012). Análisis Sensorial. Guía General Para La Selección, Entrenamiento y Control de Catadores y Catadores Expertos; ISO: Geneva, Switerland, 2013. [Google Scholar]
- Braghieri, A.; Piazzolla, N.; Carlucci, A.; Monteleone, E.; Girolami, A.; Napolitano, F. Development and validation of a quantitative frame of reference for meat sensory evaluation. Food Qual. Prefer. 2012, 25, 63–68. [Google Scholar] [CrossRef]
- Calanche, J.; Pedrós, S.; Roncalés, P.; Beltrán, J.A. Design of Predictive Tools to Estimate Freshness Index in Farmed Sea Bream (Sparus aurata) Stored in Ice. Foods 2020, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Babuskin, S.; Krishnan, K.R.; Saravana, P.A.; Sivarajan, M.; Sukumar, M. Functional Foods Enriched with Marine Microalga Nannochloropsis Oculata as a Source of W-3 Fatty Acids. Food Technol. Biotechnol. 2014, 52, 292–299. [Google Scholar]
- Zhang, J.; Tao, N.; Zhao, Y.; Wang, X.; Wang, M. Comparison of the Fatty Acid and Triglyceride Profiles of Big Eye Tuna (Thunnus obesus), Atlantic salmon (Salmo salar) and Bighead Carp (Aristichthysnobilis) Heads. Molecules 2019, 24, 3983. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Chen, C.; Shi, Z.; Wang, L. Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus Albacares) and Bigeye Tuna (Thunnus Obesus). J. Food Nutr. Res. 2013, 4, 42–45. [Google Scholar]
- Candela, C.G.; López, L.M.B.; Kohen, V.L. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: Nutritional recommendations. Nutr. Hosp. 2011, 26. [Google Scholar] [CrossRef]
- ISSFAL (International Society for the Study of Faty Acids and Lipids). Global Recommendations for EPA and DHA Intake. 2014. Available online: https://www.issfal.org/ (accessed on 25 May 2021).
- Products, N.E.P.O.D. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Vernaza, M.G.; Biasutti, E.; Schmiele, M.; Jaekel, L.Z.; Bannwart, A.; Chang, Y.K. Effect of supplementation of wheat flour with resistant starch and monoglycerides in pasta dried at high temperatures. Int. J. Food Sci. Technol. 2012, 47, 1302–1312. [Google Scholar] [CrossRef]
- De Marco, E.R.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Pongpichaiudom, A.; Songsermpong, S. Evaluation of microstructure and quality characteristics of microwave-dried instant noodles enriched with chicken meat, egg yolk, and seaweed. J. Food Meas. Charact. 2017, 12, 22–34. [Google Scholar] [CrossRef]
- Marti, A.; Fongaro, L.; Rossi, M.; Lucisano, M.; Pagani, M.A. Quality characteristics of dried pasta enriched with buckwheat flour. Int. J. Food Sci. Technol. 2011, 46, 2393–2400. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Hamid, N.; Kantono, K.; Pereira, L.; Farouk, M.; Knowles, S.O. Effects of meat addition on pasta structure, nutrition and in vitro digestibility. Food Chem. 2016, 213, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Lacko-Bartošová, M. Noodle quality of winter wheat cultivated in sustainable farming systems. J. Central Eur. Agric. 2014, 15, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Real Decreto 2181/1975, de 12 de Septiembre, por el que se Aprueba la Reglamentación Técnico-Sanitaria para la Elaboración, Circulación y Comercio de Pastas Alimenticias. Boletín Oficial del Estado No 220, de Septiembre de 1975. Available online: https://www.boe.es/eli/es/d/1975/09/12/2181 (accessed on 4 May 2021).
- Devi, L. Utilization of Fish Mince in Formulation and Development of Pasta Products. Int. Food Res. J. 2013, 20, 219–224. [Google Scholar]
- Kimura, K.S.; De Souza, M.L.R.; Gasparino, E.; Mikcha, J.M.G.; Chambó, A.P.S.; Verdi, R.; Coradini, M.F.; Marques, D.R.; Feihrmann, A.; Goes, E.S.D.R. Preparation of lasagnas with dried mix of tuna and tilapia. Food Sci. Technol. 2017, 37, 507–514. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Sea Bass Pasta (%) | Tuna Pasta (%) | Control Pasta (%) |
---|---|---|---|
Durum wheat | 72 | 72 | 75 |
Dried fish concentrate | 3 | 3 | 0 |
Water | 25 | 25 | 25 |
Proximal Composition (%) | Sea Bass Pasta (%) | Tuna Pasta (%) | Control Pasta (%) |
Moisture | 10.6 | 10.4 | 11.6 |
Protein | 14.8 | 13.2 | 12.5 |
Fat | 1.5 | 1.8 | 1.4 |
Fiber | 1.23 | 1.27 | 1.20 |
Fatty Acids | Tuna Pasta | Sea Bass Pasta |
---|---|---|
C14 | 2.44 ± 0.09 b | 0.96 ± 0.01 a |
C15 | 0.53 ± 0.02 b | 0.06 ± 0.09 a |
C16 | 21.31 ± 0.10 b | 18.04 ± 0.21a |
C17 | 0.56 ± 0.01 b | 0.13 ± 0.11a |
C18 | 3.08 ± 0.09 b | 2.65 ± 0.15 a |
C20 | 0.38 ± 0.01 b | 0.05 ± 0.09 a |
C22 | 0.18 ± 0.00 b | 0.04 ± 0.07 a |
%SFA | 28.48 b | 21.93 a |
C16:1 | 2.81 ± 0.40 b | 1.49 ± 0.02 a |
C17:1 | 0.31 ± 0.01 | 0.41 ± 0.36 |
tC18:1 n-9 | 0.05 ± 0.09 | 0.05 ± 0.09 |
C18:1 n-11 | 1.85 ± 0.03 b | 1.60 ± 0.04 a |
C18:1 n-9 (oleic) | 12.82 ± 0.05 a | 20.75 ± 0.57 b |
C20:1 | 2.09 ± 0.28 | 2.01 ± 0.70 |
C22:1 n-9 | 0.00 ± 0.00 | 0.16 ± 0.04 |
C24:1 | 0.12 ± 0.10 | 0.00 ± 0.00 |
%MUFA | 20.04 a | 26.47 b |
C18:3 Ω-3 (ALA) | 0.57 ± 0.03 a | 2.98 ± 0.68 b |
tC18:2 n-6 | 0.00 ± 0.00 | 0.05 ± 0.04 |
C18:2 n-6 (linoleic) | 38.00 ± 0.38 a | 43.97 ± 0.09 b |
C20:2 n-6 | 0.30 ± 0.18 | 0.48 ± 0.02 |
C20:3 n-6 | 0.07 ± 0.06 | 0.00 ± 0.00 |
C22:2 n-6 | 0.09 ± 0.08 | 0.04 ± 0.02 |
C20:4 n-6 | 0.59 ± 0.02 b | 0.15 ± 0.12 a |
C22:6 Ω-3 (DHA) | 7.31 ± 0.23 b | 2.05 ± 0.12 a |
C20:5 Ω-3 (EPA) | 3.64 ± 0.10 b | 1.44 ± 0.05 a |
C22:5 Ω-3 | 0.43 ± 0.01 | 0.44 ± 0.02 |
%PUFA | 50.43 | 51.59 |
ΣΩ3 | 11.37 b | 6.91 a |
ΣΩ6 | 39.06 a | 44.69 b |
P/S ratio | 1.77 a | 2.35 b |
Ω6/Ω3 ratio | 3.43 a | 6.47 b |
mg Ω3/100 g | 202.42 b | 111.88 a |
%DRI (EFSA) | 80.97 b | 44.75 a |
HDN | ADH | SPG | COH | GUM | CHW | FRT | |
---|---|---|---|---|---|---|---|
Control pasta | 3726.35 ± 252.65 c | −16.02 ± 30.05 b | 0.77 ± 0.09 | 0.68 ± 0.04 b | 2545.55 ± 286.53 b | 1993.26 ± 300.04 b | 758.42 ± 86.63 b |
Sea bass pasta | 3206.25 ± 296.84 b | −13.79 ± 35.44 b | 0.77 ± 0.09 | 0.49 ± 0.13 a | 1610.34 ± 338.32 a | 1279.20 ± 296.17 a | 881.13 ± 125.81 c |
Tuna pasta | 2418.04 ± 304.11 a | −36.87 ± 20.34 a | 0.72 ± 0.08 | 0.66 ± 0.06 b | 1611.40 ± 291.77 a | 1156.31 ± 239.39 a | 479.18 ± 93.53 a |
WG (%) | SI (g/g) | CL (%) | M (%) | |
---|---|---|---|---|
Control | 167.06 ± 3.15 b | 3.20 ± 0.03 c | 4.46 ± 0.17 a | 11.59 ± 0.38 b |
Sea bass | 128.70 ± 8.80 a | 2.72 ± 0.15 b | 5.14 ± 0.75 b | 10.58 ± 0.64 a |
Tuna | 129.35 ± 11.25 a | 1.57 ± 0.04 a | 4.91 ± 0.19 b | 10.42 ± 0.21 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ainsa, A.; Honrado, A.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche M., J.B. Innovative Development of Pasta with the Addition of Fish By-Products from Two Species. Foods 2021, 10, 1889. https://doi.org/10.3390/foods10081889
Ainsa A, Honrado A, Marquina PL, Roncalés P, Beltrán JA, Calanche M. JB. Innovative Development of Pasta with the Addition of Fish By-Products from Two Species. Foods. 2021; 10(8):1889. https://doi.org/10.3390/foods10081889
Chicago/Turabian StyleAinsa, Andrea, Adrián Honrado, Pedro L. Marquina, Pedro Roncalés, José Antonio Beltrán, and Juan B. Calanche M. 2021. "Innovative Development of Pasta with the Addition of Fish By-Products from Two Species" Foods 10, no. 8: 1889. https://doi.org/10.3390/foods10081889
APA StyleAinsa, A., Honrado, A., Marquina, P. L., Roncalés, P., Beltrán, J. A., & Calanche M., J. B. (2021). Innovative Development of Pasta with the Addition of Fish By-Products from Two Species. Foods, 10(8), 1889. https://doi.org/10.3390/foods10081889