Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Preparation of Coating Antigen
2.4. Preparation of AuNPs
2.5. Preparation of AuNPs–Abs Conjugated Probe
2.6. Strip Assembly
2.7. Sample Preparation
2.8. Test Procedure
2.9. Sensitivity
2.10. Specificity
2.11. Method Confirmation
2.12. Analysis of Blind Samples
3. Results and Discussion
3.1. Characterization of AuNPs and AuNPs–Abs
3.2. Optimization
3.2.1. pH Value
3.2.2. Antibody Concentration
3.2.3. Dilution Buffer
3.2.4. Resuspension Buffer
3.2.5. Sample Pad Treatment Solution
3.3. Sensitivity
3.4. Specificity
3.5. Confirmation by LC-MS/MS
3.6. Analysis of Blind Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- W.H.O. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 August 2021).
- Yun, J.; Choi, J.; Jo, C.; Kwon, K. Detection of synthetic anti-obesity drugs, designer analogues and weight-loss ingredients as adulterants in slimming Foods from 2015 to 2017. J. Chromatogr. Sep. Tech. 2018, 9, 2. [Google Scholar] [CrossRef]
- Cohen, P.A. The FDA and adulterated supplements—dereliction of duty. JAMA Netw. Open 2018, 1, e183329. [Google Scholar] [CrossRef] [Green Version]
- Muschietti, L.; Redko, F.; Ulloa, J. Adulterants in selected dietary supplements and their detection methods. Drug Test. Anal. 2020, 12, 861–886. [Google Scholar] [CrossRef]
- Eid, P.S.; Ibrahim, D.A.; Zayan, A.H.; Abd Elrahman, M.M.; Shehata, M.A.A.; Kandil, H.; Abouibrahim, M.A.; Luc Minh, D.; Shinkar, A.; Elfaituri, M.K.; et al. Comparative effects of furosemide and other diuretics in the treatment of heart failure: A systematic review and combined meta-analysis of randomized controlled trials. Heart Fail. Rev. 2020, 26, 127–136. [Google Scholar] [CrossRef]
- Silva, E.F.; Tanaka, A.A.; Fernandes, R.N.; Munoz, R.A.A.; Silva, I.S. Batch injection analysis with electrochemical detection for the simultaneous determination of the diuretics furosemide and hydrochlorothiazide in synthetic urine and pharmaceutical samples. Microchem. J. 2020, 157, 105027. [Google Scholar] [CrossRef]
- Banik, M.; Gopi, S.P.; Ganguly, S.; Desiraju, G.R. Cocrystal and Salt Forms of Furosemide: Solubility and Diffusion Variations. Cryst. Growth Des. 2016, 16, 5418–5428. [Google Scholar] [CrossRef]
- Chu, R.; Chen, L.; Zhang, B.; Jia, C.; Qian, Y. Data Analysis of Illegally Adding Chemical Substances in 84 Batches of Slimming Health Foods. Chin. J. Mod. Appl. Pharm. 2020, 16, 1973–1976. [Google Scholar] [CrossRef]
- Cianchino, V.; Acosta, G.; Ortega, C.; Martinez, L.D.; Gomez, M.R. Analysis of potential adulteration in herbal medicines and dietary supplements for the weight control by capillary electrophoresis. Food Chem. 2008, 108, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.S.; Muratt, D.T.; Dal Molin, T.R.; Urquhart, C.G.; Viana, C.; de Carvalho, L.M. Analysis of Pharmacologic Adulteration in Dietary Supplements by Capillary Zone Electrophoresis Using Simultaneous Contactless Conductivity and UV Detection. Chromatographia 2018, 81, 689–698. [Google Scholar] [CrossRef]
- Moreira, A.P.L.; Motta, M.J.; Dal Molin, T.R.; Viana, C.; de Carvalho, L.M. Determination of diuretics and laxatives as adulterants in herbal formulations for weight loss. Food Addit. Contam. A 2013, 30, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.D.; Gryniewicz-Ruzicka, C.M.; Mans, D.J.; Mecker-Pogue, L.C.; Kauffman, J.F.; Westenberger, B.J.; Buhse, L.F. Qualitative screening for adulterants in weight-loss supplements by ion mobility spectrometry. J. Pharm. Biomed. Anal. 2012, 71, 18–26. [Google Scholar] [CrossRef]
- De Carvalho, L.M.; Viana, C.; Moreira, A.P.L.; do Nascimento, P.C.; Bohrer, D.; Motta, M.J.; da Silveira, G.D. Pulsed amperometric detection (PAD) of diuretic drugs in herbal formulations using a gold electrode following ion-pair chromatographic separation. J. Solid State Electrochem. 2013, 17, 1601–1608. [Google Scholar] [CrossRef]
- Muller, L.S.; Dal Molin, T.R.; Muratt, D.T.; Leal, G.C.; Urquhart, C.G.; Viana, C.; de Carvalho, L.M. Determination of Stimulants and Diuretics in Dietary Supplements for Weight Loss and Physical Fitness by Ion-pair Chromatography and Pulsed Amperometric Detection (PAD). Curr. Anal. Chem. 2018, 14, 562–570. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, Y.M.; Kee, C.L.; Low, M.Y.; Ge, X.W. Analysis of 40 weight loss compounds adulterated in health supplements by liquid chromatography quadrupole linear ion trap mass spectrometry. Drug Test. Anal. 2016, 8, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Muratt, D.T.; Muller, L.S.; Dal Molin, T.; Viana, C.; de Carvalho, L.M. Pulsed amperometric detection of pharmacologic adulterants in dietary supplements using a gold electrode coupled to HPLC separation. Anal. Methods 2018, 10, 2226–2233. [Google Scholar] [CrossRef]
- Rebiere, H.; Guinot, P.; Civade, C.; Bonnet, P.A.; Nicolas, A. Detection of hazardous weight-loss substances in adulterated slimming formulations using ultra-high-pressure liquid chromatography with diode-array detection. Food Addit. Contam. A 2012, 29, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancanova Moreira, A.P.; Gobo, L.A.; Viana, C.; de Carvalho, L.M. Simultaneous analysis of antihypertensive drugs and diuretics as adulterants in herbal-based products by ultra-high performance liquid chromatography-electrospray tandem mass spectrometry. Anal. Methods 2016, 8, 1881–1888. [Google Scholar] [CrossRef]
- Said, M.I.; Rageh, A.H.; Abdel-aal, F.A.M. Fabrication of novel electrochemical sensors based on modification with different polymorphs of MnO2 nanoparticles. Application to furosemide analysis in pharmaceutical and urine samples. RSC Adv. 2018, 8, 18698–18713. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.S.; Bott-Neto, J.L.; Raymundo-Pereira, P.A.; Ticianelli, E.A.; Machado, S.A.S. An electrochemical furosemide sensor based on pencil graphite surface modified with polymer film Ni-salen and Ni(OH)2/C nanoparticles. Sens. Actuator B Chem. 2018, 276, 378–387. [Google Scholar] [CrossRef]
- Heidarimoghadam, R.; Farmany, A. Rapid determination of furosemide in drug and blood plasma of wrestlers by a carboxyl-MWCNT sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 1242–1245. [Google Scholar] [CrossRef]
- Nagata, S.I.; Kurosawa, M.; Kuwajima, M. A direct enzyme immunoassay for the measurement of furosemide in horse plasma. J. Vet. Med. Sci. 2007, 69, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Woods, W.E.; Wang, C.J.; Houtz, P.K.; Tai, H.H.; Wood, T.; Weckman, T.J.; Yang, J.M.; Chang, S.L.; Blake, J.W.; Tobin, T. Immunoassay detection of drugs in racing horses. VI. Detection of furosemide (Lasix) in equine blood by a one step ELISA and PCFIA. Res. Commun. Chem. Pathol. Pharmacol. 1988, 61, 111–128. [Google Scholar] [PubMed]
- Stanker, L.H.; Muldoon, M.T.; Buckley, S.A.; Braswell, C.; Kamps-Holtzapple, C.; Beier, R.C. Development of a monoclonal antibody-based immunoassay to detect furosemide in cow’s milk. J. Agric. Food Chem. 1996, 44, 2455–2459. [Google Scholar] [CrossRef]
- Tang, R.H.; Yang, H.; Choi, J.R.; Gong, Y.; Feng, S.S.; Pingguan-Murphy, B.; Huang, Q.S.; Shi, J.L.; Mei, Q.B.; Xu, F. Advances in paper-based sample pretreatment for point-of-care testing. Crit. Rev. Biotechnol. 2017, 37, 411–428. [Google Scholar] [CrossRef]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Hnasko, R.M.; Jackson, E.S.; Lin, A.V.; Haff, R.P.; McGarvey, J.A. A rapid and sensitive lateral flow immunoassay (LFIA) for the detection of gluten in foods. Food Chem. 2021, 355, 129514. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.; Uthicke, S. Sensitive environmental DNA detection via lateral flow assay (dipstick)—A case study on corallivorous crown-of-thorns sea star (Acanthaster cf. solaris) detection. Environ. DNA 2021, 3, 323–342. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, H.; Xiao, Z.; Fu, H.; Shen, Y.; Luo, L.; Wang, H.; Lei, H.; Hongsibsong, S.; Xu, Z. Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immunochromatographic assays for simultaneous pesticide screening. J. Hazard. Mater. 2021, 412, 125241. [Google Scholar] [CrossRef]
- Lan, J.; Sun, W.; Chen, L.; Zhou, H.; Fan, Y.; Diao, X.; Wang, B.; Zhao, H. Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. Food Agric. Immunol. 2020, 31, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Duan, H.; Xu, P.; Huang, X.; Xiong, Y. Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay. RSC Adv. 2016, 6, 26178–26185. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef] [PubMed]
- Christopher, P.; Robinson, N.; Shaw, M.K. Antibody-Label Conjugates in Lateral-Flow Assays. In Drugs of Abuse: Body Fluid Testing; Wong, R.C., Tse, H.Y., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 87–98. [Google Scholar] [CrossRef]
- Kong, D.; Liu, L.; Song, S.; Suryoprabowo, S.; Li, A.; Kuang, H.; Wang, L.; Xu, C. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253. [Google Scholar] [CrossRef] [PubMed]
- Granero, G.; Longhi, M.; Mora, M.; Junginger, H.; Midha, K.; Shah, V.; Stavchansky, S.; Dressman, J.; Barends, D. Biowaiver monographs for immediate release solid oral dosage forms: Furosemide. J. Pharm. Sci. 2010, 99, 2544–2556. [Google Scholar] [CrossRef] [PubMed]
Sample | Spike Level (μg/g) | LC-MS/MS (μg/mL) | Recovery (%) | CV (%) | AuNPs-LFIA Result |
---|---|---|---|---|---|
coffee | 0.30 | 0.346 ± 0.006 | 115.39 | 1.75 | −−− |
0.60 | 0.707 ± 0.009 | 117.81 | 1.23 | ±±± | |
1.20 | 1.379 ± 0.026 | 114.95 | 1.89 | +++ | |
2.40 | 2.781 ± 0.014 | 115.90 | 0.49 | +++ | |
capsule | 0.30 | 0.302 ± 0.005 | 100.80 | 1.56 | −−− |
0.60 | 0.649 ± 0.014 | 108.10 | 2.22 | ±±± | |
1.20 | 1.196 ± 0.059 | 99.64 | 4.92 | +++ | |
2.40 | 2.295 ± 0.013 | 95.63 | 0.55 | +++ | |
tea | 0.30 | 0.247 ± 0.004 | 82.25 | 1.70 | −−− |
0.60 | 0.512 ± 0.016 | 85.35 | 3.05 | ±±± | |
1.20 | 1.048 ± 0.032 | 87.37 | 3.02 | +++ | |
2.40 | 2.127 ± 0.026 | 88.61 | 1.22 | +++ | |
tablet | 0.25 | 0.200 ± 0.004 | 80.18 | 2.09 | −−− |
0.50 | 0.379 ± 0.011 | 75.83 | 2.86 | ±±± | |
1.00 | 0.879 ± 0.006 | 87.90 | 0.65 | +++ | |
2.00 | 1.862 ± 0.002 | 93.11 | 0.09 | +++ |
Blind Sample | LC-MS/MS | AuNPs-LFIA | Blind Sample | LC-MS/MS | AuNPs-LFIA |
---|---|---|---|---|---|
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
| ND | --- | | ND | −−− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xie, H.; Wang, J.; Li, X.; Xiao, Z.; Xu, Z.; Lei, H.; Shen, X. Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods 2021, 10, 2041. https://doi.org/10.3390/foods10092041
Li Y, Xie H, Wang J, Li X, Xiao Z, Xu Z, Lei H, Shen X. Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods. 2021; 10(9):2041. https://doi.org/10.3390/foods10092041
Chicago/Turabian StyleLi, Yingying, Haihuan Xie, Jin Wang, Xiangmei Li, Zhili Xiao, Zhenlin Xu, Hongtao Lei, and Xing Shen. 2021. "Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods" Foods 10, no. 9: 2041. https://doi.org/10.3390/foods10092041
APA StyleLi, Y., Xie, H., Wang, J., Li, X., Xiao, Z., Xu, Z., Lei, H., & Shen, X. (2021). Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods, 10(9), 2041. https://doi.org/10.3390/foods10092041