Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material and Extraction
2.2.1. Ultrasound Assisted Extraction (UAE)
2.2.2. Supercritical Fluid Extraction (SFE)
2.3. Total Phenolic Content and Antioxidant Activity
2.4. Cell Culture and Anti-Inflammatory Activity
2.5. RP-HPLC-PAD-ESI-QTOF-MS/MS Analysis
2.6. GC-MS Identification
2.7. Statistical Analysis
3. Results
3.1. Evaluation of TPC and Antioxidant Activity of the Plant Extracts
3.2. Anti-Inflammatory Activity of the Plant Extracts
3.3. RP-HPLC-PAD-ESI-QTOF-MS/MS Identification and RP-HPLC-PAD Quantification of Selected UAE Extracts
3.4. GC-MS Composition of Ethanolic Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chiriac, E.R.; Chiţescu, C.L.; Geană, E.-I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R. Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Poletto, P.; Alvarez-Rivera, G.; Torres, T.M.; Mendiola, J.A.; Ibañez, E.; Cifuentes, A. Compressed fluids and phytochemical profiling tools to obtain and characterize antiviral and anti-inflammatory compounds from natural sources. Trends Analyt. Chem. 2020, 129, 115942. [Google Scholar] [CrossRef]
- Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind. Crop. Prod. 2020, 152, 112570. [Google Scholar] [CrossRef]
- Miguel, M.G.; da Silva, C.I.; Farah, L.; Castro Braga, F.; Figueiredo, A.C. Effect of Essential Oils on the Release of TNF-α and CCL2 by LPS-Stimulated THP-1 Cells. Plants 2021, 10, 50. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Alvarenga, J.F.R.; Martinez-Huelamo, M.; Leal, L.N.; Lamuela-Raventos, R.M. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: Caraway, turmeric, dill, marjoram and nutmeg. Food Sci. Technol. 2015, 35, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Berkay Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Gitishree, D.; Kumar Patra, J.; Kazahan, N.; Akram, M.; et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef]
- Carocho, M.; Barros, L.; Calhelha, R.C.; Ćirić, A.; Soković, M.; Santos-Buelga, C.; Morales, P.; Ferreira, I.C. Melissa officinalis L. decoctions as functional beverages: A bioactive approach and chemical characterization. Food Funct. 2015, 6, 2240–2248. [Google Scholar] [CrossRef] [Green Version]
- Ozarowski, M.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Kujawski, R.; Bogacz, A.; Bartkowiak-Wieczorek, J.; Szulc, M.; Kaminska, E.; Kujawska, M.; et al. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid. Based. Complement. Alternat. 2016, 2016, 9729818. [Google Scholar] [CrossRef] [Green Version]
- Miron, T.L.; Herrero, M.; Ibáñez, E. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. J. Chromatogr. A. 2013, 1288, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.I.; Gopalakrishnan, B.; Venkatesalu, V. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review. Phytother. Res. 2017, 31, 1140–1161. [Google Scholar] [CrossRef]
- Abdossi, V.; Kazemi, M. Bioactivities of Achillea millefolium essential oil and its main terpenes from Iran. Int. J. Food Prop. 2016, 19, 1798–1808. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.; Santos-Buelga, C.; Ferreira, I.C. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef]
- Pereira, J.M.; Peixoto, V.; Teixeira, A.; Sousa, D.; Barros, L.; Ferreira, I.C.F.R.; Vasconcelos, M.H. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cells lines by interfering with cell cycle and inducing apoptosis. Food Chem. Toxicol. 2018, 118, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Dinda, M.; Mazumdar, S.; Das, S.; Ganguly, D.; Dasgupta, U.B.; Dutta, A.; Jana, K.; Karmakar, P. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. Phytother. Res. 2016, 30, 1696–1707. [Google Scholar] [CrossRef]
- Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.Á.; Santos-Buelga, C.; Ferreira, I.C. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L.(leaves). Food Funct. 2016, 7, 2223–2232. [Google Scholar] [CrossRef] [Green Version]
- Faustino, M.V.; Pinto, D.C.; Gonçalves, M.J.; Salgueiro, L.; Silveira, P.; Silva, A.M. Calendula L. species polyphenolic profile and in vitro antifungal activity. J. Funct. Foods. 2018, 45, 254–267. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Saavedra, D.; Pérez-Ramírez, I.F.; Ramos-Gómez, M.; Mendoza-Díaz, S.; Loarca-Pina, G.; Reynoso-Camacho, R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res. 2016, 25, 163–172. [Google Scholar] [CrossRef]
- United Nations: Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 2 March 2021).
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crop. Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Reventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Villalva, M.; Jaime, L.; Aguado, E.; Nieto, J.A.; Reglero, G.; Santoyo, S. Anti-inflammatory and antioxidant activities from the basolateral fraction of Caco-2 cells exposed to a rosmarinic acid enriched extract. J. Agric. Food Chem. 2018, 66, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- García-Risco, M.R.; Mouhid, L.; Salas-Pérez, L.; López-Padilla, A.; Santoyo, S.; Jaime, L.; Ramírez de Molina, A.; Reglero, G.; Fornari, T. Biological activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) plant extracts. Plant Foods Hum. Nutr. 2017, 72, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.B.; Camphuis, G.; Aguiló-Aguayo, I.; Gangopadhyay, N.; Rai, D.K. Antioxidant activity guided separation of major polyphenols of marjoram (Origanum majorana L.) using flash chromatography and their identification by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 2014, 37, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterization. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Leto, C.; Saija, A.; Trombetta, D.; Tomaino, A.; Speciale, A.; Napoli, E.M.; et al. Biomolecular characterization of wild sicilian oregano: Phytochemical screening of essential oils and extracts, and evaluation of their antioxidant activities. Chem. Biodivers. 2013, 10, 411–433. [Google Scholar] [CrossRef]
- López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Pacifico, S.; Piccolella, S.; Papale, F.; Nocera, P.; Lettieri, A.; Catauro, M. A polyphenol complex from Thymus vulgaris L. plants cultivated in the Campania Region (Italy): New perspectives against neuroblastoma. J. Funct. Foods. 2016, 20, 253–266. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.W.; Vennos, C. Bioactive Phenolics of the Genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS Profile of the Siberian Species and Their Inhibitory Potential Against α-Amylase and α-Glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.W.C.; Wong, S.K.; Chan, H.T. Casticin from Vitex species: A short review on its anticancer and anti-inflammatory properties. J. Integr. Med. 2018, 16, 147–152. [Google Scholar] [CrossRef]
- Jachak, S.M.; Gautam, R.; Selvam, C.; Madhan, H.; Srivastava, A.; Khan, T. Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L. Fitoterapia 2011, 82, 173–177. [Google Scholar] [CrossRef]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar] [CrossRef]
MEL | MAJ | CAL | MIL | ||
---|---|---|---|---|---|
Yield 1 | SFE | 0.6 ± 0.1 C d | 1.5 ± 0.2 C b | 2.8 ± 0.2 C a | 0.8 ± 0.1 C c |
UAE-100 | 4.2 ± 0.2 B c | 5.9 ± 0.4 B a | 6.7 ± 0.7 B a | 5.1 ± 0.1 B b | |
UAE-50 | 22.7 ± 0.6 A b | 15.6 ± 0.1 A c | 27.9 ± 0.6 A a | 14.8 ± 0.1 A d | |
TPC 2 | SFE | 16 ± 1 C b | 56 ± 1 C a | 13 ± 1 C c | 14 ± 2 B bc |
UAE-100 | 70 ± 1 B c | 148 ± 3 B a | 36 ± 1 B d | 111 ± 2 A b | |
UAE-50 | 112 ± 2 A b | 247 ± 5 A a | 82 ± 2 A d | 106 ± 3 A c | |
TEAC 3 | SFE | 0.03 ± 0.01 Cc | 0.64 ± 0.02 C a | 0.05 ± 0.02 B c | 0.08 ± 0.01 C b |
UAE-100 | 0.24 ± 0.01 B c | 0.71 ± 0.01 B a | 0.06 ± 0.01 B d | 0.29 ± 0.03 B b | |
UAE-50 | 0.71 ± 0.02 A b | 1.46 ± 0.03 A a | 0.33 ± 0.02 A d | 0.52 ± 0.04 A c | |
ORAC 4 | SFE | 0.76 ± 0.01 C b | 1.59 ± 0.04 C a | 0.38 ± 0.02 C c | 0.73 ± 0.02 C b |
UAE-100 | 0.94 ± 0.03 B c | 2.57 ± 0.14 B a | 0.48 ± 0.01 B d | 1.86 ± 0.11 B b | |
UAE-50 | 2.71 ± 0.12 A b | 5.17 ± 0.09 A a | 1.32 ± 0.10 A d | 2.16 ± 0.02 A c |
Peak No. | Rt (min) | Compound | Theoretical Mass (m/z) | Accurate Mass (m/z) | MS/MS Product Ions (m/z) | Extract |
---|---|---|---|---|---|---|
Organic acids | ||||||
1 | 2.5 | Gluconic acid | 195.0510 | 195.0511 | 129 (100) | M, O, C, A |
2 | 3.0 | Quinic acid | 191.0561 | 191.0564 | 127 (100), 111 (30) | M, O, C, A |
3 | 3.3 | Tartaric acid | 149.0092 | 149.0093 | 72 (100) | M, O |
4 | 3.5 | Malic acid | 133.0142 | 133.0144 | 115 (100) | M, O, C, A |
5 | 3.7 | Citric acid | 191.0197 | 191.0192 | 111 (100), 87 (40) | O, C, A |
6 | 4.3 | Isocitric acid | 191.0197 | 191.0192 | 111 (100), 87 (40) | O |
7 | 5.1 | Succinic acid | 117.0930 | 117.0950 | 73 (100) | M |
Hydroxybenzoic acids and derivatives | ||||||
9 | 5.3 | Gallic acid * | 169.0142 | 169.0144 | 125 (100) | M, O |
10 | 5.4 | Protocatechuic acid pentoside | 285.0616 | 285.0622 | 153 (100), 109 (80) | C |
11 | 5.5 | 3,4-dihydroxyphenillactic acid—hexoside | 359.0984 | 359.0987 | 197 (100), 179 (60) | M, O |
13 | 5.7 | Dihydroxybenzoic acid hexoside | 315.0722 | 315.0721 | 153 (98), 109 (80) | M, O, A |
15 | 6.1 | 3,4-dihydroxyphenil-lactic acid | 197.0455 | 197.0456 | 179 (80), 135 (100) | M, O |
17 | 6.4 | Hydroxybenzoic acid hexoside | 299.0772 | 299.0774 | 137 (100) | M, O, C |
20 | 8.2 | Protocatechuic acid * | 153.0193 | 153.0197 | 109 (100) | M, O, A |
49 | 19.4 | Syringic acid derivative | 313.0565 | 313.0572 | 197 (100), 121 (25) | O, C |
Hydroxyccinamic acids and derivatives | ||||||
12 | 5.6 | Vainillic acid hexoside | 329.0772 | 329.0767 | 167(100), 152 (20) | O |
14 | 6.0 | Hydroxyferulic acid hexoside isomer I | 371.0620 | 371.0627 | 209 (100), 191 (55) | C |
16 | 6.2 | Hydroxyferulic acid hexoside isomer II | 371.0620 | 371.0627 | 209 (100), 191 (40) | C |
18 | 6.8 | Neochlorogenic acid * | 353.0878 | 353.0877 | 191 (100), 179 (76), 135 (40) | O, C, A |
19 | 7.1 | Hydroxyferulic acid hexoside isomer III | 371.0620 | 371.0627 | 209 (100), 191 (25) | C |
21 | 8.5 | Caftaric acid isomer | 311.0409 | 311.0410 | 179 (14), 149 (100) | A |
22 | 8.6 | Caffeic acid dihexoside | 503.1406 | 503.1410 | 179 (14), 149 (100) | M |
23 | 8.8 | Caftaric acid * | 311.0409 | 311.0410 | 179 (14), 149 (100) | M, A |
25 | 9.5 | Caffeoylquinic acid isomer I | 353.0878 | 353.0877 | 191 (100), 179 (20) | A |
26 | 9.6 | Caffeic acid hexoside I | 341.0878 | 341.0882 | 179 (100) 135 (60) | M, C |
27 | 9.8 | Coumaric acid hexoside | 325.0929 | 325.0934 | 163 (100), 119 (20) | M, O |
28 | 10.2 | Chlorogenic acid * | 353.0878 | 353.0877 | 191 (100), 161 (10) | C, A |
29 | 10.3 | Cryptochlorogenic acid * | 353.0878 | 353.0877 | 191 (100), 161 (11) | O, C, A |
30 | 10.8 | Caffeic acid hexuronide | 355.0671 | 355.0678 | 191 (100) | C |
32 | 13.9 | Caffeic acid hexoside II | 341.0878 | 341.0882 | 179 (100), 135 (65) | M, O |
33 | 14.1 | Coumaric acid pentoside | 295.0459 | 295.0464 | 163 (80), 119 (63) | M |
34 | 14.3 | Coumaroylquinic acid | 337.0929 | 337.0936 | 191 (100) | C |
35 | 14.5 | Caffeoylshikimic acid | 335.0772 | 335.0780 | 179 (100), 135 (77) | C |
36 | 14.8 | Caffeoylquinic acid isomer II | 353.0878 | 353.0879 | 191 (100), 161 (10) | C, A |
37 | 15.2 | Feruloyl tartaric acid | 325.0565 | 325.0571 | 193, 161, 134 | M |
39 | 15.8 | Caffeic acid * | 179.0350 | 179.0353 | 135 (100) | M, O, C, A |
46 | 18.8 | Yunaneic acid E isomer I | 571.1093 | 571.1099 | 329 (31), 197 (100), 179 (24), 135 (39) | M |
48 | 19.2 | Yunaneic acid E isomer II | 571.1093 | 571.1099 | 329 (31), 197 (100), 179 (24), 135 (39) | M |
50 | 19.7 | Feruloylquinic acid | 367.1035 | 367.1042 | 191 (100), 173 (40) | C |
54 | 20.5 | Salvianolic acid I | 537.1038 | 537.1043 | 493 (25), 339(100), 295(22), 197(60) | M, O |
64 | 21.9 | Yunnaneic acid D isomer | 539.1195 | 539.1198 | 197 (80), 135 (60) | M |
76 | 24.9 | Rosmarinic acid hexoside | 521.1301 | 521.1305 | 359 (21), 197 (100), 179 (12), 161 (29) | M, O |
81 | 26.5 | Chicoric acid | 473.0725 | 473.0730 | 311 (50), 179 (80), 149 (100), 135 (10) | M |
82 | 26.9 | 3,4-dicaffeoylquinic acid * | 515.1195 | 515.1189 | 353 (100), 335 (30), 179 (69), 173 (80) | A |
86 | 28.0 | 1,5-dicaffeoylquinic acid * | 515.1195 | 515.1190 | 353 (100), 191 (40) | C, A |
88 | 28.1 | Sagerinic acid | 719.1618 | 719.1619 | 539 (20), 521 (7), 359 (100), 197 (20) | M |
89 | 28.3 | 3,5-dicaffeoylquinic acid * | 515.1195 | 515.1190 | 353 (100), 191 (55), 179 (35), 135 (21) | C, A |
90 | 28.4 | Salvianolic acid E isomer | 717.1456 | 717.1463 | 537 (28), 519 (100), 339 (88), 295 (22) | M, O |
95 | 28.9 | Isorosmarinic acid | 359.0772 | 359.0771 | 197 (35), 179 (30), 161 (100), 135 (20) | M |
98 | 29.4 | 4,5-dicaffeoylquinic acid * | 515.1195 | 515.1190 | 353 (100), 191 (10), 179 (30), 173 (40) | C, A |
101 | 30.1 | Rosmarinic acid * | 359.0772 | 359.0771 | 197 (80), 179 (50), 161 (100), 135 (30) | M, O |
104 | 30.5 | Lithospermic acid * | 537.1038 | 537.1041 | 493 (44), 359 (43), 295 (93), 161 (100) | O |
Hydroxyccinamic acids and derivatives (continued) | ||||||
105 | 30.7 | Lithospermic acid isomer I | 537.1038 | 537.1041 | 493 (24), 295 (80), 197 (18), 161 (90) | M, O |
106 | 30.8 | Salvianolic acid B * | 717.1461 | 717.1445 | 519 (30), 359 (100), 295 (10), 179 (10) | M, O |
109 | 31.5 | Dicaffeoylquinic acid isomer | 515.1195 | 515.1191 | 353 (100), 191 (15),179 (35), 173 (30) | C, A |
110 | 31.7 | Lithospermic acid isomer II | 537.1038 | 537.1040 | 493 (32), 359 (30), 295 (100) | M, O |
111 | 31.9 | Feruloyl-O-caffeoylquinic acid | 529.1351 | 529.1350 | 367 (100), 193 (55), 191 (22) | A |
112 | 32.2 | Salvianolic acid L isomer I | 717.1461 | 717.1464 | 519 (100), 359 (30), 339 (15), 149 (18) | M, O |
113 | 32.4 | Sagecoumarin caftaride | 829.1258 | 829.1260 | 667 (88), 535 (80), 311 (50), 135 (47) | M |
114 | 32.5 | Salvianolic acid L hydroxycaffeide | 895.1730 | 895.1728 | 519 (77), 369 (73), 161 (100) | M |
115 | 32.6 | Salvianolic acid A isomer | 493.1140 | 493.1145 | 359 (100), 295 (10), 197 (20), 161 (39) | M, O |
116 | 32.9 | Methylrosmarinic acid | 373.0929 | 373.0932 | 179 (100), 161 (20), 135 (82) | M |
118 | 33.4 | Sagecoumarin isomer | 535.0882 | 535.0886 | 359 (8), 197 (10), 177 (100), 161 (19) | M, O |
119 | 33.7 | Tricaffeoylquinic acid | 677.1512 | 677.1499 | 515 (100), 353 (68) | C, A |
120 | 33.7 | Salvianolic acid C derivative | 715.1305 | 715.1304 | 535 (100), 491 (11), 311 (9), 135 (7) | M |
123 | 34.4 | Salvianolic acid L isomer II | 717.1461 | 717.1462 | 519 (100), 339 (13) | M, O |
128 | 36.3 | Rosmarinic acid derivative I | 565.1351 | 565.1353 | 359 (60), 197 (28), 179 (20), 161 (100) | M, O |
130 | 37.9 | Rosmarinic acid derivative II | 565.1351 | 565.1353 | 359 (100), 197 (30), 179 (13), 135 (36) | M |
136 | 39.7 | Salvianolic acid C isomer | 491.0984 | 491.0986 | 267 (16), 179 (100), 161 (21) | M, O |
139 | 40.0 | Salvianolic acid F isomer | 313.0718 | 313.0720 | 161 (100) | M |
140 | 40.2 | Rosmarinic acid derivative III | 565.1351 | 565.1353 | 359 (94), 197 (24), 179 (20), 161 (100) | M, O |
143 | 42.7 | Salvianolic acid C caffeoylhydroxycaffeide | 849.1672 | 849.1674 | 359 (100), 179 (6), 161 (20), 135 (40) | M |
Flavone derivatives | ||||||
24 | 9.3 | Luteolin 6,8-C-dihexoside | 609.1461 | 609.1453 | 489 (100), 325 (40) | O, A |
31 | 13.7 | Vicenin 2 * | 593.1512 | 593.1507 | 473 (100) | O, A |
38 | 15.5 | Apigenin-hexoside-pentoside I | 563.1406 | 563.1401 | 473 (10), 443 (20) | A |
40 | 17.9 | Schaftoside isomer | 563.1406 | 563.1401 | 473 (10), 443 (20) | A |
41 | 18.1 | Schaftoside * | 563.1406 | 563.1401 | 473 (10), 443 (20) | O, A |
42 | 18.2 | Luteolin-C-hexoside | 447.0933 | 447.0925 | 357 (38), 327 (100) | O |
44 | 18.4 | Luteolin diglucuronide | 637.1046 | 637.1042 | 285(100) | O, A |
45 | 18.8 | Homoorientin * | 447.0933 | 447.0930 | 429 (30), 357 (100), 327 (80) | A |
47 | 19.2 | Luteolin-hexoside-hexuronide | 623.1254 | 623.1246 | 447 (90), 285 (100), 112 (60) | A |
51 | 19.7 | Apigenin-hexoside-pentoside II | 563.1406 | 563.1401 | 473 (10), 443 (20) | A |
52 | 19.8 | Luteolin dihexoside I | 609.1461 | 609.1451 | 447 (100), 357 (26), 327 (70), 285 (10) | A |
53 | 20.2 | 6-Hydroxyluteolin-7-O-glucoside | 463.0882 | 463.0880 | 301 (100) | O, A |
56 | 20.7 | Luteolin hexoside | 447.0871 | 447.0873 | 285 (100) | O |
55 | 20.8 | Apigenin dihexoside | 593.1512 | 593.1511 | 269 (100) | A |
62 | 21.8 | Luteolin dihexoside II | 609.1745 | 609.1750 | 447 (20), 285(10) | O, A |
63 | 21.9 | Luteolin rutinoside | 593.1432 | 593.1430 | 285 (100) | O |
70 | 24.0 | Apigenin deoxylhexoside | 577.1563 | 577.1557 | 269 (100) | A |
72 | 24.4 | Luteolin-O-glucoside | 447.0931 | 447.0932 | 285 (100), 151 (20) | O |
73 | 24.5 | Apigenin glycosylated derivative | 445.1140 | 445.1136 | 269 (100) | A |
74 | 24.8 | Luteolin-7-O-β-glucoside * | 447.0933 | 447.0928 | 285 (100) | M, O, A |
77 | 25.2 | Luteolin-7-O-glucuronide * | 461.0725 | 461.0722 | 285 (100) | O, A |
78 | 25.4 | Apigenin hexoside | 431.0928 | 431.0928 | 269 (100) | O |
91 | 28.6 | Diosmin * | 607.1663 | 607.1668 | 607 (10), 299 (100), 284 (10) | O |
93 | 28.7 | Luteolin acetylglucoside | 489.0970 | 489.0973 | 447 (30), 285 (100) | O |
94 | 28.8 | Apigenin-7-O-glucoside * | 431.0984 | 431.0980 | 269 (100) | O, A |
96 | 29.0 | Luteolin-O-malonylglucoside | 533.0937 | 533.0931 | 489 (100), 285 (15) | A |
97 | 29.4 | Apigenin-7-O-glucuronide * | 445.0776 | 445.0768 | 269 (100) | O |
100 | 29.8 | Apigenin-O-hexuronide | 445.0776 | 445.0775 | 269 (100) | A |
102 | 30.3 | Luteolin-O-hexuronide | 461.0725 | 461.0727 | 285 (100) | M |
121 | 34.1 | Luteolin dimer | 569.0725 | 569.0718 | 285 (100), 112 (80) | A |
122 | 34.8 | Luteolin * | 285.0405 | 285.0400 | 175 (80), 151 (100), 107 (51) | M, O, A |
132 | 38.1 | Apigenin * | 269.0455 | 269.0454 | 112 (100) | O, A |
137 | 39.7 | Diosmetin * | 299.0561 | 299.0554 | 112 (100) | A |
138 | 39.8 | Trihydroxy dimethoxyflavone I | 329.0667 | 329.0665 | 314 (20), 299 (100) | O |
141 | 40.6 | Trihydroxy dimethoxyflavone II | 329.0667 | 329.0665 | 299 (100) | A |
144 | 43.1 | Methoxyacacetin | 313.0718 | 313.0716 | 283 (100), 112 (60) | O, A |
145 | 43.4 | Dihydroxy trimethoxyflavone | 343.0823 | 343.0820 | 328 (100), 313 (20) | O, A |
Flavonol derivatives | ||||||
43 | 18.2 | Quercetin-3-O-rhmanosylrutinoside | 755.2040 | 755.2052 | 301 (100), 271 (23) | C |
57 | 20.8 | Quercetin-3-neohesperidoside | 609.1461 | 609.1468 | 301 (100) | C |
58 | 21.0 | Isorhamnetin-3-O-rhamnosylrutinoside* | 769.2197 | 769.224 | 315 (100), 300 (20) | C |
60 | 21.4 | Quercetin hexoside I | 463.0882 | 463.0880 | 301 (100) | A |
61 | 21.7 | Quercetin-O-pentosylhexoside | 595.1305 | 595.1310 | 301 (100) | C |
65 | 22.9 | Rutin * | 609.1097 | 609.1093 | 301 (100) | C, A |
66 | 23.1 | Isovitexin | 431.0984 | 431.0981 | 311 (100) | A |
67 | 23.2 | Vitexin * | 431.0984 | 431.0981 | 311 (100) | A |
68 | 23.4 | Quercetin-malonylhexosyl-rhamnoside | 695.1465 | 695.1472 | 651 (100), 301 (23) | C |
71 | 24.1 | Isorhamnetin-3-O-neohesperoside | 623.1618 | 623.1621 | 315 (100), 300 (10) | C |
75 | 24.9 | Quercetin hexoside II | 463.0882 | 463.0889 | 301 (100) | C |
79 | 25.5 | Quercetin hexuronide | 477.0675 | 477.0671 | 301 (100) | A |
80 | 25.9 | Kaempferol-3-O-rutinoside * | 593.1512 | 593.1521 | 285 (100) | C |
83 | 27.4 | Ishoramnetin-3-O-rutinoside * | 623.1618 | 623.1627 | 315 (100) | C |
84 | 27.7 | Quercetin-3-O-acetyl-glucoside | 505.0988 | 505.0996 | 463 (30), 301 (100) | C |
85 | 27.8 | Isorhamnetin hexoside I | 477.1038 | 477.1035 | 315 (100) | O, A |
87 | 28.0 | Quercetin pentoside | 433.072 | 433.0718 | 301 (100) | O |
92 | 28.7 | Isorhamnetin-3-O-glucoside * | 477.1038 | 477.1045 | 315 (100) | C |
99 | 29.8 | Kaempferide glucuronide | 475.0819 | 475.0821 | 299.0522 (100) | O |
103 | 30.3 | Ishoramnetin-3-O-acetylglucoside | 519.1144 | 519.1150 | 315 (100), 300(15) | C |
107 | 30.9 | Isorhamnetin hexoside II | 477.1038 | 477.1035 | 315 (100) | A |
125 | 35.0 | Quercetin * | 301.0354 | 301.0352 | 151 (60) | O, A |
126 | 36.1 | Methoxyquercetin isomer | 315.0510 | 315.0508 | 301 (100) | O, A |
127 | 36.2 | Quercetin dimethyl ether | 329.0624 | 329.0625 | 314 (100), 299 (70) | O |
129 | 37.5 | Jaceidin isomer | 359.0767 | 359.0727 | 344 (57), 329 (100) | O |
133 | 38.3 | Dihydroxyquercetin dimethyl ether | 331.0823 | 331.0817 | 299 (100) | O |
134 | 38.3 | Isorhamnetin * | 315.0510 | 315.0511 | 301 (100), 209 (15) | C |
142 | 41.0 | Centaureidin | 359.0772 | 359.0770 | 344 (59), 229 (100) | A |
146 | 45.8 | Casticin * | 373.0929 | 373.0923 | 358 (43), 343 (90) | A |
Flavanone derivatives | ||||||
59 | 21.2 | Eriocitrin | 595.1585 | 595.1591 | 287(100) | O |
69 | 23.5 | Eriodyctiol hexoside | 449.1029 | 449.1028 | 287.0524 (100) | O |
117 | 33.3 | Eriodictyol | 287.0561 | 287.0555 | 151 (100), 135 (85) | O |
131 | 37.9 | Naringenin * | 271.0612 | 271.0607 | 151 (100) | O |
Other compounds | ||||||
8 | 5.2 | Arbutin * | 271.0823 | 271.0819 | 108 (100) | O |
108 | 31.3 | Calendasaponin B | 971.4857 | 971.4855 | 971 (100), 809 (40) | C |
122 | 34.2 | Calendasaponin A | 1117.5436 | 1117.5439 | 1117 (100), 955 (10) | C |
135 | 39.5 | Calenduloside G | 793.4373 | 793.4376 | 631 (100), 613 (30) | C |
Compound | MEL-50 | MAJ-50 | CAL-50 | MIL-50 | MIL-100 |
---|---|---|---|---|---|
Hydroxybenzoic acids and derivatives | |||||
Protocatechuic acid pentoside | nd | nd | 0.14 ± 0.03 | nd | nd |
3,4-dihydroxyphenil lactic acid | 0.61 ± 0.04 | 1.29 ± 0.06 | nd | nd | nd |
Protocatechuic acid * | 0.19 ± 0.07 | 0.22 ± 0.10 | nd | 0.35 ± 0.09 1 | 0.11 ± 0.03 |
Syringic acid derivative | nd | <LOQ | 0.38 ± 0.04 | nd | nd |
Hydroxyccinamic acids and derivatives | |||||
Hydroxyferulic acid hexoside isomer I | nd | nd | 0.16 ± 0.05 | nd | nd |
Hydroxyferulic acid hexoside isomer II | nd | nd | 0.20 ± 0.08 | nd | nd |
Neochlorogenic acid * | nd | 0.27 ± 0.05 | 0.60 ± 0.10 | 0.43 ± 0.10 1 | 0.26 ± 0.05 |
Hydroxyferulic acid hexoside isomer III | nd | nd | 0.24 ± 0.01 | nd | nd |
Caftaric acid isomer | nd | nd | nd | 0.08 ± 0.03 | 0.06 ± 0.03 |
Caffeic acid dihexoside | 0.32 ± 0.05 | nd | nd | nd | nd |
Caftaric acid * | 0.38 ± 0.08 | nd | nd | 0.16 ± 0.03 1 | 0.08 ± 0.03 |
Caffeoylquinic acid isomer I | nd | nd | nd | 0.22 ± 0.04 | 0.19 ± 0.04 |
Caffeic acid hexoside I | <LOQ | nd | 0.20 ± 0.01 | nd | nd |
Chlorogenic acid * | nd | nd | 7.92 ± 0.39 | 7.84 ± 0.57 1 | 6.41 ± 0.33 |
Cryptochlorogenic acid * | nd | 0.75 ± 0.11 | 0.16 ± 0.04 | 0.47 ± 0.091 | 0.13 ± 0.06 |
Caffeic acid hexoside II | 0.21 ± 0.08 | 0.29 ± 0.07 | nd | nd | nd |
Hydroxyccinamic acids and derivatives (continued) | |||||
Coumaroylquinic acid | nd | nd | 0.09 ± 0.03 | nd | nd |
Caffeoylshikimic acid | nd | nd | 0.20 ± 0.05 | nd | nd |
Caffeoylquinic acid isomer II | nd | nd | <LOQ | 0.64 ± 0.10 1 | 0.10 ± 0.06 |
Caffeic acid * | 0.57 ± 0.09 | 0.78 ± 0.10 | 0.19 ± 0.04 | 0.40 ± 0.07 | 0.33 ± 0.04 |
Yunnaneic acid E isomer I | 1.20 ± 0.15 | nd | nd | nd | nd |
Yunnaneic acid E isomer II | 1.94 ± 0.14 | nd | nd | nd | nd |
Salvianolic acid I | 0.77 ± 0.13 | <LOQ | nd | nd | nd |
Yunnaneic acid D isomer | 0.37 ± 0.05 | nd | nd | nd | nd |
Rosmarinic acid hexoside | 7.19 ± 0.84 | <LOQ | nd | nd | nd |
Chicoric acid | 0.75 ± 0.06 | nd | nd | nd | nd |
3,4-dicaffeoylquinic acid * | nd | nd | nd | 1.42 ± 0.09 | 1.43 ± 0.07 |
1,5-dicaffeoylquinic acid * | nd | nd | 0.31 ± 0.09 | 2.57 ± 0.10 1 | 1.73 ± 0.09 |
Sagerinic acid | 2.22 ± 0.18 | nd | nd | nd | nd |
3,5-dicaffeoylquinic acid * | nd | nd | 5.37 ± 0.96 | 15.30 ± 1.02 | 21.93 ± 1.21 1 |
Salvianolic acid E | 0.43 ± 0.05 | <LOQ | nd | nd | nd |
Isorosmarinic acid | 0.46 ± 0.05 | nd | nd | nd | nd |
4,5-dicaffeoylquinic acid * | nd | nd | 2.61 ± 0.15 | 5.70 ± 0.20 1 | 4.41 ± 0.13 |
Rosmarinic acid * | 19.21 ± 1.02 | 37.61 ± 1.90 | nd | nd | nd |
Lithospermic acid * | nd | 10.52 ± 0.71 | nd | nd | nd |
Lithospermic acid isomer I | 1.84 ± 0.09 | 21.30 ± 1.02 | nd | nd | nd |
Salvianolic acid B * | 0.49 ± 0.02 | 2.06 ± 0.08 | nd | nd | nd |
Dicaffeoylquinic acid isomer | nd | nd | 0.08 ± 0.03 | 0.18 ± 0.06 1 | 0.08 ± 0.02 |
Lithospermic acid isomer II | 8.65 ± 0.52 | 3.56 ± 0.23 | nd | nd | nd |
Feruloyl-O-caffeoylquinic acid | nd | nd | nd | 0.13 ± 0.03 | 0.12 ± 0.02 |
Salvianolic acid L isomer I | 1.75 ± 0.08 | 4.32 ± 0.15 | nd | nd | nd |
Sagecoumarin caftaride | 0.64 ± 0.06 | nd | nd | nd | nd |
Sagecoumarin isomer | 0.40 ± 0.05 | 1.33 ± 0.09 | nd | nd | nd |
Tricaffeoylquinic acid | nd | nd | 0.13 ± 0.02 | 0.30 ± 0.06 | 0.39 ± 0.07 |
Salvianolic acid C derivative | 2.19 ± 0.09 | nd | nd | nd | nd |
Salvianolic acid L isomer II | 0.95 ± 0.06 | 0.98 ± 0.07 | nd | nd | nd |
Rosmarinic acid derivative I | <LOQ | 0.27 ± 0.07 | nd | nd | nd |
Rosmarinic acid derivative II | 0.30 ± 0.03 | nd | nd | nd | nd |
Salvianolic acid F isomer | 1.16 ± 0.09 | nd | nd | nd | nd |
Rosmarinic acid derivative III | 0.46 ± 0.03 | 0.35 ± 0.04 | nd | nd | nd |
Salvianolic acid C caffeoylhydroxycaffeide | 3.32 ± 0.10 | nd | nd | nd | nd |
Flavone derivatives | |||||
Vicenin 2 * | nd | 2.56 ± 0.17 | 0.11 ± 0.06 | 4.00 ± 0.33 1 | 2.35 ± 0.13 |
Apigenin-hexoside-pentoside I | nd | nd | nd | 0.55 ± 0.21 1 | 0.44 ± 0.12 |
Schaftoside isomer | nd | nd | nd | 3.20 ± 0.14 1 | 1.38 ± 0.10 |
Schaftoside * | nd | <LOQ | nd | 2.73 ± 0.12 1 | 2.04 ± 0.12 |
Luteolin-C-hexoside | nd | 2.19 ± 0.15 | nd | nd | nd |
Homoorientin * | nd | nd | nd | 1.00 ± 0.17 | 2.26 ± 0.22 1 |
Apigenin-hexoside-pentoside II | nd | nd | nd | 2.02 ± 0.18 1 | 1.22 ± 0.12 |
Luteolin dihexoside I | nd | nd | nd | 1.82 ± 0.10 | 3.01 ± 0.12 1 |
6-hydroxyluteolin-7-O-glucoside | nd | 35.80 ± 2.11 | nd | 1.99 ± 0.09 | 2.48 ± 0.10 |
Apigenin dihexoside | nd | nd | nd | 0.31 ± 0.07 | 0.23 ± 0.06 |
Luteolin dihexoside II | nd | <LOQ | nd | 0.27 ± 0.04 | 0.26 ± 0.06 |
Apigenin deoxylhexoside | nd | nd | nd | 0.26 ± 0.09 | 0.36 ± 0.04 |
Luteolin-O-glucoside | nd | 17.52 ± 1.10 | nd | nd | nd |
Apigenin glycosylated derivative | nd | nd | nd | 3.21 ± 0.13 1 | 2.42 ± 0.09 |
Luteolin-7-O-β-glucoside * | 0.21 ± 0.03 | 14.61 ± 1.01 | nd | 4.96 ± 0.35 | 8.23 ± 0.72 1 |
Flavone derivatives (continued) | |||||
Luteolin-7-O-glucuronide * | nd | 4.09 ± 0.11 | nd | 0.69 ± 0.07 | 0.82 ± 0.07 |
Diosmin * | nd | 3.77 ± 0.19 | nd | nd | nd |
Apigenin-7-O-glucoside * | nd | 2.17 ± 0.09 | nd | 1.05 ± 0.21 | 2.28 ± 0.32 1 |
Luteolin-O-malonylglucoside | nd | nd | nd | 0.26 ± 0.07 | 0.55 ± 0.09 1 |
Apigenin-7-O-glucuronide * | nd | 1.70 ± 0.09 | nd | nd | nd |
Luteolin-O-hexuronide | 1.64 ± 0.11 | nd | nd | nd | nd |
Luteolin * | <LOQ | 1.10 ± 0.08 | nd | 1.70 ± 0.07 | 1.89 ± 0.09 1 |
Apigenin * | nd | 0.09 ± 0.02 | nd | 0.42 ± 0.04 | 0.59 ± 0.05 1 |
Diosmetin * | nd | nd | nd | 0.34 ± 0.03 | 0.45 ± 0.05 1 |
Trihydroxy dimethoxyflavone I | nd | 0.69 ± 0.07 | nd | nd | nd |
Trihydroxy dimethoxyflavone II | nd | nd | nd | <LOQ | 0.24 ± 0.06 |
Methoxyacacetin | nd | 0.04 ± 0.02 | nd | <LOQ | 0.22 ± 0.05 |
Dihydroxy trimethoxyflavone | nd | nd | nd | 0.13 ± 0.03 | 0.31 ± 0.04 1 |
Flavonol derivatives | |||||
Quercetin-3-O-rhmanosylrutinoside | nd | nd | 1.17 ± 0.73 | nd | nd |
Quercetin 3-neohesperidoside | nd | nd | 0.18 ± 0.06 | nd | nd |
Isorhamnetin-3-O-rhamnosylrutinoside * | nd | nd | 14.22 ± 1.30 | nd | nd |
Quercetin hexoside I | nd | nd | nd | 0.72 ± 0.09 | 1.34 ± 0.90 1 |
Quercetin-O-pentosylhexoside | nd | nd | 0.36 ± 0.07 | nd | nd |
Rutin * | nd | nd | 0.57 ± 0.06 | 0.99 ± 0.09 | 1.12 ± 0.11 |
Isovitexin | nd | nd | nd | 0.50 ± 0.09 | 0.46 ± 0.07 |
Vitexin * | nd | nd | nd | 0.46 ± 0.09 | 0.66 ± 0.11 |
Quercetin-malonylhexosyl-rhamnoside | nd | nd | 0.65 ± 0.12 | nd | nd |
Isorhamnetin-3-O-neohesperidoside | nd | nd | 1.89 ± 0.14 | nd | nd |
Quercetin hexoside II | nd | nd | 0.19 ± 0.06 | nd | nd |
Quercetin hexuronide | nd | nd | nd | 0.45 ± 0.04 1 | 0.21 ± 0.03 |
Kaempferol-3-O-rutinoside* | nd | nd | 0.19 ± 0.07 | nd | nd |
Ishoramnetin-3-O-rutinoside * | nd | nd | 7.23 ± 0.62 | nd | nd |
Quercetin-3-O-acetyl-glucoside | nd | nd | 0.64 ± 0.04 | nd | nd |
Isorhamnetin hexoside I | nd | <LOQ | nd | 0.48 ± 0.07 | 1.18 ± 0.10 1 |
Isorhamnetin-3-O-glucoside* | nd | nd | 0.67 ± 0.09 | nd | nd |
Ishoramnetin-3-O-acetylglucoside | nd | nd | 1.12 ± 0.09 | nd | nd |
Isorhamnetin hexoside II | nd | nd | nd | 0.17 ± 0.04 | 0.53 ± 0.07 1 |
Quercetin * | nd | 0.36 ± 0.03 | nd | 0.33 ± 0.04 | 0.64 ± 0.05 1 |
Methoxyquercetin isomer | nd | <LOQ | nd | 0.58 ± 0.08 | 0.82 ± 0.11 1 |
Quercetin dimethyl ether | nd | 0.81 ± 0.10 | nd | nd | nd |
Jaceidin isomer | nd | 0.62 ± 0.08 | nd | nd | nd |
Dihydroxyquercetin dimethyl ether | nd | 0.61 ± 0.07 | nd | nd | nd |
Centaureidin | nd | nd | nd | 0.27 ± 0.06 | 1.90 ± 0.10 1 |
Casticin * | nd | nd | nd | 0.35 ± 0.03 | 2.53 ± 0.11 1 |
Flavanone derivatives | |||||
Eriodictyol | nd | 0.67 ± 0.05 | nd | nd | nd |
Naringenin * | nd | 0.94 ± 0.10 | nd | nd | nd |
Σ Phenolic compounds | 60.8 ± 1.30 | 176.2 ± 2.5 | 48.2 ± 0.9 | 72.4 ± 1.0 | 83.2 ± 1.0 1 |
Rt (min) | RI | Compound | % Area |
---|---|---|---|
4.6 | 997 | Yomogi alcohol | 6.1 |
5.1 | 1028 | Eucalyptol | 5.0 |
5.5 | 1058 | Artemisia ketone | 4.3 |
5.8 | 1079 | Artemisia alcohol | 5.6 |
6.2 | 1101 | Thujone | 2.9 |
6.9 | 1138 | Camphor | 10.4 |
7.2 | 1160 | Borneol | 23.8 |
7.6 | 1174 | Terpinene-4-ol | 1.9 |
8.7 | 1261 | (5E)-5,9-Dimethyl-5,8-decadien-2-one | 2.9 |
9.3 | 1299 | Carvacrol | 2.9 |
12.1 | 1478 | α-curcumene | 0.9 |
13.5 | 1569 | Spathulenol | 2.7 |
13.6 | 1578 | Caryophillene oxide | 2.6 |
13.8 | 1589 | Viridiflorol | 5.1 |
14.3 | 1630 | δ-Cadinol | 4.6 |
14.5 | 1640 | β-Eudesmol | 8.6 |
15.6 | 1718 | Chamazulene | 5.9 |
16.8 | 1890 | Corymbolone | 3.8 |
∑ AUC | 4.10 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalva, M.; Santoyo, S.; Salas-Pérez, L.; Siles-Sánchez, M.d.l.N.; Rodríguez García-Risco, M.; Fornari, T.; Reglero, G.; Jaime, L. Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods 2021, 10, 2067. https://doi.org/10.3390/foods10092067
Villalva M, Santoyo S, Salas-Pérez L, Siles-Sánchez MdlN, Rodríguez García-Risco M, Fornari T, Reglero G, Jaime L. Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods. 2021; 10(9):2067. https://doi.org/10.3390/foods10092067
Chicago/Turabian StyleVillalva, Marisol, Susana Santoyo, Lilia Salas-Pérez, María de las Nieves Siles-Sánchez, Mónica Rodríguez García-Risco, Tiziana Fornari, Guillermo Reglero, and Laura Jaime. 2021. "Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species" Foods 10, no. 9: 2067. https://doi.org/10.3390/foods10092067
APA StyleVillalva, M., Santoyo, S., Salas-Pérez, L., Siles-Sánchez, M. d. l. N., Rodríguez García-Risco, M., Fornari, T., Reglero, G., & Jaime, L. (2021). Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods, 10(9), 2067. https://doi.org/10.3390/foods10092067