Comparison of Drying Methods and Their Effect on the Stability of Graševina Grape Pomace Biologically Active Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sample Preparation
2.3. Drying Methods
2.4. Drying Kinetic and Thermodynamic Considerations
2.5. Preparation of Extracts for Determination of Biologically Active Compounds
2.5.1. Total Polyphenols Content (TPC) Determination
2.5.2. Total Tannins Content (TTC) Determination
2.5.3. Tartaric Acid Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Kinetics and Thermodynamics of Grape Seeds, Skins and Pomace Drying
3.2. Biologically Active Compounds’ Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duba, K.S.; Fiori, L. Supercritical CO2 Extraction of Grape Seed Oil: Effect of Process Parameters on the Extraction Kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- Croatian Bureau of Statistics. Production of Vegetables, Fruits and Grapes, 2018–Provisional Data; Number:1.1.28; Croatian Bureau of Statistics: Zagreb, Croatia, 2019.
- Voća, N.; Krička, T.; Savić-Brlek, T.; Matin, A.; Jurišić, V. Organic Waste After Wine and Olive Oil Production As Raw Material for Thermal Energy Generation Otpad Nakon Proizvodnje Vina I Maslinova Ulja Kao Sirovina. J. Processing Energy Agric. 2010, 4487, 69–71. [Google Scholar]
- Wadhwa, M.; Bakshi, S.P.M. Utilization of Fruit and Vegetable Wastes as Livestock Feed and as Substrates for Generation of Other Value-Added Products; FAO: Rome, Italy, 2013; ISBN 978-92-5-107631-6. [Google Scholar]
- Zacharof, M.P. Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste Biomass Valorization 2017, 8, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Karakaya, S. Bioavailability of Phenolic Compounds. Crit. Rev. Food Sci. Nutr. 2004, 44, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Bosso, A. Polyphenolic Characterization of Grape Skins and Seeds of Four Italian Red Cultivars at Harvest and after Fermentative Maceration. Foods 2019, 8, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Karabelas, A.J. Tartaric Acid Recovery from Winery Lees Using Cation Exchange Resin: Optimization by Response Surface Methodology. Sep. Purif. Technol. 2016, 165, 32–41. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential Application of Grape (Vitis vinifera L.) Stem Extracts in the Cosmetic and Pharmaceutical Industries: Valorization of a by-Product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Morais, R.M.S.C.; Morais, A.M.M.B.; Dammak, I.; Bonilla, J.; Sobral, P.J.A.; Laguerre, J.C.; Afonso, M.J.; Ramalhosa, E.C.D. Functional Dehydrated Foods for Health Preservation. J. Food Qual. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, M.; Seetharaman, K. State of Polyphenols in the Drying Process of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Ježek, D.; Tripalo, B.; Brnĉić, M.; Karlović, D.; Brnčić, S.R.; Vikić-Topić, D.; Karlović, S. Dehydration of Celery by Infrared Drying. Croat. Chem. Acta 2008, 81, 325–331. [Google Scholar]
- Wang, J.; Mujumdar, A.S.; Mu, W.; Feng, J.; Zhang, X.; Zhang, Q.; Fang, X.-M.; Gao, Z.-J.; Xiao, H.-W. Grape Drying: Current Status and Future Trends. In Grape and Wine Biotechnology; IntechOpen: London, UK, 2016; pp. 145–165. [Google Scholar]
- Goula, A.M.; Thymiatis, K.; Kaderides, K. Valorization of Grape Pomace: Drying Behavior and Ultrasound Extraction of Phenolics. Food Bioprod. Process. 2016, 100, 132–144. [Google Scholar] [CrossRef]
- Radojčin, M.; Pavkov, I.; Kovačević, D.B.; Putnik, P.; Wiktor, A.; Stamenković, Z.; Kešelj, K.; Gere, A. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Vashisth, T.; Singh, R.K.; Pegg, R.B. Effects of Drying on the Phenolics Content and Antioxidant Activity of Muscadine Pomace. LWT-Food Sci. Technol. 2011, 44, 1649–1657. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chávez, D.W.H.; Dos Santos Gomes, F.; Cabral, L.M.C.; Tonon, R.V. Effect of Temperature on the Degradation of Bioactive Compounds of Pinot Noir Grape Pomace during Drying. Brazilian J. Food Technol. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Soceanu, A.; Dobrinas, S.; Sirbu, A.; Manea, N.; Popescu, V. Economic Aspects of Waste Recovery in the Wine Industry. A Multidisciplinary Approach. Sci. Total Environ. 2021, 759, 143543. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA; Arlington, TX, USA, 1998. [Google Scholar]
- PELEG, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Corzo, O.; Bracho, N. Application of Peleg Model to Study Mass Transfer during Osmotic Dehydration of Sardine Sheets. J. Food Eng. 2006, 75, 535–541. [Google Scholar] [CrossRef]
- Shafaei, S.M.; Masoumi, A.A.; Roshan, H. Analysis of Water Absorption of Bean and Chickpea during Soaking Using Peleg Model. J. Saudi Soc. Agric. Sci. 2016, 15, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Jideani, V.A.; Mpotokwana, S.M. Modeling of Water Absorption of Botswana Bambara Varieties Using Peleg’s Equation. J. Food Eng. 2009, 92, 182–188. [Google Scholar] [CrossRef]
- Carmona-Jiménez, Y.; García-Moreno, M.V.; García-Barroso, C. Effect of Drying on the Phenolic Content and Antioxidant Activity of Red Grape Pomace. Plant Foods Hum. Nutr. 2018, 73, 74–81. [Google Scholar] [CrossRef]
- Palma, M.; Barroso, C.G. Ultrasound-Assisted Extraction and Determination of Tartaric and Malic Acids from Grapes and Winemaking by-Products. Anal. Chim. Acta 2002, 458, 119–130. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Methods in Enzymology Series; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Ribéreau-Gayon, P.; Stonestreet, E. Dosage Des Tanins Du Vin Rouge et Détermination de Leur Structure. Chim. Anal. 1966, 48, 188–196. [Google Scholar]
- Oliveira, A.L.; Colnaghi, B.G.; Da Silva, E.Z.; Gouvêa, I.R.; Vieira, R.L.; Augusto, P.E.D. Modelling the Effect of Temperature on the Hydration Kinetic of Adzuki Beans (Vigna Angularis). J. Food Eng. 2013, 118, 417–420. [Google Scholar] [CrossRef]
- Prasad, K.; Vairagar, P.R.; Bera, M.B. Temperature Dependent Hydration Kinetics of Cicer Arietinum Splits. Food Res. Int. 2010, 43, 483–488. [Google Scholar] [CrossRef]
- Planinić, M.; Velić, D.; Tomas, S.; Bilić, M.; Bucić, A. Modelling of Drying and Rehydration of Carrots Using Peleg’s Model. Eur. Food Res. Technol. 2005, 221, 446–451. [Google Scholar] [CrossRef]
- Turhan, M.; Sayar, S.; Gunasekaran, S. Application of Peleg Model to Study Water Absorption in Chickpea during Soaking. J. Food Eng. 2002, 53, 153–159. [Google Scholar] [CrossRef]
- Corrêa, P.C.; de Oliveira, G.H.H.; de Oliveira, A.P.L.R.; Botelho, F.M.; Goneli, A.L.D. Las Propiedades Termodinámicas Del Proceso de Secado y Absorción de Agua de Granos de Arroz. CYTA - J. Food 2017, 15, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Le Man, H.; Behera, S.K.; Park, H.S. Optimization of Operational Parameters for Ethanol Production from Korean Food Waste Leachate. Int. J. Environ. Sci. Technol. 2010, 7, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Dannenberg, F.; Kessler, H. Reaction Kinetics of the Denaturation of Whey Proteins in Milk. J. Food Sci. 1988, 53, 258–263. [Google Scholar] [CrossRef]
- Silva, K.S.; Romero, J.T.; Mauro, M.A. Sorption Isotherms and Thermodynamic Analysis of Seed Fruits Used to Obtain Vegetable Oil. Lat. Am. Appl. Res. 2015, 45, 21–26. [Google Scholar] [CrossRef]
- Balzarini, M.F.; Reinheimer, M.A.; Ciappini, M.C.; Scenna, N.J. Comparative Study of Hot Air and Vacuum Drying on the Drying Kinetics and Physicochemical Properties of Chicory Roots. J. Food Sci. Technol. 2018, 55, 4067–4078. [Google Scholar] [CrossRef]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. Technological Aspects and Stability of Polyphenols. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 295–323. ISBN 9780128135723. [Google Scholar]
- Aryal, M.; Liakopoulou-Kyriakides, M. Optimization Studies for Tartaric Acid, Phenolics, Sugars, and Antioxidant Activity from Industrial Red and White Tartar Wastes. Eng. Res. Express 2020, 2. [Google Scholar] [CrossRef]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Mitrouli, S.T.; Karabelas, A.J. Tartaric Acid and Polyphenols Recovery from Winery Waste Lees Using Membrane Separation Processes. J. Chem. Technol. Biotechnol. 2017, 92, 2934–2943. [Google Scholar] [CrossRef]
- Garcia-Jares, C.; Vazquez, A.; Lamas, J.P.; Pajaro, M.; Alvarez-Casas, M.; Lores, M. Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants 2015, 4, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Oprica, L.; Vezeteu, G.; Grigore, M.N. Differential Content of the Total Polyphenols and Flavonoids in Three Romanian White Grape Cultivars. Iran. J. Public Health 2016, 45, 826–827. [Google Scholar] [PubMed]
- López-Vidaña, E.C.; Rojano, B.A.; Figueroa, I.P.; Zapata, K.; Cortés, F.B. Evaluation of the Sorption Equilibrium and Effect of Drying Temperature on the Antioxidant Capacity of the Jaboticaba (Myrciaria Cauliflora). Chem. Eng. Commun. 2016, 203, 809–821. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Yu, J. Thermal Stability of Major Classes of Polyphenols in Skins, Seeds and Stems of Grape Pomace. In Grapes Production, Phenolic Composition and Potential Biomedical Effects; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; pp. 273–285. [Google Scholar]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Effect of Vacuum-Drying, Hot Air-Drying and Freeze-Drying on Polyphenols and Antioxidant Capacity of Lemon (Citrus Limon) Pomace Aqueous Extracts. Int. J. Food Sci. Technol. 2017, 52, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Drevelegka, I.; Goula, A.M. Recovery of Grape Pomace Phenolic Compounds through Optimized Extraction and Adsorption Processes. Chem. Eng. Process. - Process Intensif. 2020, 149, 107845. [Google Scholar] [CrossRef]
- Yu, H.L.; Feng, Z.Q.; Zhang, J.J.; Wang, Y.H.; Ding, D.J.; Gao, Y.Y.; Zhang, W.F. The Evaluation of Proanthocyanidins/Chitosan/Lecithin Microspheres as Sustained Drug Delivery System. Biomed Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Ioniţă, E.; Gurgu, L.; Aprodu, I.; Stănciuc, N.; Dalmadi, I.; Bahrim, G.; Râpeanu, G. Characterization, Purification, and Temperature/Pressure Stability of Polyphenol Oxidase Extracted from Plums (Prunus Domestica). Process Biochem. 2017, 56, 177–185. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Norton, E.L. Chemistry and Reactivity of Tannins in Vitis Spp.: A Review. Molecules 2020, 25, 2110. [Google Scholar] [CrossRef]
- Kyraleou, M.; Kallithraka, S.; Theodorou, N.; Teissedre, P.L.; Kotseridis, Y.; Koundouras, S. Changes in Tannin Composition of Syrah Grape Skins and Seeds during Fruit Ripening under Contrasting Water Conditions. Molecules 2017, 22, 1453. [Google Scholar] [CrossRef] [Green Version]
- Rösti, J.; Schumann, M.; Cleroux, M.; Lorenzini, F.; Zufferey, V.; Rienth, M. Effect of Drying on Tartaric Acid and Malic Acid in Shiraz and Merlot Berries. Aust. J. Grape Wine Res. 2018, 24, 421–429. [Google Scholar] [CrossRef]
- Clark, A.C.; Prenzler, P.D.; Scollary, G.R. Impact of the Condition of Storage of Tartaric Acid Solutions on the Production and Stability of Glyoxylic Acid. Food Chem. 2007, 102, 905–916. [Google Scholar] [CrossRef]
Drying Process | Temperature (°C) | Pressure | Drying Time (h) |
---|---|---|---|
Vacuum drying | 35 | 100 mbar | 12 |
Vacuum drying | 50 | 100 mbar | 5 |
Vacuum drying | 70 | 100 mbar | 3 |
Conventional drying | 70 | atm. * | 7 |
Open sun drying | 31.99 | atm. * | 26 |
Drying Method | Material | K1 (h %−1) ± S.E. | K2 (%−1) ± S.E. | R2 | R0 (% h−1) |
---|---|---|---|---|---|
Vacuum drying (35 °C) | Seeds | 7.443 ± 2.868 | 2.701 ± 0.449 | 0.953 | 0.134 |
Skins | 2.521 ± 0.226 | 1.023 ± 0.354 | 0.990 | 0.397 | |
Grape pomace | 2.166 ± 0.766 | 1.609 ± 0.120 | 0.957 | 0.462 | |
Vacuum drying (50 °C) | Seeds | 1.562 ± 0.112 | 1.924 ± 0.034 | 0.997 | 0.640 |
Skins | 1.099 ± 0.122 | 0.873 ± 0.043 | 0.987 | 0.893 | |
Grape pomace | 1.011 ± 0.133 | 1.222 ± 0.047 | 0.992 | 0.989 | |
Vacuum drying (70 °C) | Seeds | 0.644 ± 0.124 | 2.722 ± 0.079 | 0.995 | 1.552 |
Skins | 0.408 ± 0.064 | 0.913 ± 0.041 | 0.989 | 2.448 | |
Grape pomace | 0.275 ± 0.167 | 1.482 ± 0.106 | 0.974 | 3.634 | |
Conventional dryer (70 °C) | Seeds | 0.743 ± 0.238 | 2.094 ± 0.062 | 0.995 | 1.346 |
Skins | 0.679 ± 0.137 | 0.937 ± 0.035 | 0.992 | 1.473 | |
Grape pomace | 0.419 ± 0.073 | 1.129 ± 0.019 | 0.998 | 2.385 | |
Open sun drying | Seeds | 9.705 ± 2.796 | 2.405 ± 0.183 | 0.971 | 1.103 |
Skins | 6.332 ± 1.046 | 0.894 ± 0.068 | 0.971 | 0.158 | |
Grape pomace | 4.311 ± 0.822 | 1.192 ± 0.055 | 0.991 | 0.242 |
Material | Ea (kJ mol−1) | Kref (h−1) | R2 |
---|---|---|---|
Grape seeds | 60.785 | 32.027 | 0.956 |
Grape skins | 45.740 | 59.122 | 0.999 |
Grape pomace | 52.095 | 73.729 | 0.990 |
Material | Temperature (°C) | ∆H (kJ mol−1) | ∆S (kJ mol−1 K−1) | ∆G (kJ mol−1) |
---|---|---|---|---|
Grape seeds | 35 | 58.223 | −0.2844 | 145.873 |
50 | 58.098 | −0.2848 | 150.143 | |
70 | 57.932 | −0.2853 | 155.844 | |
Grape skins | 35 50 70 | 43.178 43.053 42.887 | −0.2793 −0.2797 −0.2802 | 129.258 133.451 139.051 |
35 | 49.553 | −0.2775 | 135.047 | |
Grape pomace | 50 | 49.408 | −0.2779 | 139.213 |
70 | 49.242 | −0.2784 | 144.776 |
Material | Polyphenols Content (mg/g) | Tannins Content (mg/g) | Tartaric Acid Content (mg/g) | |
---|---|---|---|---|
Initial bioactive compounds contents | Seeds | 66.23 ± 3.97 | 73.88 ± 12.92 | 0.46 ± 0.12 |
Skins | 18.67 ± 3.81 | 29.45 ± 3.84 | 5.16 ± 0.58 | |
Grape pomace | 29.17 ± 3.54 | 41.54 ± 8.03 | 3.54 ± 0.28 | |
Drying Method | Material | Polyphenols Degradation (%) | Tannins Degradation (%) | Tartaric Acid Degradation (%) |
Vacuum drying (35 °C) | Seeds | n.d. | 4.83 | n.d. |
Skin | 15.34 | 10.73 | 9.27 | |
Grape pomace | n.d. | 13.74 | 14.81 | |
Vacuum drying (50 °C) | Seeds | n.d. | 13.74 | n.d. |
Skin Grape pomace | n.d. 4.21 | 1.47 5.38 | 2.79 n.d. | |
Vacuum drying (70 °C) | Seeds | n.d. | n.d. | n.d. |
Skin | n.d. | n.d. | 5.88 | |
Grape pomace | n.d. | n.d. | n.d. | |
Conventional dryer (70 °C) | Seeds | n.d. | 32.27 | 22.81 |
Skin | n.d. | 31.68 | 34.83 | |
Grape pomace | n.d. | 22.39 | 27.01 | |
Open sun drying | Seeds Skin Grape pomace | n.d. n.d. n.d. | 3.32 5.27 17.37 | 11.34 6.27 4.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokač, T.; Gunjević, V.; Pušek, A.; Tušek, A.J.; Dujmić, F.; Brnčić, M.; Ganić, K.K.; Jakovljević, T.; Uher, D.; Mitrić, G.; et al. Comparison of Drying Methods and Their Effect on the Stability of Graševina Grape Pomace Biologically Active Compounds. Foods 2022, 11, 112. https://doi.org/10.3390/foods11010112
Sokač T, Gunjević V, Pušek A, Tušek AJ, Dujmić F, Brnčić M, Ganić KK, Jakovljević T, Uher D, Mitrić G, et al. Comparison of Drying Methods and Their Effect on the Stability of Graševina Grape Pomace Biologically Active Compounds. Foods. 2022; 11(1):112. https://doi.org/10.3390/foods11010112
Chicago/Turabian StyleSokač, Tea, Veronika Gunjević, Anita Pušek, Ana Jurinjak Tušek, Filip Dujmić, Mladen Brnčić, Karin Kovačević Ganić, Tamara Jakovljević, Darko Uher, Grozdana Mitrić, and et al. 2022. "Comparison of Drying Methods and Their Effect on the Stability of Graševina Grape Pomace Biologically Active Compounds" Foods 11, no. 1: 112. https://doi.org/10.3390/foods11010112
APA StyleSokač, T., Gunjević, V., Pušek, A., Tušek, A. J., Dujmić, F., Brnčić, M., Ganić, K. K., Jakovljević, T., Uher, D., Mitrić, G., & Redovniković, I. R. (2022). Comparison of Drying Methods and Their Effect on the Stability of Graševina Grape Pomace Biologically Active Compounds. Foods, 11(1), 112. https://doi.org/10.3390/foods11010112