Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Diet Preparation
2.3. Animals and Experimental Design
2.4. Comet Assay
2.5. Haematology
2.6. Histology
2.7. Liver and Kidney Oxidative Stress
2.8. Quantification of Glucosinolates, Isothiocyanates, and Their Metabolites
2.9. UHPLC-ESI-QqQ-MS/MS Analysis
2.10. Statistical Analysis
3. Results
3.1. General Findings
3.2. Comet Assay
3.3. Haematology
3.4. Organs and Adipose Tissue Weight
3.5. Liver and Kidney Histology
3.6. Liver and Kidney Oxidative Stress
3.7. Glucosinolates, Isothiocyanates, and Metabolic Derivatives in Urine and Plasma
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org (accessed on 18 October 2021).
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: https://www.fao.org/faostat (accessed on 18 October 2021).
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.-M. Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-Derived By-Products-A Promising Source of Bioactive Ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef] [PubMed]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef]
- Herr, I.; Büchler, M.W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat. Rev. 2010, 36, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Colaço, B.; Venâncio, C.; Pires, M.J.; Oliveira, P.A.; Rosa, E.; Antunes, L.M. Potential effects of sulforaphane to fight obesity. J. Sci. Food Agric. 2018, 98, 2837–2844. [Google Scholar] [CrossRef]
- Aborehab, N.M.; El Bishbishy, M.H.; Waly, N.E. Resistin mediates tomato and broccoli extract effects on glucose homeostasis in high fat diet-induced obesity in rats. BMC Complement Altern. Med. 2016, 16, 225. [Google Scholar] [CrossRef] [Green Version]
- Nagata, N.; Xu, L.; Kohno, S.; Ushida, Y.; Aoki, Y.; Umeda, R.; Fuke, N.; Zhuge, F.; Ni, Y.; Nagashimada, M.; et al. Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes 2017, 66, 1222–1236. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.-M.; Lee, Y.-S.; Kim, W.; Kim, S.J.; Shin, K.-O.; Yu, J.-Y.; Lee, M.K.; Lee, Y.-M.; Hong, J.T.; Yun, Y.-P.; et al. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. J. Nutr. Biochem. 2014, 25, 201–207. [Google Scholar] [CrossRef]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem. 2018, 245, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zuo, A.; Wang, D.; Pan, H.; Zheng, W.; Qian, Z.; Zou, X. Effects of broccoli stems and leaves meal on production performance and egg quality of laying hens. Anim. Feed Sci. Technol. 2011, 170, 117–121. [Google Scholar] [CrossRef]
- Hu, C.H.; Wang, D.G.; Pan, H.Y.; Zheng, W.B.; Zuo, A.Y.; Liu, J.X. Effects of broccoli stem and leaf meal on broiler performance, skin pigmentation, antioxidant function, and meat quality. Poult. Sci. 2012, 91, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.F.; Baurhoo, B. Effects of feeding dried broccoli floret residues on performance, ileal and total digestive tract nutrient digestibility, and selected microbial populations in broiler chickens. J. Appl. Poult. Res. 2016, 25, 561–570. [Google Scholar] [CrossRef]
- Bischoff, K.L. Chapter 40—Glucosinolates. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 551–554. [Google Scholar]
- Domínguez-Perles, R.; Moreno, D.A.; Carvajal, M.; Garcia-Viguera, C. Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innov. Food Sci. Emerg. Technol. 2011, 12, 361–368. [Google Scholar] [CrossRef]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Duran, A.; Gallegos-Soto, A.; Bernal-Barragan, H.; Lopez-Perez, M.; Mendez-Albores, A. Physicochemical, nutritional and sensory properties of deep fat-fried fortified tortilla chips with broccoli (Brassica oleracea L. convar. Italica Plenck) flour. J. Food Nutr. Res. 2014, 53, 313–323. [Google Scholar]
- Zambelli, R.A.; Pontes, B.C.V.; Pontes, E.R.; Silva, M.L.; Junior, E.C.S.; Pinto, L.I.F.; Melo, C.A.L.; Farias, M.M.; da Costa, C.S.; da Silva, A.C. Broccoli and Carrot Industrial Solid Waste Characterization and Application in the Bread Food Matrix. Int. J. Nutr. Food Sci. 2017, 6, 9–15. [Google Scholar]
- Prieto, M.A.; López, C.J.; Simal-Gandara, J. Chapter Six—Glucosinolates: Molecular Structure, Breakdown, Genetic, Bioavailability, Properties and Healthy and Adverse Effects. In Advances in Food and Nutrition Research; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: New York, NY, USA, 2019; pp. 305–350. [Google Scholar]
- Platz, S.; Piberger, A.L.; Budnowski, J.; Herz, C.; Schreiner, M.; Blaut, M.; Hartwig, A.; Lamy, E.; Hanske, L.; Rohn, S. Bioavailability and biotransformation of sulforaphane and erucin metabolites in different biological matrices determined by LC–MS–MS. Anal. Bioanal. Chem. 2015, 407, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Maruthanila, V.L.; Poornima, J.; Mirunalini, S. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3′-Diindolylmethane: A Therapeutic Marvel. Adv. Pharmacol. Sci. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Latté, K.P.; Appel, K.-E.; Lampen, A. Health benefits and possible risks of broccoli—An overview. Food Chem. Toxicol. 2011, 49, 3287–3309. [Google Scholar] [CrossRef]
- Nagraj, G.S.; Chouksey, A.; Jaiswal, S.; Jaiswal, A.K. Chapter 1—Broccoli. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: New York, NY, USA, 2020; pp. 5–17. [Google Scholar]
- Vermorel, M.; Davicco, M.-J.; Evrard, J.; Anglaret, Y.; Genest, M.; Leoty, C.; Meyer, M.; Souchet, R. Valorization of rapeseed meal. 3. Effects of glucosinolate content on food intake, weight gain, liver weight and plasma thyroid hormone levels in growing rats. Reprod. Nutr. Dev. 1987, 27, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermorel, M.; Heaney, R.K.; Fenwick, G.R. Antinutritional effects of the rapeseed meals, darmor and jet neuf, and progoitrin together with myrosinase, in the growing rat. J. Sci. Food Agric. 1988, 44, 321–334. [Google Scholar] [CrossRef]
- Wallig, M.; Belyea, R.; Tumbleson, M. Effect of pelleting on glucosinolate content of Crambe meal. Anim. Feed Sci. Technol. 2002, 99, 205–214. [Google Scholar] [CrossRef]
- Tripathi, M.; Mishra, A. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Andersen, K.E.; Frandsen, H.B.; Jensen, S.K.; Muguerza, N.B.; Sørensen, A.D.; Sørensen, J.C.; Sørensen, S.H.S. Glucosinolates in Brassica—Health risks but also benefits. In Bioactive Compounds in Plants—Benefits and Risks for Man and Animals; Bernhoft, A., Ed.; The Norwegian Academy of Science and Letters: Oslo, Norway, 2010; pp. 104–124. [Google Scholar]
- Barré-Sinoussi, F.; Montagutelli, X. Animal models are essential to biological research: Issues and perspectives. Future Sci. OA 2015, 1, FSO63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryda, E.C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo. Med. 2013, 110, 207–211. [Google Scholar] [PubMed]
- Ericsson, A.C.; Crim, M.; Franklin, C.L. A Brief History of Animal Modeling. Mo. Med. 2013, 110, 201–205. [Google Scholar] [PubMed]
- Vandamme, T.F. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 2014, 6, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Collins, A.R.; Azqueta, A. DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat. Res. Mol. Mech. Mutagen. 2012, 736, 122–129. [Google Scholar] [CrossRef]
- Shaposhnikov, S.; Azqueta, A.; Henriksson, S.; Meier, S.; Gaivao, I.; Huskisson, N.H.; Smart, A.; Brunborg, G.; Nilsson, M.; Collins, A. Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol. Lett. 2010, 195, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Azqueta, A. Chapter 4—Single-Cell Gel Electrophoresis Combined with Lesion-Specific Enzymes to Measure Oxidative Damage to DNA. Methods Cell Biol. 2012, 112, 69–92. [Google Scholar]
- Azqueta, A.; Collins, A. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 2013, 87, 949–968. [Google Scholar] [CrossRef]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Durak, I.; Yurtarslanl, Z.; Canbolat, O.; Akyol, O. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin. Chim. Acta 1993, 214, 103–104. [Google Scholar] [CrossRef]
- Gartaganis, S.P.; E Patsoukis, N.; Nikolopoulos, D.K.; Georgiou, C.D. Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye 2007, 21, 1406–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, B.; Rosengren, B.; Shertzer, H.; Camejo, G. Lipoprotein Oxidation and Measurement of Thiobarbituric Acid Reacting Substances Formation in a Single Microtiter Plate: Its Use for Evaluation of Antioxidants. Anal. Biochem. 1993, 208, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.; Ahamed, K.N.; Kumar, V.; Mukherjee, K.; Bandyopadhyay, A.; Mukherjee, P.K. Antioxidant effect of Cytisus scoparius against carbon tetrachloride treated liver injury in rats. J. Ethnopharmacol. 2007, 109, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Medina, S.; Moreno-Fernández, D.; Garcia-Viguera, C.; Ferreres, F.; Gil-Izquierdo, A. A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chem. 2014, 143, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, A.D.; Melgar, B.; Conidi, C.; Barros, L.; Ferreira, I.C.F.R.; Cassano, A.; Garcia-Castello, E.M. Chapter 5—Food Industry by-Products Valorization and New Ingredients: Cases of Study. In Sustainability of the Food System; Betoret, N., Betoret, E., Eds.; Academic Press: New York, NY, USA, 2020; pp. 71–99. [Google Scholar]
- Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Analysis of the tumoral cytotoxicity of green tea-infusions enriched with broccoli. Food Chem. 2012, 132, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Wallig, M.A.; Jeffery, E.H. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet. J. Nutr. 2016, 146, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Shin, W. How to Do Random Allocation (Randomization). Clin. Orthop. Surg. 2014, 6, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Ferreira, T.; Almeida, J.; Pires, M.J.; Colaço, A.; Lemos, S.; Da Costa, R.M.G.; Medeiros, R.; Bastos, M.M.S.M.; Neuparth, M.J.; et al. Dietary Supplementation with the Red Seaweed Porphyra umbilicalis Protects against DNA Damage and Pre-Malignant Dysplastic Skin Lesions in HPV-Transgenic Mice. Mar. Drugs 2019, 17, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šamec, D.; Salopek-Sondi, B. Chapter 3.11—Cruciferous (Brassicaceae) Vegetables. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: New York, NY, USA, 2019; pp. 195–202. [Google Scholar]
- O’Connell, E.K.; Mikkola, A.M.; Stepanek, A.M.; Vernet, A.; Hall, C.D.; Sun, C.C.; Yildirim, E.; Staropoli, J.F.; Lee, J.T.; Brown, D.E. Practical Murine Hematopathology: A Comparative Review and Implications for Research. Comp. Med. 2015, 65, 96–113. [Google Scholar] [PubMed]
- Boddupalli, S.; Mein, J.R.; Lakkanna, S.; James, D.R. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: Perspectives in maintaining the antioxidant activity of vitamins A, C, and E. Front. Genet. 2012, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahéo, K.; Morel, F.; Langouët, S.; Kramer, H.; Le Ferrec, E.; Ketterer, B.; Guillouzo, A. Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res. 1997, 57, 3649–3652. [Google Scholar] [PubMed]
- Xu, X.; Dai, M.; Lao, F.; Chen, F.; Hu, X.; Liu, Y.; Wu, J. Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. J. Funct. Foods 2020, 68, 103858. [Google Scholar] [CrossRef]
- Al Janobi, A.A.; Mithen, R.F.; Gasper, A.V.; Shaw, P.N.; Middleton, R.J.; Ortori, C.A.; Barrett, D.A. Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 844, 223–234. [Google Scholar] [CrossRef]
- Bheemreddy, R.M.; Jeffery, E.H. The Metabolic Fate of Purified Glucoraphanin in F344 Rats. J. Agric. Food Chem. 2007, 55, 2861–2866. [Google Scholar] [CrossRef]
- Budnowski, J.; Hanske, L.; Schumacher, F.; Glatt, H.; Platz, S.; Rohn, S.; Blaut, M. Glucosinolates Are Mainly Absorbed Intact in Germfree and Human Microbiota-Associated Mice. J. Agric. Food Chem. 2015, 63, 8418–8428. [Google Scholar] [CrossRef]
- Cramer, J.M.; Jeffery, E.H. Sulforaphane Absorption and Excretion Following Ingestion of a Semi-Purified Broccoli Powder Rich in Glucoraphanin and Broccoli Sprouts in Healthy Men. Nutr. Cancer 2011, 63, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; van den Berg, R.; Freidig, A.P.; van Bladeren, P.J.; Vaes, W.H.J. Association between Consumption of Cruciferous Vegetables and Condiments and Excretion in Urine of Isothiocyanate Mercapturic Acids. J. Agric. Food Chem. 2006, 54, 5350–5358. [Google Scholar] [CrossRef]
- Maldini, M.; Baima, S.; Morelli, G.; Scaccini, C.; Natella, F. A liquid chromatography-mass spectrometry approach to study “glucosinoloma” in broccoli sprouts. J. Mass Spectrom. 2012, 47, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Li, X.; Zou, P.; Schwartz, S.J.; Sun, D. Kinetics of sulforaphane in mice after consumption of sulforaphane-enriched broccoli sprout preparation. Mol. Nutr. Food Res. 2013, 57, 2128–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, M.; Moreno, D.A.; Cartea, M.E.; Ferreres, F.; García-Viguera, C.; Velasco, P. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. J. Chromatogr. A 2009, 1216, 6611–6619. [Google Scholar] [CrossRef]
- Velasco, P.; Francisco, M.; Moreno, D.A.; Ferreres, F.; García-Viguera, C.; Cartea, M.E. Phytochemical Fingerprinting of Vegetable Brassica oleracea and Brassica napus by Simultaneous Identification of Glucosinolates and Phenolics. Phytochem. Anal. 2011, 22, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baenas, N.; Moreno, D.A.; García-Viguera, C. Selecting Sprouts of Brassicaceae for Optimum Phytochemical Composition. J. Agric. Food Chem. 2012, 60, 11409–11420. [Google Scholar] [CrossRef]
- Lee, J.G.; Bonnema, G.; Zhang, N.; Kwak, J.H.; de Vos, R.C.H.; Beekwilder, J. Evaluation of Glucosinolate Variation in a Collection of Turnip (Brassica rapa) Germplasm by the Analysis of Intact and Desulfo Glucosinolates. J. Agric. Food Chem. 2013, 61, 3984–3993. [Google Scholar] [CrossRef] [PubMed]
CTR | 6.7% BF | |
---|---|---|
Microhematocrit (%) | 43.21 ± 0.65 | 40.04 ± 0.55 ** |
Glucose (mg/dL) | 335.60 ± 26.78 | 329.50 ± 42.27 |
Cholesterol (mg/dL) | 157.20 ± 9.74 | 169.70 ± 40.68 |
Total Proteins (g/L) | 45.06 ± 1.94 | 41.32 ± 4.16 |
Creatinine (mg/dL) | 0.20 ± 0.06 | 0.36 ± 0.15 |
AST (U/L) | 115.30 ± 23.39 | 97.66 ± 26.64 |
ALT (U/L) | 29.00 ± 3.31 | 31.52 ± 5.89 |
Organs | CTR | 6.7% BF |
---|---|---|
Thymus | 1.13 ± 0.16 | 0.90 ± 0.26 |
Heart | 4.45 ± 0.16 | 4.75 ± 0.44 |
Spleen | 3.00 ± 0.14 | 3.60 ± 0.19 * |
Lungs | 6.83 ± 0.39 | 6.05 ± 0.48 |
Right Kidney | 8.60 ± 0.21 | 7.78 ± 0.22 * |
Left Kidney | 7.61 ± 0.24 | 7.32 ± 0.27 |
Liver | 45.75 ± 3.23 | 49.81 ± 1.03 |
Perirenal adipose tissue | 5.82 ± 0.69 | 3.29 ± 0.62 * |
Abdominal adipose tissue | 17.16 ± 2.95 | 12.89 ± 2.57 |
Liver | Kidney | |||
---|---|---|---|---|
Oxidative Stress Parameters | CTR | 6.7% BF | CTR | 6.7% BF |
ROS(µmol DCF mg−1 protein) | 674.3 ± 108.5 | 657.2 ± 132.3 | 595.9 ± 94.7 | 508.5 ± 69.5 |
SOD(U mg−1 of protein) | 554.9 ± 106.8 | 550.1 ± 96.9 | 476.2 ± 63.6 | 511.1 ± 42.0 |
CAT(U mg−1 of protein) | 608.1 ± 90.1 | 467.2 ± 153.3 | 181.7 ± 32.3 | 188.1 ± 35.4 |
GST(nmol CDNB per min−1 mg−1 of protein) | 195.9 ± 26.7 | 379.5 ± 61.7 * | 21.7 ± 2.1 | 23.9 ± 3.8 |
GSH(µmol GSH mg−1 of protein) | 41.3 ± 5.2 | 51.0 ± 5.1 | 54.2 ± 9.0 | 44.9 ± 6.9 |
GSSG(µmol GSSG mg−1 of protein) | 40.1 ± 4.2 | 49.7 ± 8.9 | 17.7 ± 6.2 | 24.2 ± 2.5 |
OSI | 1.0 ± 0.1 | 1.1 ± 0.2 | 4.9 ± 1.4 | 1.9 ± 0.2 |
LPO(µmol MDA mg−1 of protein) | 36.5 ± 3.8 | 40.1 ± 8.8 | 42.7 ± 6.6 | 36.9 ± 2.7 |
LDH(nmol NADH per min−1 mg−1 of protein) | 18.7 ± 1.1 | 21.3 ± 4.1 | 5.0 ± 2.1 | 4.84 ± 1 |
Plasma | Urine | |||
---|---|---|---|---|
Compounds Detected (ng/mL) | CTR | 6.7% BF | CTR | 6.7% BF |
Glucoraphanin | N.d. | N.d. | N.d. | N.d. |
Glucoerucin | N.d. | 46.6 ± 1.6 | N.d. | 995.6 ± 223.2 |
Glucoiberin | N.d. | N.d | N.d. | N.d. |
Glucobrassicin | N.d. | 159.9 ± 20.2 | N.d. | 2301.0 ± 452.8 |
SFN | N.d. | 27.4 ± 1.6 | N.d. | 40.2 ± 9.2 |
Erucin | N.d. | N.d. | N.d. | N.d. |
Iberin | N.d. | N.d. | N.d. | N.d. |
I3C | N.d. | 88.9 ± 6.8 | N.d. | 812.6 ± 118.8 |
SFN-GSH | N.d. | N.d. | N.d. | 39.5 ± 7.5 |
SFN-CYS | N.d. | N.d. | N.d. | N.d. |
SFN-NAC | N.d. | N.d. | 0.5 ± 0.2 | 75.9 ± 22.5 |
DIM | N.d. | N.d. | 54.3 ± 22.1 | 1498.0 ± 197.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, T.; Oliveira, P.A.; Pires, M.J.; Neuparth, M.J.; Lanzarin, G.; Félix, L.; Venâncio, C.; Pinto, M.d.L.; Ferreira, J.; Gaivão, I.; et al. Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods 2022, 11, 120. https://doi.org/10.3390/foods11010120
Martins T, Oliveira PA, Pires MJ, Neuparth MJ, Lanzarin G, Félix L, Venâncio C, Pinto MdL, Ferreira J, Gaivão I, et al. Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods. 2022; 11(1):120. https://doi.org/10.3390/foods11010120
Chicago/Turabian StyleMartins, Tânia, Paula Alexandra Oliveira, Maria João Pires, Maria João Neuparth, Germano Lanzarin, Luís Félix, Carlos Venâncio, Maria de Lurdes Pinto, João Ferreira, Isabel Gaivão, and et al. 2022. "Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study" Foods 11, no. 1: 120. https://doi.org/10.3390/foods11010120
APA StyleMartins, T., Oliveira, P. A., Pires, M. J., Neuparth, M. J., Lanzarin, G., Félix, L., Venâncio, C., Pinto, M. d. L., Ferreira, J., Gaivão, I., Barros, A. I., Rosa, E., & Antunes, L. M. (2022). Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods, 11(1), 120. https://doi.org/10.3390/foods11010120