Occurrence of Potentially Toxic Elements in Bottled Drinking Water—Carcinogenic and Non-Carcinogenic Risks Assessment in Adults via Ingestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Reagents
2.3. Sample Preparation
2.4. Analytical Performance
2.5. Potentially Toxic Elements Calculation Formula
2.6. Health Risk Assessment
2.6.1. Non-Carcinogenic Analysis
2.6.2. Carcinogenic Analysis
2.7. Data Analysis
3. Results and Discussions
3.1. Potentially Toxic Elements Concentrations in Bottled Water
Element Analyzed | Number of Samples | Concentration Range (µg/L) | Analytical Method | Reference |
---|---|---|---|---|
Ba, Co, Cu, Zn, Mn, Ni, Li, Fe, Pb, Cd, Cr, Sb | 50 | <0.09–10.47 ± 6.79; <0.10–0.89 ± 0.75; 0.35 ± 3.78–5.63 ± 9.57; 0.67 ± 9.86–15.20 ± 5.29; <0.09–7.41 ± 1.55; 0.16 ± 1.04–3.77 ± 1.91; <0.11–12.30 ± 9.38; 13.73 ± 7.49–1761.24 ± 1.23; <0.07–6.0 ± 0.25; <0.09; <0.10–4.02 ± 2.12; <0.07–0.64 ± 6.85 | ICP–MS | Present study |
Pb, Cd, Cu, As, Hg | 42 | <3–5.1 ± 0.6; <0.6–1.2 ± 0.2; <3–19.7 ± 2.6; <3–7.9 ± 0.4; <0.3–0.6 ± 0.1 | GF–AAS MHS–AAS | [28] |
Cd, Pb, Cu | 23 | 0.0008–0.0024; 0.006–0.025; 0.083–0.37 | (SWASV) | [23] |
Pb, Cu, Cd | - | 0.1–210; LOD–3; LOD–2 | GF–AAS | [24] |
As, Cd, Cr, Cu, Mn, Ni, Pb, Sb | 23 | <0.20–6.41; <0.01–1.19; <0.21–1.57; 0.11–9.50; 0.04–195.2; <0.30–8.38; <0.04–2.89; <0.03–1.81 | ICP–MS | [29] |
Ag, As, Ba, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, Se, Tl, U, V, Zn | 59 | <0.0004–0.018; 0.025–99.6; 15.3–384; <0.002–0.700; <0.001–2.17; <0.002–3.08; <0.02–4.14; <0.02–18.1; <0.003–10.0; <0.01–15.2; <0.004–15.5; <0.001–0.653; <0.001–1.41; 5.57–1220; <0.001–0.141; 0.002–5.41; <0.01–78.7; <0.05–2260 | ICP–QMS | [21] |
Cu, Zn, Ni, Fe, Al, Pb, Cd | 2 | 34.5–35.4; 19.0–32.1; 1.3–4.1; 4.5–5; 12.6–15.3; 3.1–3.2; <0.0002 | AAS | [30] |
Cd | 8 | LOD–2.1 ± 0.22 | AAS | [32] |
Cd, Cr, Pb, As, Ni, Fe | 20 | LOD–72.1; LOD; 0–348.1; LOD; LOD–12.4; LOD–71.5 | GF–AAS | [33] |
Fe, Cu, Pb, Se, Zn, Cr, B, Al | 4 | 28–40; 0; 8–320; 30–3290; 0; 0; 280–540; 0 | ICP–AES | [25] |
Cu | 20 | 0.03–1.71 | ICP–MS | [26] |
Fe, Zn, Ag, Cu, Cd, Co, Ni, Pb | 200 | 3–3.7; ND; ND; 8.4–10.5; ND; 27.2–28.3; 7.6–8.9; ND | F–AAS | [31] |
As, Cd, Pb | 78 | <2–11.54 ± 2.79; <0.036; <0.25–12.66 ± 0.68 | GF–AAS | [22] |
Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn | 9 | ND; ND; ND; ND–107; ND; ND; ND; ND; ND; 91–241; ND | GF–AAS | [27] |
3.2. Health Risk Assessment
3.2.1. Non-Carcinogenic Analysis
3.2.2. Carcinogenic Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dippong, T.; Hoaghia, M.A.; Mihali, C.; Cical, E.; Calugaru, M. Human health risk assessment of some bottled waters from Romania. Environ. Pollut. 2020, 267, 115409. [Google Scholar] [CrossRef] [PubMed]
- Gambino, I.; Bagordo, F.; Coluccia, B.; Grassu, T.; De Filippis, G.; Piscitelli, P.; Galante, B.; De Leo, F. PET–Bottled water consumption in view of a circular economy: The case study of Salento (South Italy). Sustainability 2020, 12, 7988. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.Y.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. Methods X 2019, 6, 1642–1651. [Google Scholar] [CrossRef]
- Kamarehie, B.; Jafari, A.; Zarei, A.; Fakri, Y.; Ghaderpori, M.; Alinejad, A. Non-carcinogenic health risk assessment of nitrate in bottled drinking waters sold in Iranian markets: A Monte Carlo simulation. Accredit. Qual. Assur. 2019, 24, 417–426. [Google Scholar] [CrossRef]
- Whitt, M.; Brown, W.; Danes, J.; Vorst, K.L. Migration of heavy metals from recycled polyethylene terephthalate during storage and microwave heating. J. Plast. Film Sheet. 2016, 32, 189–207. [Google Scholar] [CrossRef]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN (accessed on 3 April 2022).
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation EU, No.10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food; Official Journal of the European Union: Luxembourg, 2011.
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184&from=EN (accessed on 4 April 2022).
- EPA (Environmental Protection Agency). SW-846 Test Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy (FLAA) or Inductively Coupled Plasma Spectroscopy (ICP); EPA (Environmental Protection Agency): Washington, DC, USA, 1992. Available online: https://www.epa.gov/sites/default/files/2015–12/documents/3010a.pdf (accessed on 23 January 2022).
- Magnusson, B.; Ornemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Windsor, UK, 2014; pp. 1–70. Available online: www.eurachem.org (accessed on 14 March 2022).
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2018.
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Assessment Guidance Manual; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2005. Available online: https://www.atsdr.cdc.gov/hac/phamanual/pdfs/phagm_final1–27–05.pdf (accessed on 3 April 2022).
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Anyawu, A.D.; Onyele, O.G. Human health risk assessment of some heavy metals in a rural spring, Southeastern Nigeria. Afr. J. Environ. Nat. Sci. Res. 2018, 1, 15–23. [Google Scholar]
- Manganese Chemical Update Worksheet. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-ManganeseDatasheet_527860_7.pdf (accessed on 3 April 2022).
- Lithium Chemical Update Worksheet. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-LithiumDatasheet_527862_7.pdf (accessed on 3 April 2022).
- Antimony Chemical Update Worksheet. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-AntimonyDatasheet_527730_7.pdf (accessed on 3 April 2022).
- Zakir, H.M.; Sharmin, S.; Akter, A.; Rahman, M.D.S. Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area, Bangladesh. Environ. Adv. 2020, 2, 10005. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Rizwan, M.; Ahmed, T.; Jabri, H.A. The carcinogenic and non-carcinogenic health risks of metal(oid)s bioaccumulation in leafy vegetables: A consumption advisory. Front. Environ. Sci. 2021, 9, 742269. [Google Scholar] [CrossRef]
- Wu, J.; Man, Y.; Sun, G.; Shang, L. Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China. Water 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Bakirdere, S.; Yaroglu, T.; Tirik, N.; Demiroz, M.; Fidan, K.; Maruldali, O.; Karaca, A. Determination of As, Cd, and Pb in Tap Water and Bottled Water Samples by Using Optimized GFAAS System with Pd-Mg and Ni as Matrix Modifiers. J. Spectrosc. 2013, 2013, 824817. [Google Scholar] [CrossRef]
- Anibaldi, A.; Illuminati, S.; Truzzi, C.; Scarponi, G. Heavy metals in spring and bottled drinking waters of Sibylline Mountains National Park (Central Italy). J. Food Prot. 2018, 81, 295–301. [Google Scholar] [CrossRef]
- Sarvestani, R.A.; Aghasi, M. Health risk assessment of heavy metals exposure (lead, cadmium and copper) through drinking water consumption in Kerman city. Iran. Environ. Earth Sci. 2019, 74, 714. [Google Scholar] [CrossRef]
- Singla, A.; Kundu, H.; Basavaraj, P.; Singh, S.; Singh, K.; Jain, S. Physico-Chemical and Bacterial Evaluation of Packaged Drinking Water Marketed in Delhi—Potential Public Health Implications. J. Clin. Diagn. Res. 2014, 8, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Aris, A.Z.; Kam, R.C.Y.; Lim, A.P.; Praveena, S.M. Concentrations of ions in selected bottled water samples sold in Malaysia. Appl. Water Sci. 2013, 3, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Bamuwamye, M.; Ogwok, P.; Tumuhairwe, V.; Eragu, R.; Nakisozi, H.; Ogwang, P.E. Human Health Risk Assessment of Heavy Metals in Kampala (Uganda) Drinking Water. J. Food Res. 2017, 6, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Hadiani, M.R.; Dezfooli-Manesh, S.; Shoeibi, S.; Ziarati, P.; Khaneghah, A.M. Trace elements and heavy metals in mineral and bottled drinking water on the Iranian market. Food Addit. Contam. Part B Surveill. 2015, 8, 18–24. [Google Scholar] [CrossRef]
- Ristic, M.; Popovic, I.; Pocajt, V.; Antanasijevic, D.; Peric-Grujic, A. Concentrations of selected trace elements in mineral and spring bottled waters on the Serbian market. Food Addit. Contam. Part B Surveill. 2011, 4, 6–14. [Google Scholar] [CrossRef]
- Salmani, M.H.; Talebi, P.; Ebrahimpoor, O. Investigating the Concentration of Heavy Metals in Bottled Water and Comparing with its Standard: Case Study. J. Environ. Health Sustain. Dev. 2017, 2, 340–347. [Google Scholar]
- Gautam, B. Chemical evaluation of trace elements in bottled water. J. Healthc. Eng. 2020, 2020, 8884700. [Google Scholar] [CrossRef]
- Fakri, Y.; Jafarzadeh, S.; Moradi, B.; Zandsalimi, Y.; Langarizadeh, G.; Amirhajeloo, L.R.; Mirzaei, M. The non-carcinogenic risk of cadmium in bottled water in different age groups humans: Bandar Abbas City. Iran. Mater. Socio-Med. 2015, 27, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, O.; Olusegen, A.O.; Joel, E.S.; Okolie, S.T.A.; Ayowe, O.E.A.A.; Arijaje, T.E. Potential health risks of heavy metal contents in bottled water from Logos State and its environs, Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 012021. [Google Scholar] [CrossRef]
- Ghaderpoori, M.; Kamarehie, B.; Jafari, A.; Ghaderpoury, A.; Karami, M. Heavy metals analysis and quality assessment of drinking water–Khorramabad city, Japan. Data Brief 2018, 16, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Allafi, A.R. The effect of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) into commercial bottled water in Kuwait. Acta Biomed. 2020, 91, e2020105. [Google Scholar]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals, 1st ed.; Saleh, H.E.D.M., Aglan, R.F., Eds.; IntechOpen: London, UK, 2018; pp. 115–133. [Google Scholar]
- McNeill, I.R.; Isoardi, K.Z. Barium poisoning: An uncommon cause of severe hypokalemia. Toxicol. Commun. 2019, 3, 88–90. [Google Scholar] [CrossRef]
- Sobhanardakani, S. Ecological and Human Health Risk Assessment of Heavy Metal Content of Atmospheric Dry Deposition, a Case Study: Kermanshah. Iran. Biol. Trace Elem. Res. 2019, 187, 602–610. [Google Scholar] [CrossRef]
- Venkatraman, V.; Wong, M.K.; Chalita, C.; Parente, B.; Lad, S.P. Cobalt induced toxicity and spasticity secondary to hip arthroplasty: Case report and review of the literature. Cereus 2020, 12, e12368. [Google Scholar] [CrossRef] [PubMed]
- Aliasgharpour, M. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 1–17. [Google Scholar]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 2019, 65, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Agnew, U.M.; Slesinger, T.L. Zinc Toxicity; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Sobhanardakani, S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Mar. Pollut. Bull. 2017, 123, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Nazir, S.; Irshad, R.; Tahir, K.; Ur Rehman, K.; Ul Islam, R.; Wahab, Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J. Mol. Liq. 2021, 321, 114455. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Gallichio, V.S. Heavy metals and cancer. In Cancer Causing Substances, 1st ed.; Atroshi, F., Ed.; IntechOpen: London, UK, 2017; pp. 1–18. [Google Scholar]
- Sobhanardakani, S.; Tayebi, L.; Hosseini, S.V. Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pn and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ. Sci. Pollut. Res. Int. 2018, 25, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica 2016, 2016, 5464373. [Google Scholar] [CrossRef] [Green Version]
- Sundar, S.; Chakravarty, J. Antimony toxicity. Int. J. Environ. Res. Public Health 2010, 7, 4267–4277. [Google Scholar] [CrossRef]
- Romero-Estevez, D.; Yanez-Jacome, G.S.; Simbana-Farinango, K.; Navarrete, H. Distribution, Contents and Health Risk Assessment of Cadmium, Lead and Nickel in bananas produced in Ecuador. Foods 2019, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Duggal, V.; Rani, A. Carcinogenic and non-carcinogenic risk assessment of metals in groundwater via ingestion and dermal absorption pathways for children and adults in Malwa Region of Punjab. J. Geol. Soc. 2018, 92, 187–194. [Google Scholar] [CrossRef]
- Alidadi, H.; Sany, S.B.T.; Oftadeh, B.Z.G.; Mohamad, T.; Shamszade, H.; Fakhari, M. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environ. Health Prev. Med. 2019, 24, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Wang, Z.; Wu, Q.; Zeng, J. Multivariate statistical evaluation of dissolved heavy metals and a water quality assessment in the Lake Aha watershed, Southwest China. PeerJ 2020, 8, e9660. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, M.H.; Khanam, T.; Sheer, A.; Kebin, Z.; Jianjun, Y. Health risk assessment of different heavy metals dissolved in drinking water. Int. J. Environ. Res. Public Health 2019, 16, 1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Potentially Toxic Elements Concentrations (µg/L) | Directive EU 2020/184 (µg/L) | ||
---|---|---|---|---|
Min | Max | Mean | ||
Ba | <0.09 | 10.47 ± 6.79 | 1.90 ± 161.41 | - |
Co | <0.10 | 0.89 ± 0.75 | 0.11 ± 147.59 | - |
Cu | 0.35 ± 3.78 | 5.63 ± 9.57 | 1.09 ± 90.02 | 2000 |
Zn | 0.67 ± 9.86 | 15.20 ± 5.29 | 3.17 ± 75.75 | - |
Mn | <0.09 | 7.41 ± 1.55 | 0.42 ± 269.11 | 50 |
Ni | 0.16 ± 1.04 | 3.77 ± 1.91 | 1.21 ± 73.47 | 20 |
Li | <0.11 | 12.30 ± 9.38 | 1.67 ± 149.53 | - |
Fe | 13.73 ± 7.49 | 1761.24 ± 1.23 | 455.76 ± 85.70 | 200 |
Pb | <0.07 | 6.0 ± 0.25 | 0.59 ± 150.33 | 5 |
Cd | <0.09 | <0.09 | - | 5 |
Cr | <0.10 | 4.02 ± 2.12 | 0.28 ± 287.21 | 25 |
Sb | <0.07 | 0.64 ± 6.85 | 0.09 ± 146.40 | 10 |
Element | Exposure Dose (µg·kg−1·day−1) | Hazard Quotient (HQ) | Cancer Risk (CR) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
Ba | 2.99 × 10−4 | NA | 5.45 × 10−5 | 4.27 × 10−3 | NA | 7.79 × 10−4 | - | - | - |
Co | 2.54 × 10−5 | NA | 3.19 × 10−6 | 1.27 × 10−3 | NA | 1.59 × 10−4 | - | - | - |
Cu | 5.54 × 10−4 | 1.0 × 10−5 | 4.13 × 10−5 | 1.50 × 10−1 | 2.70 × 10−3 | 1.11 × 10−2 | - | - | - |
Zn | 4.34 × 10−4 | 1.91 × 10−5 | 9.04 × 10−5 | 1.45 × 10−3 | 6.38 × 10−5 | 3.01 × 10−4 | - | - | - |
Mn | 2.12 × 10−4 | NA | 1.17 × 10−5 | 4.60 × 10−3 | NA | 2.55 × 10−4 | - | - | - |
Ni | 1.08 × 10−4 | 3.71 × 10−6 | 3.46 × 10−5 | 5.39 × 10−3 | 1.86 10−4 | 1.73 × 10−3 | 9.05 × 10−5 | 3.21 × 10−6 | 2.90 × 10−5 |
Li | 3.51 × 10−4 | NA | 4.77 × 10−5 | 1.26 × 10−2 | NA | 1.70 × 10−3 | - | - | - |
Fe | 5.0 × 10−2 | NA | 1.30 × 10−2 | 7.17 | NA | 1.86 | - | - | - |
Pb | 1.71 × 10−4 | NA | 1.85 × 10−5 | 4.76 × 10−2 | NA | 5.13 × 10−3 | 1.46 × 10−3 | NA | 1.57 × 10−4 |
Cd | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Cr | 1.15 × 10−4 | NA | 8.01 × 10−6 | 3.83 × 10−2 | NA | 2.67 × 10−3 | 4.71 × 10−3 | NA | 3.28 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, E.L.; Soare, A.D.; Mocanu, A.L.; Iorga, S.C.; Mustatea, G.; Popa, M.E. Occurrence of Potentially Toxic Elements in Bottled Drinking Water—Carcinogenic and Non-Carcinogenic Risks Assessment in Adults via Ingestion. Foods 2022, 11, 1407. https://doi.org/10.3390/foods11101407
Ungureanu EL, Soare AD, Mocanu AL, Iorga SC, Mustatea G, Popa ME. Occurrence of Potentially Toxic Elements in Bottled Drinking Water—Carcinogenic and Non-Carcinogenic Risks Assessment in Adults via Ingestion. Foods. 2022; 11(10):1407. https://doi.org/10.3390/foods11101407
Chicago/Turabian StyleUngureanu, Elena L., Alexandru D. Soare, Andreea L. Mocanu, Sorin C. Iorga, Gabriel Mustatea, and Mona Elena Popa. 2022. "Occurrence of Potentially Toxic Elements in Bottled Drinking Water—Carcinogenic and Non-Carcinogenic Risks Assessment in Adults via Ingestion" Foods 11, no. 10: 1407. https://doi.org/10.3390/foods11101407
APA StyleUngureanu, E. L., Soare, A. D., Mocanu, A. L., Iorga, S. C., Mustatea, G., & Popa, M. E. (2022). Occurrence of Potentially Toxic Elements in Bottled Drinking Water—Carcinogenic and Non-Carcinogenic Risks Assessment in Adults via Ingestion. Foods, 11(10), 1407. https://doi.org/10.3390/foods11101407