A Simple Combination of Active and Intelligent Packaging Based on Garlic Extract and Indicator Solution in Extending and Monitoring the Meat Quality Stored at Cold Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Garlic Extract Preparation
2.3. Active Paper Preparation
2.4. Indicator Solution Preparation
2.5. Intelligent Indicator Label Preparation
2.6. Application of Active and Intelligent Packaging on Fresh Beef
2.7. Antibacterial Activity Testing of Agar Diffusion Method on Activated Paper
2.8. Parameters of Beef Observation Packaged with a Combination of Active and Intelligent Packaging
2.8.1. pH Measurement
2.8.2. TVBN Value Analysis
2.8.3. Calculation of Total Bacterial Count
2.9. Intelligent Indicator Color Measurement Quantification
2.10. Level of Relationship (Correlation) between Test Parameters
2.11. Statistical Analysis
3. Results and Discussion
3.1. Meat pH
3.2. Total Volatile Bases Nitrogen (TVBN)
3.3. Total Bacteria of Total Plate Count (TPC) Method
3.4. The Antibacterial Analysis Results of Active Paper
3.5. Color Change Response on Intelligent Indicator Labels for Beef Packaged in Active Packaging at Cold Temperature Storage
3.6. Correlation of Color Value Changes in Intelligent Packaging Indicators BTB: PR (1:1) with the Effect of Active Packaging on All Meat Spoilage Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dave, D.; Ghaly, A.E. Meat spoilage mechanisms and preservation techniques: A critical review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Chin, Y.-W.; Paik, H.-D. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef] [PubMed]
- Djenane, D.; Gómez, D.; Yangüela, J.; Roncalés, P.; Ariño, A. Olive Leaves Extract from Algerian Oleaster (Olea europaea var. sylvestris) on Microbiological Safety and Shelf-life Stability of Raw Halal Minced Beef during Display. Foods 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Bahmid, N.A.; Dekker, M.; Fogliano, V.; Heising, J. Development of a moisture-activated antimicrobial film containing ground mustard seeds and its application on meat in active packaging system. Food Packag. Shelf Life 2021, 30, 100753. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Mohammadian, E.; McClements, D.J. Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chem. 2020, 322, 126782. [Google Scholar] [CrossRef]
- Lin, L.; Luo, C.; Li, C.; Chen, X.; Cui, H. Application in Beef Preservation. Foods 2022, 11, 438. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Pateraki, G.-L.; Skandamis, P.N. Developing a Commercial Antimicrobial Active Packaging System of Ground Beef Based on “Tsipouro” Alcoholic Distillate. Foods 2020, 9, 1171. [Google Scholar] [CrossRef]
- Arkoun, M.; Daigle, F.; Holley, R.A.; Heuzey, M.C.; Ajji, A. Chitosan-based nanofibers as bioactive meat packaging materials. Packag. Technol. Sci. 2018, 31, 185–195. [Google Scholar] [CrossRef]
- Quintavalla, S.; Vicini, L. Antimicrobial food packaging in meat industry. Meat Sci. 2002, 62, 373–380. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef]
- Nerín, C.; Tovar, L.; Djenane, D.; Camo, J.; Salafranca, J.; Beltrán, J.A.; Roncalés, P. Stabilization of beef meat by a new active packaging containing natural antioxidants. J. Agric. Food Chem. 2006, 54, 7840–7846. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Sanfuentes, E.A. The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold. LWT-Food Sci. Technol. 2015, 64, 390–396. [Google Scholar] [CrossRef]
- Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020, 9, 1628. [Google Scholar] [CrossRef]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Santas, J.; Almajano, M.P.; Carbó, R. Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. Int. J. Food Sci. Technol. 2010, 45, 403–409. [Google Scholar] [CrossRef]
- Kyung, K.H. Antimicrobial properties of allium species. Curr. Opin. Biotechnol. 2012, 23, 142–147. [Google Scholar] [CrossRef]
- Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, J.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packag. Shelf Life 2019, 21, 100357. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Luo, C.; Guo, Y.; Ahmed, I.; Pavase, T.R.; Lv, L.; Li, Z.; Lin, H. Characterization of new active packaging based on PP/LDPE composite films containing attapulgite loaded with Allium sativum essence oil and its application for large yellow croaker (Pseudosciaena crocea) fillets. Food Packag. Shelf Life 2019, 20, 100320. [Google Scholar] [CrossRef]
- Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644. [Google Scholar] [CrossRef]
- Yolanda, D.S.; Dirpan, A.; Rahman, A.N.F.; Kamaruddin, I.; Ainani, A.F. Determination the best concentration of antimicrobial ingredients with a mixture of paper to create active paper packaging. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 012019. [Google Scholar] [CrossRef]
- Lee, S.J.; Rahman, A.T.M.M. Intelligent Packaging for Food Products; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; ISBN 9780123946010. [Google Scholar]
- Pacquit, A.; Crowley, K.; Diamond, D. Smart Packaging Technologies for Fish and Seafood Products. In Smart Packaging Technologies for Fast Moving Consumer Goods; Kerry, J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 75–98. ISBN 9780470028025. [Google Scholar]
- Vilas, C.; Mauricio-Iglesias, M.; García, M.R. Model-based design of smart active packaging systems with antimicrobial activity. Food Packag. Shelf Life 2020, 24, 100446. [Google Scholar] [CrossRef]
- Dirpan, A.; Djalal, M.; Rahman, R.; Genisa, J. The utilization of red cabbage extract (Brassica oleracea) in the production of avocado (Persea americana Mill) freshness indicator as smart packaging element. Online J. Biol. Sci. 2021, 21, 261–270. [Google Scholar] [CrossRef]
- Agustianti, D.; Dirpan, A.; Syarifuddin, A. The potential application of red cabbage indicator film as smart packaging on tuna fillet. IOP Conf. Ser. Earth Environ. Sci. 2021, 807, 022065. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, P.; Quan, S.; Zhang, H.; Wang, K.; Liu, J. Preparation, characterization and application of smart packaging films based on locust bean gum/polyvinyl alcohol blend and betacyanins from cockscomb (Celosia cristata L.) flower. Int. J. Biol. Macromol. 2021, 191, 679–688. [Google Scholar] [CrossRef]
- Kim, D.; Thanakkasaranee, S.; Lee, K.; Sadeghi, K.; Seo, J. Smart packaging with temperature-dependent gas permeability maintains the quality of cherry tomatoes. Food Biosci. 2021, 41, 100997. [Google Scholar] [CrossRef]
- Dirpan, A.; Latief, R.; Syarifuddin, A.; Rahman, A.N.F.; Putra, R.P.; Hidayat, S.H. The use of colour indicator as a smart packaging system for evaluating mangoes Arummanis (Mangifera indica L. var. Arummanisa) freshness. IOP Conf. Ser. Earth Environ. Sci. 2018, 157, 12031. [Google Scholar] [CrossRef]
- Shukla, V.; Kandeepan, G.; Vishnuraj, M.R. Development of On-Package Indicator Sensor for Real-Time Monitoring of Buffalo Meat Quality During Refrigeration Storage. Food Anal. Methods 2015, 8, 1591–1597. [Google Scholar] [CrossRef]
- Romero, A.; Sharp, J.L.; Dawson, P.L.; Darby, D.; Cooksey, K. Evaluation of two intelligent packaging prototypes with a pH indicator to determine spoilage of cow milk. Food Packag. Shelf Life 2021, 30, 100720. [Google Scholar] [CrossRef]
- Julyaningsih, A.H.; Latief, R.; Dirpan, A. The making of smart and active packaging on tuna fillet. IOP Conf. Ser. Earth Environ. Sci. 2020, 486, 012053. [Google Scholar] [CrossRef]
- Sisilia Yolanda, D.; Dirpan, A.; Nur Faidah Rahman, A.; Djalal, M.; Hatul Hidayat, S. The potential combination of smart and active packaging in one packaging system in improving and maintaining the quality of fish. Canrea J. Food Technol. Nutr. Culin. J. 2020, 3, 74–86. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Gosal, L.; Hutomo, S.; Sooai, C.M. Garlic (Allium sativum L.) Ethanolic Extract Capability to Inhibit Pseudomonas aeruginosa Biofilm Formation. J. Med. Health 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Wiastuti, T.; Khasanah, L.U.; Kawiji, W.A.; Manuhara, G.J.; Utami, R. Characterization of active paper packaging incorporated with ginger pulp oleoresin. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012057. [Google Scholar] [CrossRef] [Green Version]
- Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Mohammed, M.F.; Raman, N.; Alhoot, M.A.; Alwan, M.R. Antibacterial activities of allium sativum (Garlic) extracts against staphylococcus aureus and Escherichia coli. Eur. J. Mol. Clin. Med. 2020, 7, 526–534. [Google Scholar]
- Hunterlab. Colorimeters Versus Spectrophotometers; Technical Service Departement Hunter Associates Laboratory, Inc.: Reston, VA, USA, 2008. [Google Scholar]
- Hernández-García, E.; Vargas, M.; Torres-Giner, S. Quality and shelf-life stability of pork meat fillets packaged in multilayer polylactide films. Foods 2022, 11, 426. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; El-din Bekhit, A. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [Green Version]
- Korean Ministry of Agriculture and Forestry. Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=70016 (accessed on 18 December 2021).
- Holman, B.W.B.; Bekhit, A.E.D.A.; Waller, M.; Bailes, K.L.; Kerr, M.J.; Hopkins, D.L. The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef. Meat Sci. 2021, 179, 108551. [Google Scholar] [CrossRef]
- Deresse, D. Antibacterial effect of garlic (Allium sativum) on Staphylococcu aureus: An in vitro study. Asian J. Med. Sci. 2010, 2, 62–65. [Google Scholar]
- Mardiyah, S. Efektivitas Anti Bakteri Perasan Bawang Putih (Allium sativum L.) terhadap Pertumbuhan Staphylococcus aureus. Med. (J. Med. Lab. Sci.) 2018, 1, 44–53. [Google Scholar] [CrossRef]
- Comi, G. Spoilage of Meat and Fish; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081005033. [Google Scholar]
- Pan, X.; Chen, F.; Wu, T.; Tang, H.; Zhao, Z. The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control 2009, 20, 598–602. [Google Scholar] [CrossRef]
- Costa, A.L.R.; de Oliveira, A.C.S.; Azevedo, V.M.; Medeiros, E.A.A.; Soares, N.d.F.F.; Borges, S.V. Essential oils of garlic and oregano incorporated in cellulose acetate films: Antimicrobial activity and physical properties. Res. Soc. Dev. 2020, 9, e329108304. [Google Scholar] [CrossRef]
- Garba, I.; Umar, A.; Abdulrahman, A.; Tijjani, M.; Aliyu, M.; Zango, U.; Muhammad, A. Phytochemical and antibacterial properties of garlic extracts. Bayero J. Pure Appl. Sci. 2014, 6, 45. [Google Scholar] [CrossRef]
- Safithri, M.; Bintang, M.; Poeloengan, M. Antibacterial activity of garlic extract against some pathogenic animal bacteria. Media Peternak. 2011, 34, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.W. PH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. [Google Scholar] [CrossRef]
- Schuessler, Z. What Is Delta E? and Why Is It Important for Color Accuracy? Available online: http://zschuessler.github.io/DeltaE/learn/ (accessed on 15 April 2022).
- Mansur, A.R.; Song, E.J.; Cho, Y.S.; Nam, Y.D.; Choi, Y.S.; Kim, D.O.; Seo, D.H.; Nam, T.G. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiol. 2019, 77, 166–172. [Google Scholar] [CrossRef]
- Dirpan, A.; Djalal, M.; Kamaruddin, I. Application of an intelligent sensor and active packaging system based on the bacterial cellulose of Acetobacter xylinum to meat products. Sensors 2022, 22, 544. [Google Scholar] [CrossRef] [PubMed]
Storage Time (Day) | Addition of Garlic Extract on Active Paper | ||
---|---|---|---|
0% | 15% | 20% | |
0 | 5.68 ± 0.06 g | 5.68 ± 0.06 g | 5.68 ± 0.06 g |
3 | 5.82 ± 0.16 g | 5.71 ± 0.01 g | 5.74 ± 0.16 g |
6 | 5.88 ± 0.0 g | 5.74 ± 0.01 g | 5.52 ± 0.16 g |
9 | 7.52 ± 0.72 b,c,d | 5.78 ± 0.07 g | 5.67 ± 0.16 g |
12 | 7.77 ± 0.52 b,c | 6.08 ± 0.01 f,g | 5.83 ± 0.13 g |
15 | 7.93 ± 0.20 b | 6.85 ± 1.27 d,e,f | 6.70 ± 0.62 e,f |
18 | 7.90 ± 0.13 b | 7.00 ± 0.66 b,c,d,e | 6.72 ± 0.03 e,f |
21 | 8.93 ± 0.14 a | 7.19 ± 0.58 b,c,d,e | 7.02 ± 0.60 c,d,e |
Average | 7.18 ± 1.22 A | 6.25 ± 0.65 B | 6.11 ± 1.35 B |
Storage Time (Day) | Addition of Garlic Extract on Active Paper | ||
---|---|---|---|
0% | 15% | 20% | |
0 | 4.48 ± 0.00 i | 4.48 ± 0.00 i | 4.48 ± 0.00 i |
3 | 4.76 ± 0.00 i | 5.04 ± 1.40 i | 4.58 ± 1.38 i |
6 | 11.21 ± 1.46 g | 4.20 ± 0.00 i | 5.88 ± 0.56 h,i |
9 | 27.27 ± 2.72 d,e | 10.83 ± 0.65 g | 9.43 ± 0.32 g,h |
12 | 32.22 ± 9.54 c | 22.32 ± 1.38 f | 21.66 ± 2.83 f |
15 | 34.18 ± 1.40 c | 23.06 ± 0.71 f | 22.97 ± 1.22 f |
18 | 40.81 ± 1.17 b | 24.65 ± 1.84 e,f | 23.35 ± 1.71 e,f |
21 | 55.28 ± 4.66 a | 33.43 ± 1.13 c | 30.26 ± 1.28 c,d |
Average | 26.27 ± 18.19 A | 16.00 ± 11.26 B | 15.33 ± 10.30 B |
Storage Time (Day) | Addition of Garlic Extract on Active Paper | ||
---|---|---|---|
0% | 15% | 20% | |
0 | 3.52 ± 0.05 i | 3.52 ± 0.05 i | 3.52 ± 0.05 i |
3 | 4.49 ± 0.04 f,g,h | 4.16 ± 0.08 g,h,i | 3.88 ± 0.06 h,i |
6 | 6.49 ± 0.06 c | 4.44 ± 0.03 f,g,h | 4.29 ± 0.18 g,h,i |
9 | 7.47 ± 0.02 b | 5.08 ± 0.07 e,f | 4.93 ± 0.48 f,g |
12 | 8.30 ± 0.04 a | 6.35 ± 0.71 c,d | 6.09 ± 0.20 c,d |
15 | 8.45 ± 1.22 a,b | 6.43 ± 1.27 c,d,e | 6.24 ± 0.69 c,d |
18 | 8.17 ± 0.61 a,b | 6.19 ± 0.15 c,d | 5.69 ± 0.41 d,e |
21 | 7.82 ± 0.16 a,b | 5.81 ± 0.24 c,d,e | 5.37 ± 0.54 e,f |
Average | 6.84 ± 1.87 A | 5.25 ± 1.11 B | 5.00 ± 1.02 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirpan, A.; Djalal, M.; Ainani, A.F. A Simple Combination of Active and Intelligent Packaging Based on Garlic Extract and Indicator Solution in Extending and Monitoring the Meat Quality Stored at Cold Temperature. Foods 2022, 11, 1495. https://doi.org/10.3390/foods11101495
Dirpan A, Djalal M, Ainani AF. A Simple Combination of Active and Intelligent Packaging Based on Garlic Extract and Indicator Solution in Extending and Monitoring the Meat Quality Stored at Cold Temperature. Foods. 2022; 11(10):1495. https://doi.org/10.3390/foods11101495
Chicago/Turabian StyleDirpan, Andi, Muspirah Djalal, and Andi Fadiah Ainani. 2022. "A Simple Combination of Active and Intelligent Packaging Based on Garlic Extract and Indicator Solution in Extending and Monitoring the Meat Quality Stored at Cold Temperature" Foods 11, no. 10: 1495. https://doi.org/10.3390/foods11101495