The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Scanning Electron Microscopy (SEM)
2.3. Biofilm Analysis
2.4. Hemolysis Assay
2.5. Coagulase Assay
2.6. Transcriptome Analysis
2.7. Quantitative Real-Time PCR Experimental Validation
2.8. Metabolome Analysis
2.9. Correlation Analysis of Transcriptome and Metabolome
3. Results
3.1. High Salinity Stress Affects Cell Growth and Morphology
3.2. High Salinity Stress Affects Biofilm Formation
3.3. High Salinity Stress Affects Virulence
3.4. Transcriptome Responses to Salinity Stress
3.5. qRT–PCR Validation
3.6. Metabolomic Responses to High Salinity Stress
3.7. Integrated Analysis of Transcriptome and Metabolomic Data
4. Discussion
4.1. Biofilm Formation
4.2. Virulence
4.3. Transfer System
4.4. Osmotic Adjustment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, N.H.; Cho, T.J.; Rhee, M.S. Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. Adv. Appl. Microbiol. 2017, 101, 1–47. [Google Scholar] [PubMed]
- Zwietering, M.H.; Wijtzes, T.; Rombouts, F.M.; Klaas, V.K. A decision support system for prediction of microbial spoilage in foods. J. Ind. Microbiol. Biotechnol. 1993, 12, 324–329. [Google Scholar] [CrossRef]
- Lupín, H.M.; Boeri, R.L.; Moschiar, S.M. Water activity and salt content relationship in moist salted fish products. Int. J. Food Sci. Technol. 1981, 16, 31–38. [Google Scholar] [CrossRef]
- Bencardino, D.; Amagliani, G.; Brandi, G. Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control 2021, 130, 108362. [Google Scholar] [CrossRef]
- Gordon, A.; Devlieger, D.; Vasan, A.; Bedard, B.J.F.S. Technical considerations for the implementation of food safety and quality systems in developing countries. In Food Safety and Quality Systems in Developing Countries; Academic Press: Cambridge, MA, USA, 2020; Volume 3, pp. 1–40. [Google Scholar]
- Xue, L.; Chen, Y.; Yan, Z.; Lu, W.; Zhu, H.J.I.; Resistance, D. Staphyloxanthin: A potential target for antivirulence therapy. Infect. Drug Resist. 2019, 12, 2151–2160. [Google Scholar] [CrossRef]
- Sergelidis, D.; Abrahim, A.; Papadopoulos, T.; Soultos, N.; Martziou, E. Isolation of methicillin-resistant Staphylococcus spp. from ready-to-eat fish products. Lett. Appl. Microbiol. 2014, 59, 500–506. [Google Scholar] [CrossRef]
- Ma, Y.; Lan, G.; Li, C.; Cambaza, E.M.; Ding, T.J.M.P. Stress tolerance of Staphylococcus aureus with different antibiotic resistance profiles. Microb. Pathog. 2019, 133, 103549. [Google Scholar] [CrossRef]
- Alibayov, B.; Zdeňková, K.; Purkrtová, S.; Demnerová, K.; Karpiskova, R. Detection of some phenotypic and genotypic characteristics of Staphylococcus aureus isolated from food items in the Czech Republic. Ann. Microbiol. 2014, 64, 1587–1596. [Google Scholar] [CrossRef]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Smith, N.D.; Gottfries, J.; Roberts, T.K. Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J. Proteom. 2015, 121, 44–55. [Google Scholar] [CrossRef]
- Lee, S.; Choi, K.-H.; Yoon, Y. Effect of NaCl on Biofilm Formation of the Isolate from Staphylococcus aureus Outbreak Linked to Ham. Korean J. Food Sci. Anim. Resour. 2014, 34, 257–261. [Google Scholar] [CrossRef]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Gottfries, J.; Roberts, T.K. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front. Microbiol. 2020, 10, 03059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois-Brissonnet, F.; Trotier, E.; Briandet, R. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids. Front. Microbiol. 2016, 7, 01673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detkova, E.N.; Boltyanskaya, Y.V. Osmoadaptation of haloalkaliphilic bacteria: Role of osmoregulators and their possible practical application. Microbiology 2007, 76, 511–522. [Google Scholar] [CrossRef]
- Vijaranakul, U.; Nadakavukaren, M.; Dejonge, B.; Wilkinson, B.; Jayaswal, R. Increased cell size and shortened peptidoglycan interpeptide bridge of NaCl-stressed Staphylococcus aureus and their reversal by glycine betaine. J. Bacteriol. 1995, 177, 5116–5121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming, T.; Geng, L.; Feng, Y.; Lu, C.; Zhou, J.; Li, Y.; Zhang, D.; He, S.; Li, Y.; Cheong, L.; et al. iTRAQ-Based Quantitative Proteomic Profiling of Staphylococcus aureus Under Different Osmotic Stress Conditions. Front. Microbiol. 2019, 10, 01082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Smith, N.D.; Gottfries, J.; Roberts, T.K. Amino acids and proteomic acclimation of Staphylococcus aureus when incubated in a defined minimal medium supplemented with 5% sodium chloride. Microbiologyopen 2019, 8, e00772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Hou, L.; Zhang, S.; Kou, X.; Li, R.; Wang, S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020, 108, 106837. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Ming, T.; Han, J.; Li, Y.; Lu, C.; Qiu, D.; Li, Y.; Zhou, J.; Su, X. A metabolomics and proteomics study of the Lactobacillus plantarum in the grass carp fermentation. BMC Microbiol. 2018, 18, 216. [Google Scholar] [CrossRef]
- Hashim, Z.; Mukai, Y.; Bamba, T.; Fukusaki, E. Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. Metabolites 2014, 4, 580–598. [Google Scholar] [CrossRef] [Green Version]
- Krämer, R. Bacterial stimulus perception and signal transduction: Response to osmotic stress. Chem. Rec. 2010, 10, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y. Cloning of genes affecting capsule expression in Staphylococcus aureus strain M. Mol. Microbiol. 1992, 6, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchad, H.; Nair, M. The small RNA SprX regulates the autolysin regulator WalR in Staphylococcus aureus. Microbiol. Res. 2021, 250, 126785. [Google Scholar] [CrossRef]
- Lopes, A.A.; Yoshii, Y.; Yamada, S.; Nagakura, M.; Okuda, K.I. Roles of Lytic Transglycosylases in Biofilm Formation and β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2019, 63, e01277-19. [Google Scholar] [CrossRef]
- Burnside, K.; Lembo, A.; de Los Reyes, M.; Iliuk, A.; Binhtran, N.T.; Connelly, J.E.; Lin, W.J.; Schmidt, B.Z.; Richardson, A.R.; Fang, F.C.; et al. Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a Serine/Threonine Kinase and Phosphatase. PLoS ONE 2010, 5, 1–16. [Google Scholar] [CrossRef]
- Vanassche, T.; Verhaegen, J.; Peetermans, W.E.; Hoylaerts, M.F.; Verhamme, P. Dabigatran inhibits Staphylococcus aureus coagulase activity. J. Clin. Microbiol. 2010, 48, 4248–4250. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.L.R.S.; Calsolari, R.A.O. Toxigenicity in Staphylococcus aureus and Coagulase-Negative Staphylococci: Epidemiological and Molecular Aspects. Microbiol. Insights 2008, 1, 13–24. [Google Scholar] [CrossRef]
- Shimamura, Y.; Utsumi, M.; Hirai, C.; Nakano, S.; Ito, S.; Tsuji, A.; Ishii, T.; Hosoya, T.; Kan, T.; Ohashi, N.; et al. Binding of Catechins to Staphylococcal Enterotoxin A. Molecules 2018, 23, 1125. [Google Scholar] [CrossRef] [Green Version]
- Balaban, N.; Rasoonly, A. Staphylococcal enterotoxins. Int. J. Food Microbiol. 2000, 61, 1–10. [Google Scholar] [CrossRef]
- Sihto, H.M.; Tasara, T.; Stephan, R.; Johler, S. Temporal expression of the staphylococcal enterotoxin D gene under NaCl stress conditions. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Steinbacher, T.; Peters, G.; Heilmann, C.; Becker, K. The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization. Int. J. Med. Microbiol. 2015, 305, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Porayath, C.; Suresh, M.K.; Biswas, R.; Nair, B.G.; Mishra, N.; Pal, S. Autolysin mediated adherence of Staphylococcus aureus with Fibronectin, Gelatin and Heparin. Int. J. Biol. Macromol. 2018, 110, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.; Palma, M.; Lofving-Arvholm, I.; Sallberg, M.; Silberring, J.; Flock, J.I. Identification of functional domains in Efb, a fibrinogen binding protein of Staphylococcus aureus. Biochem. Biophys. Res. Commun. 1998, 248, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.P.; Kang, M.; Ganesh, V.K.; Ravirajan, D.; Li, B.; Höök, M. Coagulase and Efb of Staphylococcus aureus Have a Common Fibrinogen Binding Motif. Mbio 2016, 7, e01885-15. [Google Scholar] [CrossRef] [Green Version]
- Fehrmann, C.; Jurk, K.; Bertling, A.; Seidel, G.; Heilmann, C. Role for the fibrinogen-binding proteins Coagulase and Efb in the Staphylococcus aureus–Candida interaction. Int. J. Med. Microbiol. IJMM 2013, 303, 230–238. [Google Scholar] [CrossRef]
- Masters, T.L.; Johnson, S.; Patricio, R.J.; Greenwood-Quaintance, K.E.; Cunningham, S.A.; Abdel, M.P.; Chia, N.; Patel, R. Comparative Transcriptomic Analysis of Staphylococcus aureus Associated with Periprosthetic Joint Infection Under in vivo and in vitro Conditions. J. Mol. Diagn. 2021, 23, 986–999. [Google Scholar] [CrossRef]
- Flint, A.; Butcher, J.; Stintzi, A. Stress Responses, Adaptation, and Virulence of Bacterial Pathogens during Host Gastrointestinal Colonization. Microbiol. Spectr. 2016, 4, 385–411. [Google Scholar] [CrossRef] [Green Version]
- Hanakahi, L.A.; Bartlet, M.; Chappell, C.; Pappin, D.; West, S.C. Binding of Inositol Phosphate to DNA-PK and Stimulation of Double-Strand Break Repair. Cell 2000, 102, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Bolger, T.A.; Folkmann, A.W.; Tran, E.J.; Wente, S.R. The mRNA Export Factor Gle1 and Inositol Hexakisphosphate Regulate Distinct Stages of Translation. Cell 2008, 134, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Gu, D.; Wang, Z.; Lu, C.; Su, X. Comprehensive Evaluation and Analysis of the Salinity Stress Response Mechanisms Based on Transcriptome and Metabolome of Staphylococcus aureus. Arch. Microbiol. 2021, 204, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Baker, H.; Ge, R.; Sun, H.; He, Q.; Baker, E. Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes. Biochemistry 2009, 48, 6184–6190. [Google Scholar] [CrossRef] [PubMed]
- Beis, K. Structural basis for the mechanism of ABC transporters. Biochem. Soc. Trans. 2015, 43, 889–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francklyn, C.S.; Mullen, P. Progress and Challenges in Aminoacyl-tRNA Synthetase-based Therapeutics. J. Biol. Chem. 2019, 294, 5365–5385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imhoff, J.F.; Rahn, T.; Künzel, S.; Keller, A.; Neulinger, S.C. Osmotic Adaptation and Compatible Solute Biosynthesis of Phototrophic Bacteria as Revealed from Genome Analyses. Microorganisms 2021, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Song, W.S.; Kim, S.W.; Jo, S.H.; Lee, J.S.; Jeon, H.J.; Joon, B.; Choi, K.Y.; Yang, Y.H.; Kim, Y.G. Multi-omics characterization of the osmotic stress resistance and protease activities of the halophilic bacterium Pseudoalteromonas phenolica in response to salt stress. RSC Adv. 2020, 10, 23792–23800. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.D. Microbial water stress. Bacteriol. Rev. 1976, 40, 803–846. [Google Scholar] [CrossRef]
- Ongagna-Yhombi, S.Y.; McDonald, N.D.; Boyd, E.F. Deciphering the Role of Multiple Betaine-Carnitine-Choline Transporters in the Halophile Vibrio parahaemolyticus. Appl. Environ. Microbiol. 2015, 81, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Angelidis, A.S.; Smith, G.M. Three Transporters Mediate Uptake of Glycine Betaine and Carnitine by Listeria monocytogenes in Response to Hyperosmotic Stress. Appl. Environ. Microbiol. 2003, 69, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.J.; Zelt, S.C.; Bae, J.H. Glycine betaine and proline are the principal compatible solutes of Staphylococcus aureus. Curr. Microbiol. 1991, 23, 131–137. [Google Scholar] [CrossRef]
- Townsend, D.E.; Wilkinson, B.J. Proline transport in Staphylococcus aureus: A high-affinity system and a low-affinity system involved in osmoregulation. J. Bacteriol. 1992, 174, 2702–2710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutch, C.E. L-Proline nutrition and catabolism in Staphylococcus saprophyticus. Antonie Van Leeuwenhoek 2011, 99, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Bayles, D.O.; Wilkinson, B.J. Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett. Appl. Microbiol. 2000, 30, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Ming, T.; Zhou, J.; Lu, C.; Wang, R.; Su, X. The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods. Foods 2022, 11, 1503. https://doi.org/10.3390/foods11101503
Feng Y, Ming T, Zhou J, Lu C, Wang R, Su X. The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods. Foods. 2022; 11(10):1503. https://doi.org/10.3390/foods11101503
Chicago/Turabian StyleFeng, Ying, Tinghong Ming, Jun Zhou, Chenyang Lu, Rixin Wang, and Xiurong Su. 2022. "The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods" Foods 11, no. 10: 1503. https://doi.org/10.3390/foods11101503
APA StyleFeng, Y., Ming, T., Zhou, J., Lu, C., Wang, R., & Su, X. (2022). The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods. Foods, 11(10), 1503. https://doi.org/10.3390/foods11101503