Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period
Abstract
:1. Introduction
- Simulating China’s grain demand under different scenarios and analyzing their diversity and uncertainty.
- Predicting potential projections for China’s grain production, with a stepwise overlay of factors affecting productivity.
- Calculating the gaps between the grain demand scenarios as well as the production projections and proposing options to fulfill the balance.
2. Methods and Materials
- (1)
- In the demand theory, the influencing factors, including income, grain price, preference, and population size, are adequately considered. In this regard, the price is inversely correlated with the quantity demanded. However, as grain is essential to meet the necessities of human beings, the elasticity of demand is small and the effect of price is not significant. Due to the diversity of grain uses, we employed a functional decomposition analysis to decompose grain demand into food (direct consumption), industrial use, feed, seeds, and losses. The direct consumption is extrapolated from the historical change trend. The indirect consumption was calculated based on the conversion rate estimation method, because feed and industry consume grain in a certain ratio. The per capita grain demand was estimated by combining the parameter debugging method.
- (2)
- In the supply theory, the technological development, factor input and natural resource endowment are the main influences. Therefore, we chose the two main factors affecting production—yields and arable land area—to analyze the changes in the time series using panel data and a stepwise approach to increasing control variables.
- (3)
- The demand side is less elastic than the supply side in this balance. Thus, the domestic production capacity, grain imports and stocks are the vital externalities to regulate supply. Comparing the demand and supply scenarios in an integrated manner, we addressed China’s potential risks and challenges in balancing grain supply and demand when facing the population peak.
2.1. Grain Demand Model
2.1.1. Food Use
2.1.2. Feed Use
2.1.3. Industrial Use
2.1.4. Seed Use
2.1.5. Losses
2.1.6. Per Capita Grain Demand
2.2. Grain Supply Model in China
2.3. The Analysis Framework of Grain Supply and Demand Scenarios
2.4. Data Source
- (1)
- China population projection data from World Population Prospects 2019 were drawn to simulate three different population scenarios [37].
- (2)
- Recent studies have shown that more grain losses in consumption were objectively present in China, and the data were mainly from the FAO food balance sheets [44,45]. We will not discuss the impact of changes in the databases; for example, the data balance sheet was updated in 2014, so there are two different sets of data from 1961–2013 and 2014–2018.
3. Results
3.1. China’s Grain Demand during 2020–2050 under Different Scenarios
3.1.1. Per Capita Grain Demand for the Period 2020–2050
3.1.2. Population Size Projections from 2020 to 2050
3.1.3. China’s Grain Demand during 2020–2050 under Nine Scenarios
3.2. China’s Grain Production under Different Projections
3.2.1. Change Trend of Yield and Arable Land Area of China’s Grain Production
3.2.2. China’s Grain Production Simulation under Different Projections
3.3. China’s Grain Demand and Production Balance during the Population Peak
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popkin, B.M. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. Nutr. Rev. 2017, 75, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinstrup-Andersen, P.; Pandya-Lorch, R.; Rosegrant, M.W. The World Food Situation: Recent Developments, Emerging Issues and Long-Term Prospects; The International Food Policy Research Institute: Washington, DC, USA, 1997. [Google Scholar]
- Pingali, P. Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Bentham, J.; Singh, G.M.; Danaei, G.; Green, R.; Lin, J.K.; Stevens, G.A.; Farzadfar, F.; E Bennett, J.; Di Cesare, M.; Dangour, A.D.; et al. Multidimensional characterization of global food supply from 1961 to 2013. Nat. Food 2020, 1, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolmarans, P. Background paper on global trends in food production, intake and composition. Ann. Nutr. Metab. 2009, 55, 244–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food wedges: Framing the global food demand and supply challenge towards 2050. Glob. Food Secur. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Development Report 2008: Agriculture for Development; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [Green Version]
- Kearney, J. Food Consumption Trends and Drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Water for food: The global virtual water trade network. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Qiang, W.; Niu, S.; Liu, A.; Kastner, T.; Bie, Q.; Wang, X.; Cheng, S. Trends in global virtual land trade in relation to agricultural products. Land Use Policy 2020, 92, 104439. [Google Scholar] [CrossRef]
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Haen, H.D.; Hemrich, G. The economics of natural disasters: Implications and challenges for food security. Agric. Econ. 2007, 37, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Falkendal, T.; Otto, C.; Schewe, J.; Jägermeyr, J.; Konar, M.; Kummu, M.; Watkins, B.; Puma, M.J. Grain export restrictions during COVID-19 risk food insecurity in many low- and middle-income countries. Nat. Food 2021, 2, 11–14. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Dalin, C.; Qiu, H.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Balancing water resource conservation and food security in China. Natl. Acad. Sci. USA 2015, 112, 4588–4593. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, H.; Savenije, H.H.G. China’s move to higher-meat diet hits water security. Nature 2008, 454, 397. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, X. Cultivated land and food supply in China. Land Use Policy 2010, 17, 73–88. [Google Scholar] [CrossRef]
- Lam, H.M.; Remais, J.; Fung, M.C.; Xu, L.; Sun, S.S.-M. Food supply and food safety issues in China. Lancet 2013, 381, 2044–2053. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Seto, K.C.; Kaufmann, R.K.; Woodcock, C.E. Landsat reveals China’s farmland reserves, but they're vanishing fast. Nature 2000, 406, 121. [Google Scholar] [CrossRef]
- Brown, L.R.; Halweil, B. China’s water shortage could shake world food security. World Watch 1998, 11, 10. [Google Scholar] [PubMed]
- Wu, Y.; Chen, Y. Food safety in China. J. Epidemiol. Community Health 2013, 67, 478–479. [Google Scholar] [CrossRef]
- Broughton, E.I.; Walker, D.G. Policies and practices for aquaculture food safety in China. Food Policy 2010, 35, 471–478. [Google Scholar] [CrossRef]
- Xin, L.; Wang, J.; Wang, L. Prospect of per capita grain demand driven by dietary structure change in China. Resour. Sci. 2015, 37, 1347–1356. (In Chinese) [Google Scholar]
- Chen, B. The comprehensive production capacity of agricultural resources and food security in China in the future. Geogr. Res. 2002, 21, 294–304. (In Chinese) [Google Scholar]
- Hu, X.P.; Guo, X.H. Analysis and forecast of China’s food demand structure in 2020-Based on the perspective of nutrition standards. China Rural. Econ. 2010, 6, 4–15. (In Chinese) [Google Scholar]
- Zhao, X.; Shao, Y. Analysis and Forecast of China’s grain supply and demand. Res. Agric. Mod. 2014, 35, 277–280. (In Chinese) [Google Scholar]
- Tang, H.; Li, Z. Study on per capita grain demand based on Chinese reasonable dietary pattern. Sci. Agric. Sin. 2012, 45, 2315–2327. (In Chinese) [Google Scholar]
- Luo, Q.; Mi, J.; Gao, M. Research on forecasting for long-term grain consumption demands in China. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 1–7. (In Chinese) [Google Scholar]
- UN Department of Economic and Social Affairs. World Population Prospects: The 2010 Revision, Highlights and Advance Tables; UN Department of Economic and Social Affairs: New York, NY, USA, 2011. [Google Scholar]
- World Population Prospects 2019. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 1 March 2022).
- Wang, X.; Dou, Z.; Shi, X.; Zou, C.; Liu, D.; Wang, Z.; Guan, X.; Sun, Y.; Wu, G.; Zhang, B.; et al. Innovative management programme reduces environmental impacts in Chinese vegetable production. Nat. Food 2021, 2, 1–7. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 1 March 2022).
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/english/ (accessed on 5 March 2022).
- The World Bank Database. Available online: https://databank.worldbank.org/home.aspx (accessed on 10 March 2022).
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Yu, Y.; Kharrazi, A.; Fath, B.D.; Feng, C.; Daigger, G.T.; Chen, S.; Ma, T.; Zhu, B.; Mi, Z.; et al. Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012. Nat. Food 2020, 1, 365–375. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, R.; Mcybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Kummu, M.; De, M.H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Feng, Z.M. Future Food Security and Arable Land Guarantee for Population Development in China. Popul. Res. 2007, 2, 15–29. (In Chinese) [Google Scholar]
- Lin, Y.F. China’s grain outlook and strategy. Chin. Rural. Econ. 1995, 8, 3. (In Chinese) [Google Scholar]
- Xin, L.J.; Li, P.H.; Fan, J.Z. Change of food consumption with population age structure in China. Trans. Chin. Soc. Agric. Eng. 2018, 34, 296–302. (In Chinese) [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, P.; Reusser, D.E.; Kropp, J.P. Embodied greenhouse gas emissions in diets. PLoS ONE 2013, 8, e62228. [Google Scholar]
- Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From food insufficiency towards trade dependency: A historical analysis of global food availability. PLoS ONE 2013, 8, e82714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, P.; Lüdeke, M.K.; Reusser, D.E.; Kropp, J.P. Supplementary Information and Data: Embodied crop calories in animal products. Environ. Res. Lett. 2013, 8, 044044. [Google Scholar] [CrossRef] [Green Version]
- Jalava, M.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet change—a solution to reduce water use? Environ. Res. Lett. 2014, 9, 074016. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, Y.; Wang, H. The Impact of COVID-19 on Food Consumption and Dietary Quality of Rural Households in China. Foods 2022, 11, 510. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Wang, J. Global Food Security under COVID-19: Comparison and Enlightenment of Policy Responses in Different Countries. Foods 2021, 10, 2850. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Springmann, M.; Godfray, H.C.; Rayner, J.M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Chinese Academy of Sciences: The Amount of Food Waste in China is Approximately 17 to 18 Million Tons per Year. Available online: http://www.chinanews.com/cj/2016/11-28/8076586.shtml (accessed on 11 March 2022).
- Loibl, C.; Bruine de, W.B.; Summers, B.; McNair, S.; Verhallen, P. Which financial stressors are linked to food insecurity among older adults in the United Kingdom, Germany, and the Netherlands? An exploratory study. Food Secur. 2022, 14, 533–556. [Google Scholar] [CrossRef]
- Lindgren, K.A.; Lang, T. Understanding the policy discourse within the formulation of the 2013 Indian National Food Security Act. Food Secur. 2022, 14, 1–15. [Google Scholar]
- Ataei, P.; Sadighi, H.; Izadi, N. Major challenges to achieving food security in rural, Iran. Rural. Soc. 2021, 30, 15–31. [Google Scholar] [CrossRef]
- DeFries, R.S.; Rudel, T.K.; Uriarte, M.; Hansen, M.C. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fader, M.; Gerten, D.; Krause, M.; Lucht, W.; Cramer, W. Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 2013, 8, 1880–1885. [Google Scholar] [CrossRef]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
Scenario | Method | References | Result | Difference |
---|---|---|---|---|
Low | Dietary balance estimation | Tang et al. [34] | 386 | −3 |
Xin et al. [30] | 386 | −3 | ||
Medium | Historical trend extrapolation | Feng et al. [46] | 450 | −67 |
Lin et al. [47] | 470 | −47 | ||
High | International Experience Study | Xin et al. [48] | 517 | 0 |
Huang et al. [33] | 531 | 14 |
Indicator | Scenario Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario1 LL | Scenario2 LM | Scenario3 LH | Scenario4 ML | Scenario5 MM | Scenario6 MH | Scenario7 HL | Scenario8 HM | Scenario9 HH | ||
Demand | Population size (billion people) | 1.29 | 1.29 | 1.29 | 1.4 | 1.4 | 1.4 | 1.51 | 1.51 | 1.51 |
Grain per capita demand (kg/capita/year) | 389 | 517 | 546 | 389 | 517 | 546 | 389 | 517 | 546 | |
Total grain demand (million tons) | 503.2 | 668.8 | 706.3 | 545.5 | 725.0 | 765.7 | 589.2 | 783.1 | 827.0 | |
Production | Projection 1 | 709.6 | 709.6 | 709.6 | 709.6 | 709.6 | 709.6 | 709.6 | 709.6 | 709.6 |
Projection 2 | 738.7 | 738.7 | 738.7 | 738.7 | 738.7 | 738.7 | 738.7 | 738.7 | 738.7 | |
Projection 3 | 759.0 | 759.0 | 759.0 | 759.0 | 759.0 | 759.0 | 759.0 | 759.0 | 759.0 | |
Balance | The gap with current production (Mt) | 154.8 | −10.8 | −48.3 | 112.5 | −67.0 | −107.7 | 68.8 | −125.1 | −169.0 |
The gap with production projection 1 (Mt) | 205.8 | 40.2 | 2.7 | 163.5 | −16.0 | −56.7 | 119.8 | −74.1 | −118.0 | |
The gap with production projection 2 (Mt) | 234.8 | 69.2 | 31.7 | 192.5 | 13.0 | −27.7 | 148.8 | −45.1 | −89.0 | |
The gap with production projection 3 (Mt) | 255.8 | 90.2 | 52.7 | 213.5 | 34.0 | −6.7 | 169.8 | −24.1 | −68.0 | |
The average gap (Mt) | 232.1 | 66.5 | 29.0 | 189.8 | 10.3 | −30.4 | 146.1 | −47.8 | −91.7 | |
The gap to fill by grain imports | - | - | - | 30% | 50% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Qiang, W.; Niu, S.; Growe, A.; Yan, S.; Tian, N. Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period. Foods 2022, 11, 1566. https://doi.org/10.3390/foods11111566
Wang X, Qiang W, Niu S, Growe A, Yan S, Tian N. Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period. Foods. 2022; 11(11):1566. https://doi.org/10.3390/foods11111566
Chicago/Turabian StyleWang, Xiang, Wenli Qiang, Shuwen Niu, Anna Growe, Simin Yan, and Nan Tian. 2022. "Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period" Foods 11, no. 11: 1566. https://doi.org/10.3390/foods11111566
APA StyleWang, X., Qiang, W., Niu, S., Growe, A., Yan, S., & Tian, N. (2022). Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period. Foods, 11(11), 1566. https://doi.org/10.3390/foods11111566