Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media and Growth Conditions
2.2. Isolation, Identification, and Whole Genome Sequencing of Nontoxic Nonproteolytic C. botulinum
2.3. Genomic Characterization and Phylogenetic Analysis of the Isolates
2.4. Phenotypic Characterization
2.5. Construction of Erythromycin-Resistant Strains
2.6. Selective Medium for C. botulinum Surrogate Strains
3. Results and Discussion
3.1. Isolation and Genomic and Phylogenetic Analysis of Nontoxic Nonproteolytic C. botulinum Strains
3.2. Growth in High Salt, at Low pH and at Low Temperature
3.3. Spore Heat Resistance
3.4. Mutual Antagonism between Nontoxic Isolates
3.5. Selection of Strains for Challenge Testing and Introduction of an Erythromycin Resistance Marker
3.6. Stability of Erythromycin Resistance
3.7. Selective Medium for Challenge Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peck, M.W.; Stringer, S.C. The safety of pasteurised in-pack chilled meat products with respect to the foodborne botulism hazard. Meat Sci. 2005, 70, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, M.; Kiviniemi, K.; Korkeala, H. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int. J. Food Microbiol. 2006, 108, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Diamant, E.; Pass, A.; Rosen, O.; Ben David, A.; Torgeman, A.; Barnea, A.; Tal, A.; Rosner, A.; Zichel, R. A Novel Rabbit Spirometry Model of Type E Botulism and Its Use for the Evaluation of Postsymptom Antitoxin Efficacy. Antimicrob. Agents Chemother. 2018, 62, e02379-17. [Google Scholar] [CrossRef] [Green Version]
- Connan, C.; Denève, C.; Mazuet, C.; Popoff, M.R. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 2013, 75, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.K.; Smith, T.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. In Botulinum Neurotoxins; Rummel, A., Binz, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 364, pp. 1–20. [Google Scholar]
- Williamson, C.H.D.; Sahl, J.W.; Smith, T.J.; Xie, G.; Foley, B.T.; Smith, L.A.; Fernández, R.A.; Lindström, M.; Korkeala, H.; Keim, P.; et al. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genom. 2016, 17, 180. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.; Williamson, C.H.D.; Hill, K.; Sahl, J.; Keim, P. Botulinum Neurotoxin-Producing Bacteria. Isn’t It Time that We Called a Species a Species? MBio 2018, 9, e01469-18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Peck, M.W.; van Vliet, A.H. Impact of Clostridium botulinum genomic diversity on food safety. Curr. Opin. Food Sci. 2016, 10, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.T.; Peck, M.W. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Stringer, S.C.; Carter, A.T.; Webb, M.D.; Wachnicka, E.; Crossman, L.C.; Sebaihia, M.; Peck, M.W. Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum. BMC Genom. 2013, 14, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderton, G.; Chen, J.K.; Ito, K.A. Effect of lysozyme on the recovery of heated Clostridium botulinum spores. Appl. Microbiol. 1974, 27, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.; Goodburn, K.; Betts, R.; Stringer, S. Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled. Trends Food Sci. Technol. 2008, 19, 207–216. [Google Scholar] [CrossRef]
- FSA. The Safety and Shelf-Life of Vacuum and Modified Atmosphere Packed Chilled Foods with Respect to Non-Proteolytic Clostridium botulinum. 2020. Available online: https://www.food.gov.uk/sites/default/files/media/document/the-safety-and-shelf-life-of-vacuum-and-modified-atmosphere-packed-chilled-foods-with-respect-to-non-proteolytic-clostridium-botulinum_1.pdf (accessed on 5 October 2021).
- CFA. Guidelines for Setting Shelf Life of Chilled Foods in Relation to Nonproteolytic Clostridium botulinum. 2018. Available online: https://www.chilledfood.org/new-publication-guidelines-for-setting-shelf-life-of-chilled-foods-in-relation-to-non-proteolytic-clostridium-botulinum/ (accessed on 23 January 2020).
- Koukou, I.; Mejlholm, O.; Dalgaard, P. Cardinal parameter growth and growth boundary model for non-proteolytic Clostridium botulinum—Effect of eight environmental factors. Int. J. Food Microbiol. 2021, 346, 109162. [Google Scholar] [CrossRef]
- USDA. Online Pathogen Modeling Program. 2009. Available online: https://pmp.errc.ars.usda.gov/ (accessed on 16 March 2022).
- ComBase. ComBase Predictor, ComBase Modeling Toolbox. Institute of Food Research. 2007. Available online: https://www.combase.cc/index.php/en/ (accessed on 16 March 2022).
- Komitopoulou, E. Microbiological challenge testing. Compr. Rev. Food Sci. Food Saf. 2003, 2, 46–50. [Google Scholar]
- Directorate, C.F. Clostridium botulinum Challenge Testing of Ready-to-Eat Foods. 2010. Available online: https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/pdf/legislation/pol/sop-cbot-eng.pdf (accessed on 22 July 2019).
- Hu, M.; Gurtler, J.B. Selection of Surrogate Bacteria for Use in Food Safety Challenge Studies: A Review. J. Food Prot. 2017, 80, 1506–1536. [Google Scholar] [CrossRef]
- Butler, R.; Schill, K.M.; Wang, Y.; Pombert, J.-F. Genetic Characterization of the Exceptionally High Heat Resistance of the Non-toxic Surrogate Clostridium sporogenes PA 3679. Front. Microbiol. 2017, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.L.; Tran-Dinh, N.; Chapman, B. Clostridium sporogenes PA 3679 and Its Uses in the Derivation of Thermal Processing Schedules for Low-Acid Shelf-Stable Foods and as a Research Model for Proteolytic Clostridium botulinum. J. Food Prot. 2012, 75, 779–792. [Google Scholar] [CrossRef]
- Weigand, M.R.; Pena-Gonzalez, A.; Shirey, T.B.; Ishaq, M.K.; Konstantinidis, K.T.; Raphael, B.H. Genome-based discrimination between Group I Clostridium botulinum and Clostridium sporogenes strains: Implications for bacterial taxonomy. Appl. Environ. Microbiol. 2015, 81, 5420–5429. [Google Scholar] [CrossRef] [Green Version]
- Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the genomes and neurotoxins of strains of Clostridium botulinum group I and Clostridium sporogenes associated with foodborne, infant and wound botulism. Toxins 2020, 12, 586. [Google Scholar] [CrossRef]
- Parker, M.; Barrett, P.; Shepherd, J.; Price, L.; Bull, S. Characterisation of non-toxigenic Clostridium spp. strains, to use as surrogates for non-proteolytic Clostridium botulinum in chilled food challenge testing. J. Microbiol. Methods 2015, 108, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, M.; Marshall, K.M.; Heap, J.T.; Tepp, W.H.; Minton, N.P.; Johnson, E.A. Construction of a Nontoxigenic Clostridium botulinum Strain for Food Challenge Studies. Appl. Environ. Microbiol. 2010, 76, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauwers, C.; Vanoirbeek, K.; Delbrassinne, L.; Michiels, C.W. Construction of nontoxigenic mutants of nonproteolytic Clostridium botulinum NCTC 11219 by insertional mutagenesis and gene replacement. Appl. Environ. Microbiol. 2016, 82, 3100–3108. [Google Scholar] [CrossRef] [Green Version]
- Nowakowska, M.B.; Selby, K.; Przykopanski, A.; Krüger, M.; Krez, N.; Dorner, B.G.; Dorner, M.B.; Jin, R.; Minton, N.P.; Rummel, A.; et al. Construction and validation of safe Clostridium botulinum Group II surrogate strain producing inactive botulinum neurotoxin type E toxoid. Sci. Rep. 2022, 12, 1790. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.C.; Midura, T.F.; Arnon, S.S. Improved selective medium for the isolation of lipase-positive Clostridium botulinum from feces of human infants. J. Clin. Microbiol. 1985, 21, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Silas, J.C.; Carpenter, J.A.; Hamdy, M.K.; Harrison, M.A. Selective and differential medium for detecting Clostridium botulinum. Appl. Environ. Microbiol. 1985, 50, 1110–1111. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.L.; Hamdy, M.K.; Zapatka, F.A.; Hebert, W.O. Immunodiffusion method for detection of Clostridium botulinum types, a, B, E, and F. J. Food Saf. 1983, 5, 87–94. [Google Scholar] [CrossRef]
- Vermilyea, B.L.; Walker, H.W.; Ayres, J.C. Detection of botulinal toxins by immunodiffusion. Appl. Microbiol. 1968, 16, 21–24. [Google Scholar] [CrossRef]
- Glasby, C.; Hatheway, C.L. Fluorescent-antibody reagents for the identification of Clostridium botulinum. J. Clin. Microbiol. 1983, 18, 1378–1383. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 16s/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedmark, K.A.; Mabon, P.; Hayden, K.L.; Lambert, D.; Van Domselaar, G.; Austin, J.; Corbett, C.R. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data. Appl. Environ. Microbiol. 2015, 81, 5938–5948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 2014, 31, 1077–1088. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Peck, M.; Fairbairn, D.; Lund, B.M. The effect of recovery medium on the estimated heat-inactivation of spores of non-proteolytic Clostridium botulinum. Lett. Appl. Microbiol. 1992, 15, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Heap, J.T.; Pennington, O.J.; Cartman, S.T.; Carter, G.P.; Minton, N.P. The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 2007, 70, 452–464. [Google Scholar] [CrossRef]
- Brunt, J.; van Vliet, A.H.M.; Stringer, S.C.; Carter, A.T.; Lindström, M.; Peck, M.W. Pan-genomic analysis of Clostridium botulinum group II (non-proteolytic C. botulinum) associated with foodborne botulism and isolated from the environment. Toxins 2020, 12, 306. [Google Scholar] [CrossRef]
- Lalitha, K.V.; Gopakumar, K. Combined effect of sodium chloride, pH and storage temperature on growth and toxin production by Clostridium botulinum. J. Aquat. Food Prod. Technol. 2007, 16, 27–39. [Google Scholar] [CrossRef]
- Bertranda, R.L. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 2019, 201, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mathys, A. Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies. Front. Microbiol. 2019, 9, 3163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachnicka, E.; Stringer, S.C.; Barker, G.C.; Peck, M.W. Systematic assessment of nonproteolytic Clostridium botulinum spores for heat resistance. Appl. Environ. Microbiol. 2016, 82, 6019–6029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, M.; Nevas, M.; Hielm, S.; Lähteenmäki, L.; Peck, M.W.; Korkeala, H. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Appl. Environ. Microbiol. 2003, 69, 4029–4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kautter, D.A.; Harmon, S.M.; Lynt, R.K.; Lilly, T. Antagonistic effect on Clostridium botulinum type E by organisms resembling it. Appl. Microbiol. 1966, 14, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.W.; Poysky, F.T.; Peterson, M.E.; Paranjpye, R.N.; Pelroy, G.A. Competitive inhibition between different Clostridium botulinum types and strains. J. Food Prot. 2004, 67, 2682–2687. [Google Scholar] [CrossRef]
- Ellison, J.S.; Kautter, J.A. Purification and some properties of two boticins. J. Bacteriol. 1970, 104, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chukwu, E.; Nwaokorie, F.O.; Llanco, L. Evaluation of antimicrobial susceptibility patterns and Β-lactamase production by Clostridium species isolated from food evaluation of antimicrobial susceptibility patterns and Β-lactamase production by Clostridium species isolated from food and faecal sp. Unilag J. Med. Sci. Technol. 2018, 5, 124–132. [Google Scholar]
- Dezfulian, M.; Dowell, V.R., Jr. Cultural and physiological characteristics and antimicrobial susceptibility of Clostridium botulinum isolates from foodborne and infant botulism cases. J. Clin. Microbiol. 1980, 11, 604–609. [Google Scholar] [CrossRef] [Green Version]
- Swenson, J.M.; Thornsberry, C.; Mccroskey, L.M.; Hatheway, C.L.; Dowell, V.R. Susceptibility of Clostridium botulinum to thirteen antimicrobial agents. Antimicrob. Agents Chemother. 1980, 18, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Barash, J.R.; Castles, J.B.; Arnon, S.S. Antimicrobial susceptibility of 260 Clostridium botulinum Type A, B, Ba, and Bf strains and a neurotoxigenic Clostridium baratii type f strain isolated from California infant botulism patients. Antimicrob. Agents Chemother. 2018, 62, e01594-18. [Google Scholar] [CrossRef] [Green Version]
Gene | Product |
---|---|
atpD | ATP synthase subunit beta |
guaA | GMP synthase (glutamine-hydrolyzing) |
gyrB | DNA gyrase subunit beta |
ilvD | Dihidroxy-acid dehydratase |
IepA | Elongation factor A |
oppB | Oligopeptide transport system permease |
rpoB | RNA polymerase subunit beta |
trpB | Tryptophan synthase beta chain |
recA | DNA recombination and repair protein |
pyc | Pyruvate carboxylase |
Pta | Phosphate acetyltransferase |
23S | 23S rRNA |
Primer | Sequence (5′-3′) |
---|---|
CatP_F | AAGGAAAGCCAAATGCTCCG |
CatP_R | ACGGCAAATGTGAAATCCGTC |
XkdK_F | GCTACGAAGGTGCTAGGAGA |
XkdK_R | ATCCTGCTGTTAATGCCGCTA |
SPP1_F | GGAGGCGGTATGTTGGGAG |
SPP1_R | ACCTTTGTTGCTTGCCTCAT |
TTMP_F | TATATGGCGATGGCGGGTTG |
TTMP_R | TTTCCGAAAAGTGTTGCGGC |
Product | ‘Use by’ Date | Purchase Date |
---|---|---|
Cooked ham | 29 October 2021 | 25 October 2021 |
Chicken filet | 9 November 2021 | 25 October 2021 |
Salami | 30 November 2021 | 25 October 2021 |
Strain | Toxin Type | Genome Size (bp) (Sum of Contigs) | GC Content (%) | ANI (Alaska E43) | ANI (Eklund 17B) |
---|---|---|---|---|---|
WGS determined in this work a | |||||
KI2 | - | 3,767,496 | 27.2 | 93.51% | 98.81% |
ME2.2 | - | 3,911,728 | 27.2 | 93.30% | 98.76% |
CH2 | - | 3,689,533 | 27.2 | 93.45% | 98.81% |
ZS1 | - | 3,696,074 | 27.2 | 93.61% | 97.75% |
ZS2 | - | 3,772,516 | 27.2 | 93.40% | 98.79% |
ZS6 | - | 3,629,812 | 27.1 | 93.78% | 97.71% |
EV3 | - | 3,911,500 | 27.2 | 93.58% | 98.81% |
KO2 | - | 3,912,807 | 27.2 | 93.50% | 98.74% |
RO3 | - | 3,911,988 | 27.2 | 93.38% | 98.77% |
RO132 | - | 3,767,657 | 27.2 | 93.50% | 98.85% |
MIL1 | - | 3,884,748 | 27.2 | 93.70% | 97.61% |
VAP23 | - | 3,679,375 | 27.1 | 93.70% | 98.89% |
VAP33 | - | 3,668,189 | 27.2 | 93.55% | 98.89% |
VAP41 | - | 3,727,139 | 27.2 | 93.38% | 98.98% |
VAP51 | - | 3,759,828 | 27.2 | 93.48% | 98.86% |
VAP52 | - | 3,844,223 | 27.1 | 93.54% | 98.85% |
ZBS2 | - | 3,685,079 | 27.2 | 91.12% | 92.09% |
ZBS3 | - | 3,657,686 | 27.1 | 98.86% | 93.73% |
ZBS4 | - | 3,812,273 | 27.2 | 93.70% | 98.90% |
ZBS5 | - | 3,825,512 | 27.2 | 93.47% | 98.78% |
ZBS12 | - | 3,805,576 | 27.2 | 93.51% | 97.71% |
ZBS13 | - | 3,777,964 | 27.1 | 93.34% | 98.75% |
ZBS14 | - | 3,753,809 | 27.2 | 93.61% | 97.74% |
ZBS15 | - | 3,685,017 | 27.3 | 91.33% | 92.34% |
ZBS17 | - | 3,798,380 | 27.3 | 93.48% | 98.89% |
ZBS18 | - | 3,922,262 | 27.1 | 93.56% | 99.11% |
ZBS20 | - | 3,734,895 | 27.3 | 93.40% | 99.09% |
DSM1985 | - | 3,830,944 | 27.6 | 99.18% | 93.67% |
CMCC3676 | - | 3,913,751 | 27.3 | 93.73% | 97.56% |
CMCC3677 | - | 3,647,744 | 27.4 | 91.19% | 92.11% |
CMCC3678 | - | 3,923,472 | 27.3 | 93.68% | 97.59% |
WGS from NCBI | |||||
K3 * | E3 | 3,850,230 | 27.1 | 99.38% | 93.56% |
K15 * | E1 | 3,997,940 | 27.2 | 98.79% | 93.56% |
CDC66177 * | E9 | 3,852,440 | 27.2 | 93.70% | 99.05% |
KAPB-3 * | B4 | 3,871,080 | 27.3 | 93.78% | 97.63% |
NTCT8550* | E1 | 3,611,898 | 27.4 | 99.97% | 93.58% |
Beluga * | E1 | 3,863,095 | 27.3 | 97.96% | 93.58% |
202F * | F6 | 3,874,462 | 27.4 | 93.46% | 97.62% |
NCTC8266 * | E1 | 3,661,134 | 27.1 | 99.97% | 93.59% |
NCTC11219 * | E3 | 3,792,090 | 27.4 | 99.26% | 93.69% |
Eklund 17B * | B4 | 3,800,327 | 27.5 | 93.62% | 100% |
Alaska E43 * | E3 | 3,659,644 | 27.4 | 100% | 93.62% |
Days to Growth (OD620 > 0.15) at Different Salt Concentrations for at Least One Replicate | |||||||||
---|---|---|---|---|---|---|---|---|---|
Strain | NaCl% | Strain | NaCl% | ||||||
2.5 | 3.0 | 3.5 | 4.0 | 2.5 | 3.0 | 3.5 | 4.0 | ||
ZBS3 | 1 | 1 | 2 | 2 | RO132 | 1 | 1 | 6 | |
ZS6 | 1 | 1 | 2 | 6 | DSM1985 | 2 | 1 | 6 | |
ZBS5 | 1 | 2 | 6 | 7 | VAP23 | 1 | 2 | 6 | |
ZBS4 | 1 | 1 | 6 | 7 | NCTC8266 Δbont::ermB | 1 | 2 | 6 | |
CMCC3677 | 1 | 1 | 2 | 8 | ZBS20 | 1 | 2 | 6 | |
VAP51 | 1 | 1 | 13 | 16 | VAP41 | 1 | 2 | 7 | |
VAP52 | 1 | 1 | 2 | CMCC3678 | 1 | 2 | 8 | ||
ZBS15 | 1 | 2 | 2 | ZS1 | 1 | 2 | 8 | ||
ZBS14 | 1 | 2 | 2 | ME22 | 1 | 5 | 13 | ||
ZBS2 | 1 | 2 | 2 | RO3 | 1 | ||||
CH2 | 1 | 1 | 6 | KO2 | 1 | ||||
ZS2 | 1 | 1 | 6 | EV3 | 1 | ||||
VAP33 | 1 | 1 | 6 | ZBS13 | 1 | ||||
KI2 | 1 | 1 | 6 | ZBS12 | 1 | ||||
ZBS17 | 1 | 1 | 6 | MIL1 | 1 | ||||
NCTC11219 Δbont::ermB | 1 | 1 | 6 | CMCC3676 | 2 | ||||
ZBS18 | 1 | 1 | 6 |
Days to Growth (OD620 > 0.15) at Different pH Levels for at Least One Replicate | |||||||||
---|---|---|---|---|---|---|---|---|---|
Strain | pH | Strain | pH | ||||||
4.94 | 5.05 | 5.12 | 5.25 | 4.94 | 5.05 | 5.12 | 5.25 | ||
NCTC11219 Δbont::ermB | 5 | 4 | 2 | 1 | ZS2 | 2 | 1 | ||
VAP23 | 5 | 2 | 1 | ZBS12 | 2 | 1 | |||
CH2 | 5 | 2 | 1 | ZS1 | 2 | 1 | |||
VAP33 | 5 | 2 | 1 | ZBS3 | 2 | 1 | |||
EV3 | 5 | 2 | 1 | DSM1985 | 2 | 1 | |||
KO2 | 5 | 3 | 1 | ZBS20 | 2 | 1 | |||
RO3 | 6 | 2 | 1 | ZBS18 | 2 | 1 | |||
RO132 | 7 | 2 | 1 | ZBS2 | 2 | 2 | |||
ME22 | 7 | 2 | 1 | NCTC8266 Δbont::ermB | 1 | ||||
ZBS4 | 7 | 2 | 1 | ZBS14 | 1 | ||||
CMCC3677 | 9 | 2 | 1 | ZBS13 | 1 | ||||
KI2 | 9 | 2 | 1 | ZS6 | 1 | ||||
ZBS5 | 12 | 2 | 1 | CMCC3676 | 5 | ||||
ZBS17 | 12 | 2 | 1 | CMCC3678 | 5 | ||||
VAP52 | 17 | 2 | 1 | ZBS15 | 5 | ||||
VAP51 | 2 | 1 | MIL1 | 5 | |||||
VAP41 | 2 | 1 |
Days to Colony Formation (>1 mm) at Different Temperatures for at Least One Replicate | |||||||
---|---|---|---|---|---|---|---|
Strain | Temperature | Strain | Temperature | ||||
4 °C | 7 °C | 12 °C | 4 °C | 7 °C | 12 °C | ||
ZBS14 | 20 | 8 | 3 | KI2 | 7 | 3 | |
ZS6 | 20 | 9 | 3 | VAP33 | 7 | 3 | |
RO132 | 20 | 9 | 3 | VAP52 | 7 | 3 | |
ZBS3 | 20 | 10 | 3 | CMCC3676 | 9 | 3 | |
ZS1 | 20 | 14 | 3 | ZBS12 | 9 | 3 | |
VAP41 | 20 | 7 | 3 | VAP23 | 9 | 3 | |
EV3 | 20 | 7 | 7 | NCTC8266 Δbont::ermB | 10 | 2 | |
ME22 | 20 | 7 | 3 | NCTC11219 Δbont::ermB | 10 | 2 | |
VAP51 | 20 | 7 | 1 | ZBS20 | 10 | 3 | |
RO3 | 20 | 9 | 2 | ZBS5 | 11 | 3 | |
DSM1985 | 20 | 14 | 3 | KO2 | 14 | 3 | |
MIL1 | 21 | 9 | 1 | CH2 | 14 | 3 | |
ZBS18 | 7 | 1 | CMCC3677 | 14 | 3 | ||
ZBS17 | 7 | 1 | ZBS15 | 15 | 3 | ||
CMCC3678 | 7 | 3 | ZBS4 | 15 | 3 | ||
ZBS13 | 7 | 3 | ZBS2 | 21 | 3 | ||
ZS2 | 7 | 3 |
Producer Strain | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicator Strain | KI2 | ME2.2 | CH2 | ZS1 | ZS2 | ZS6 | EV3 | KO2 | RO3 | RO132 | MIL1 | VAP23 | VAP33 | VAP41 | VAP51 | VAP52 | ZBS2 | ZBS3 | ZBS4 | ZBS5 | ZBS12 | ZBS13 | ZBS14 | ZBS15 | ZBS17 | ZBS18 | ZBS20 | DSM1985 | CMCC3676 | CMCC3677 | CMCC3678 | NCTC8266 | NCTC11219 |
KI2 | + | + | +++ | ||||||||||||||||||||||||||||||
ME22 | + | + | + | ++ | |||||||||||||||||||||||||||||
CH2 | + | + | + | +++ | |||||||||||||||||||||||||||||
ZS1 | + | + | + | + | + | +++ | |||||||||||||||||||||||||||
ZS2 | + | + | + | + | + | +++ | + | ||||||||||||||||||||||||||
ZS6 | + | + | + | + | + | + | + | + | + | ++ | + | ||||||||||||||||||||||
EV3 | + | ++ | |||||||||||||||||||||||||||||||
KO2 | + | + | ++ | ||||||||||||||||||||||||||||||
RO3 | + | +++ | |||||||||||||||||||||||||||||||
RO132 | + | +++ | |||||||||||||||||||||||||||||||
MIL1 | + | + | + | ++ | + | + | + | + | + | + | +++ | +++ | + | ||||||||||||||||||||
VAP23 | + | + | + | + | + | + | ++ | +++ | |||||||||||||||||||||||||
VAP33 | + | + | + | + | + | ++ | +++ | ||||||||||||||||||||||||||
VAP41 | + | +++ | |||||||||||||||||||||||||||||||
VAP51 | ++ | +++ | |||||||||||||||||||||||||||||||
VAP52 | + | + | + | +++ | |||||||||||||||||||||||||||||
ZBS2 | + | + | + | ++ | + | +++ | + | + | |||||||||||||||||||||||||
ZBS3 | + | + | ++ | ++ | + | + | + | ++ | ++ | + | |||||||||||||||||||||||
ZBS4 | +++ | ||||||||||||||||||||||||||||||||
ZBS5 | + | + | + | + | + | +++ | |||||||||||||||||||||||||||
ZBS12 | + | + | + | + | + | +++ | |||||||||||||||||||||||||||
ZBS13 | + | + | + | + | + | + | + | + | + | +++ | + | + | |||||||||||||||||||||
ZBS14 | + | + | + | + | + | + | + | + | + | +++ | |||||||||||||||||||||||
ZBS15 | + | + | + | + | +++ | ||||||||||||||||||||||||||||
ZBS17 | + | + | + | +++ | + | + | |||||||||||||||||||||||||||
ZBS18 | + | + | + | + | + | + | +++ | ||||||||||||||||||||||||||
ZBS20 | ++ | ||||||||||||||||||||||||||||||||
DSM1985 | + | + | + | + | + | + | |||||||||||||||||||||||||||
CMCC3676 | + | + | + | + | ++ | ++ | ++ | + | + | ++ | +++ | + | + | ||||||||||||||||||||
CMCC3677 | + | + | + | + | + | + | + | ++ | ++ | + | ++ | +++ | |||||||||||||||||||||
CMCC3678 | + | + | ++ | + | ++ | ++ | ++ | ++ | ++ | + | + | ++ | +++ | + | + | ||||||||||||||||||
NCTC8266 | + | + | + | + | + | + | + | ++ | |||||||||||||||||||||||||
NCTC112198 | + | + | + | + | + | + | + | + | + | + | ++ | + |
Strain | Phylogenetic Cluster | Max NaCl (%) (Days to Growth) | Min pH (Days to Growth) | Min T (°C) (Days to Growth) | D75-Value (min) | D85-Value (min) |
---|---|---|---|---|---|---|
CH2 | BEF | 3.5 (6) | 5.05 (5) | 7 (14) | 10 | 29.5 |
VAP51 | BEF | 4 (16) | 5.12 (2) | 4 (20) | 7.8 | 17.8 |
ZBS4 | BEF | 4 (7) | 5.05 (7) | 7 (15) | 7.9 | 15.9 |
ME22 | BEF | 3.5 (13) | 5.05 (7) | 4 (20) | 6.5 | 13.2 |
ZBS3 | E | 4 (2) | 5.12 (2) | 4 (20) | 2.3 | 39.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poortmans, M.; Vanoirbeek, K.; Dorner, M.B.; Michiels, C.W. Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing. Foods 2022, 11, 1577. https://doi.org/10.3390/foods11111577
Poortmans M, Vanoirbeek K, Dorner MB, Michiels CW. Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing. Foods. 2022; 11(11):1577. https://doi.org/10.3390/foods11111577
Chicago/Turabian StylePoortmans, Marijke, Kristof Vanoirbeek, Martin B. Dorner, and Chris W. Michiels. 2022. "Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing" Foods 11, no. 11: 1577. https://doi.org/10.3390/foods11111577
APA StylePoortmans, M., Vanoirbeek, K., Dorner, M. B., & Michiels, C. W. (2022). Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing. Foods, 11(11), 1577. https://doi.org/10.3390/foods11111577