Bioavailability of Macro- and Microelements in Rats Fed Hypercholesterolemic Diets Containing Actinidia arguta Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Housing and Experimental Diets
2.2. Actinidia arguta Samples
2.3. Mineral Analyses of Soil Samples
2.4. Mineral Analyses of Biological Samples
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, S.; Han, S.H.; Kim, J.; Lee, H.J.; Lee, J.G.; Lee, E.J. Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chem. 2016, 190, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Latocha, P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta)—A Review. Plant Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; Park, Y.; Yeon, S.W.; Jo, Y.H.; Han, Y.K.; Turk, A.; Ryu, S.H.; Hwang Bang, Y.; Lee, K.Y.; Lee, M.K. Phenylpropanoid-Conjugated Triterpenoids from the Leaves of Actinidia arguta and Their Inhibitory Activity on α-Glucosidase. J. Nat. Prod. 2020, 83, 1416–1423. [Google Scholar] [CrossRef]
- Stafaniak, J.; Przybył, J.L.; Latocha, L.; Łata, B. Bioactive compounds, total antioxidant capacity and yield of kiwiberry fruit under different nitrogen regimes in field conditions. J. Sci. Food Agric. 2020, 100, 3832–3840. [Google Scholar] [CrossRef]
- Błaszczak, W.; Latocha, P.; Jeż, M.; Wiczkowski, W. The impact of high-pressure processing on the polyphenol profile and antiglycaemic, anti-hypertensive and anti-cholinergic activities of extracts obtained from kiwiberry (Actinidia arguta) fruits. Food Chem. 2021, 343, 128421. [Google Scholar] [CrossRef]
- Okamoto, G.; Goto, S. Juice constituents in Actinidia arguta fruits produced in Shinjo, Okayama. Sci. Rep. Fac. Agric. Okayama Univ. 2005, 94, 9–13. [Google Scholar]
- Latocha, P. The comparison of some biological features of Actinidia arguta cultivars fruit. Ann. Wars. Agric. Univ. SGGW Hortic. Landsc. Archit. 2007, 28, 105–109. [Google Scholar]
- Nishiyama, I. Fruits of the Actinidia Genus. Adv. Food Nutr. Res. 2007, 52, 293–324. [Google Scholar]
- Bieniek, A. Yield, morphology and biological value of fruits of Actinidia arguta and Actinidia purpurea and some of their hybrid cultivars grown in North-Eastern Poland. Acta Sci. Pol. Hortorum. Cultus. 2012, 11, 117–130. [Google Scholar]
- Latocha, P. Some morphological and biological features of ‘Bingo’—A new hardy kiwifruit cultivar from Warsaw University of Life Sciences (WULS) in Poland. Rocz. Pol. Tow. Dendrol. 2012, 60, 61–67. [Google Scholar]
- Bieniek, A.; Dragańska, E. Content of macroelements in fruits of Ukrainian cultivars of Hardy kiwifruit and Actinidia charta depending on the weather conditions during the phonological phases. J. Elem. 2013, 18, 23–38. [Google Scholar] [CrossRef]
- Kataoka, I.; Mizugami, T.; Kim, J.G.; Beppu, K.; Fukuda, T.; Sugahara, S.; Tanaka, K.; Satoh, H.; Tozawa, K. Ploidy variation of hardy kiwifruit (Actinidia arguta) resources and geographic distribution in Japan. Sci. Hortic. 2010, 124, 409–414. [Google Scholar] [CrossRef]
- Maddumage, R.; Nieuwenhuizen, N.J.; Bulley, S.M.; Cooney, J.M.; Green, S.A.; Atkinson, R.G. Diversity and Relative Levels of Actinidin, Kiwellin, and Thaumatin-Like Allergens in 15 Varieties of Kiwifruit (Actinidia). J. Agric. Food Chem. 2013, 61, 728–739. [Google Scholar] [CrossRef]
- McKenna, C.E.; Dobson, S.J.; Phare, J.M. The insect pest complex of Actinidia arguta kiwiwfruit. Insect Pests Kiwifruit. N. Z. Plant Prot. 2009, 62, 262–267. [Google Scholar]
- Latocha, P.; Krupa, T. The mineral composition of new genotypes of hardy kiwifruit (Actinidia Lindl.) bred at SGGW. Ann. Wars. Agric. Univ. SGGW Hortic. Landsc. Archit. 2008, 29, 105–110. [Google Scholar]
- Bieniek, A. Mineral composition of fruits of Actinidia arguta and Actinidia purpurea and some of their hybrid cultivars grown Northeastern Poland. Pol. J. Environ. Stud. 2012, 6, 1543–1550. [Google Scholar]
- Latocha, P.; Krupa, T.; Wołosiak, R.; Worobiej, E.; Wilczak, R. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 2010, 61, 381–394. [Google Scholar] [CrossRef]
- Jesion, I.; Leontowicz, M.; Leontowicz, H.; Gralak, M.A.; Park, Y.-S.; Gorinstein, S. The influence of Hayward kiwi fruit (Actinidia deliciosa) from organic and conventional cultivations on the content of some trace elements in the rat kidneys and assessment of copper, manganese and zinc bioavailability. Environ. Prot. Nat. Resour. 2013, 24, 51–54. [Google Scholar]
- National Research Council (US). Subcommittee on the Tenth Edition of the Recommended Dietary Allowances; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- European Food Safety Authority, Scientific Committee on Food Scientific Panel on Dietetic Products, Nutrition and Allergies. Tolerable Upper Intake Levels for Vitamins and Minerals. 2006. Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 20 May 2022).
- Leontowicz, M.; Leontowicz, H.; Jesion, I.; Bielecki, W.; Najman, K.; Latocha, P.; Park, Y.-S.; Gorinstein, S. Actinidia arguta supplementation protects aorta and liver in rats with induced hypercholesterolemia. Nutr. Res. 2016, 36, 1231–1242. [Google Scholar] [CrossRef]
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur. Heart J. 2016, 37, 3232–3245. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y.-S.; Katriche, E.; Barasche, D.; Nemirovskie, A.; Gorinstein, S. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chem. 2016, 196, 281–291. [Google Scholar] [CrossRef]
- Latocha, P.; Debersaques, F.; Decorte, J. Varietal differences in mineral composition of kiwiberry (Actinidia arguta). Acta Hortic. 2015, 1096, 479–486. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, Y.; Zhu, F. Kiwifruit (Actinidia spp.): A review of chemical diversity and biological activities. Food Chem. 2021, 350, 128469. [Google Scholar] [CrossRef]
- Littell, R.C.; Lewis, A.J.; Henry, P.R. Statistical evaluation of bioavailability assays. In Bioavailability of Nutrients for Animals; Academic Press: Cambridge, MA, USA, 1995; pp. 5–33. [Google Scholar] [CrossRef]
- Gralak, M.A. Influence of Diets Containing Leguminous Seeds on Zinc and Copper Bioavailability in Rats; Wydawnictwo SGGW: Warszawa, Poland, 2001; p. 71. [Google Scholar]
- Kim, J.G.; Beppu, K.; Kataoka, I. Varietal differences in phenolic content and astrigency in skin and flesh of hardy kiwifruit resources in Japan. Sci. Hort. 2009, 120, 551–554. [Google Scholar] [CrossRef]
- Zuo, L.-L.; Wang, Z.-H.; Fan, Z.-L.; Tian, S.-Q.; Liu, J.-R. Evaluation of Antioxidant and Antiproliferative Properties of Three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) Extracts In Vitro. Int. J. Mol. Sci. 2012, 13, 5506–5518. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.R.; Ferguson, L.R. Are kiwifruit really good for you. Acta Hort. 2003, 610, 132–138. [Google Scholar] [CrossRef]
- Latocha, P.; Łata, B.; Stasiak, A. Phenolics, ascorbate and the antioxidant potential of kiwiberry vs. common kiwifruit: The effect of cultivar and tissue type. J. Funct. Foods 2015, 19, 155–163. [Google Scholar] [CrossRef]
- Reiland, H.; Slavin, J. Systematic Review of Pears and Health. Nutr. Today 2015, 50, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Aspects Med. 2005, 26, 268–298. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc is an antioxidant and anti-inflammatory agent: Its role in human. Front. Nutr. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Leontowicz, M.; Jesion, I.; Leontowicz, H.; Park, Y.-S.; Namiesnik, J.; Jastrzebski, Z.; Katriche, E.; Tashma, Z.; Gorinstein, S. Bioactivity and Bioavailability of minerals in rats loaded with cholesterol and kiwi fruit. Microchem. J. 2014, 114, 148–154. [Google Scholar] [CrossRef]
- Lubrano, V.; Balzan, S. Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World J. Exp. Med. 2015, 5, 218–224. [Google Scholar] [CrossRef]
- Blaha, V.; Blaha, M.; Solichová, D.; Krčmová, L.K.; Lánská, M.; Havel, E.; Vyroubal, P.; Zadák, Z.; Žák, P.; Sobotka, L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler Suppl. 2017, 30, 159–165. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis. Transl. Med. 2017, 3, 89–94. [Google Scholar] [CrossRef]
- Arredondo, M.; Núñez, M.T. Iron and copper metabolism. Mol. Aspects Med. 2005, 26, 313–327. [Google Scholar] [CrossRef]
- Shah, M.; Chandalia, M.; Adams-Huet, B.; Brinkley, L.J.; Sakhaee, K.; Grundy, S.M.; Garg, A. Effect of a High-Fiber Diet Compared with a Moderate-Fiber Diet on Calcium and Other Mineral Balances in Subjects with Type 2 Diabetes. Diabetes Care 2009, 32, 990–995. [Google Scholar] [CrossRef] [Green Version]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [Green Version]
- Gralak, M.A.; Leontowicz, M.; Morawiec, M.; Bartnikowska, E.; Kulasek, G.W. Comparison of the influence of dietary fibre sources with different proportions of soluble and insoluble fibre on Ca, Mg, Fe, Zn, Mn and Cu apparent absorption in rats. Arch. Anim. Nutr. 1996, 49, 293–299. [Google Scholar] [CrossRef]
- Gralak, M.A.; Leontowicz, H.; Leontowicz, M.; Stryczek, A.; Piastowska, A.W. The effect of Apple pulp on biavailability of zinc and copper from atherogenic diets from rats. In Mengen-und Spurenelemente. First Volume, 22; Anke, M., Flachowsky, G., Kisters, K., Schafer, U., Schenkel, H., Seifert, M., Stoeppler, M., Eds.; Workshop, Schubert-Verlag: Leipzig, Germany, 2004; pp. 106–111. [Google Scholar]
- Lattimer, J.M.; Haub, M.D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
Ca (g/kg) | Mg (g/kg) | Fe (mg/kg) | Mn (mg/kg) | Zn (mg/kg) | Cu (mg/kg) | |
---|---|---|---|---|---|---|
Soil | 8.82 ± 3.35 | 2.38 ± 1.49 | 6031 ± 1018 | 271 ± 79 | 90 ± 9 | 15 ± 4 |
Actinidia cultivars | ||||||
Bingo | 1.12 ± 0.11 a | 0.88± 001 b | 21 ± 1 a | 4 ± 0.2 a | 10 ± 1.3 a | 5 ± 0.1 a |
M1 | 1.36 ± 0.11 b | 1.01 ± 0.03 c | 22 ± 1 a | 7 ± 0.4 b | 14 ± 1.6 b | 9 ± 0.4 b |
Anna | 1.51 ± 0.14 b | 0.93 ± 0.02 b | 22 ± 1 a | 7 ± 0.2 b | 14 ± 1.2 b | 9 ± 0.3 b |
Weiki | 1.03 ± 0.10 a | 0.90 ± 0.01 b | 38 ± 1 b | 9 ± 0.3 c | 17 ± 1.1 c | 11 ± 0.2 c |
Jumbo | 1.02 ± 0.10 a | 0.85 ± 0.01 a | 23 ± 1 a | 7 ± 0.1 b | 14 ± 1.3 b | 7 ± 0.2 b |
Geneva | 1.05 ± 0.08 a | 0.81 ± 0.01 a | 22 ± 1 a | 7 ± 0.1 b | 14 ± 0.7 b | 7 ± 0.1 b |
Diets/Groups | Ca | Mg | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|
Control | 4707 ± 345 a | 485 ± 28 a | 76.3 ± 18.3 a | 11.3 ± 0.4 | 35.2 ± 0.6 a | 3.7 ± 1.2 a |
chol | 4591 ± 450 a | 514 ± 38 a | 80.9 ± 10.2 a | 10.7 ± 0.8 | 37.3 ± 2.0 a | 4.5 ± 1.8 a |
Bingo/chol | 4973 ± 367 a | 586 ± 21 b | 83.9 ± 9.9 a | 11.9 ± 0.7 | 38.7 ± 3.8 a | 6.5 ± 1.5 ab |
M1/chol | 5431 ± 487 b | 580 ± 25 b | 88.1 ± 8.7 ab | 12.6 ± 1.2 | 42.6 ± 5.1 ab | 7.6 ± 1.0 b |
Anna/chol | 5721 ± 504 b | 615 ± 86 b | 88.4 ± 8.1 ab | 12.2 ± 0.4 | 47.6 ± 7.7 b | 7.2 ± 0.6 b |
Weiki/chol | 5500 ± 317 b | 646 ± 41 b | 91.8 ± 14.4 b | 12.8 ± 1.0 | 49.3 ± 6.9 b | 7.6 ± 0.7 b |
Jumbo/chol | 4873 ± 205 a | 499 ± 37 a | 83.3 ± 14.1 a | 11.9 ± 0.4 | 38.9 ± 4.9 a | 6.5 ± 0.4 ab |
Geneva/chol | 4892 ± 324 a | 659 ± 57 b | 81.5 ± 17.3 a | 11.7 ± 1.2 | 40.2 ± 7.0 a | 7.1 ± 1.2 b |
(A) | ||||||
Group | Ca | Mg | Fe | Mn | Zn | Cu |
Control | 21.2 ± 5.5 a | 200 ± 35 | 113 ± 28 ab | 2.7 ± 0.3 b | 33.3 ± 2.0 | 6.5 ± 1.4 b |
chol | 28.8 ± 4.0 b | 201 ± 18 | 97 ± 16 a | 2.5 ± 0.5 ab | 31.0 ± 3.2 | 5.4 ± 1.0 ab |
Bingo/chol | 21.1 ± 3.5 a | 206 ± 13 | 110 ± 10 ab | 2.4 ± 0.3 ab | 32.7 ± 3.6 | 5.6 ± 0.6 ab |
M1/chol | 27.2 ± 4.1 ab | 197 ± 7 | 121 ± 18 b | 1.7 ± 0.1 a | 31.7 ± 2.3 | 4.9 ± 0.7 ab |
Anna/chol | 31.0 ± 6.0 b | 202 ± 15 | 127 ± 25 b | 1.9 ± 0.5 ab | 28.5 ± 2.5 | 5.3 ± 1.0 ab |
Weiki/chol | 20.2 ± 2.0 a | 218 ± 11 | 135 ± 24 b | 2.3 ± 0.3 ab | 33.0 ± 1.8 | 5.9 ± 1.5 ab |
Jumbo/chol | 21.3 ± 5.0 a | 215 ± 12 | 132 ± 16 b | 2.4 ± 0.4 ab | 31.5 ± 3.0 | 5.2 ± 0.9 ab |
Geneva/chol | 22.0 ± 3.4 a | 213 ± 11 | 131 ± 31 b | 2.1 ± 0.3 ab | 30.2 ± 1.2 | 4.5 ± 0.5 a |
(B) | ||||||
Group | Ca | Mg | Fe | Mn | Zn | Cu |
Control | 42.7 ± 13.2 | 254 ± 14 | 298 ± 31 a | 1.1 ± 0.5 a | 28.5 ± 3.5 | 1.9 ± 0.1 |
chol | 42.0 ± 13.0 | 252 ± 9 | 283 ± 71 a | 0.6 ± 0.1 a | 26.9 ± 2.8 | 2.1 ± 0.4 |
Bingo/chol | 38.0 ± 8.1 | 250 ± 9 | 339 ± 71 ab | 1.9 ± 0.8 ab | 27.5 ± 1.5 | 2.1 ± 0.3 |
M1/chol | 39.9 ± 8.3 | 252 ± 32 | 377 ± 132 b | 1.2 ± 0.8 ab | 26.8 ± 3.4 | 2.2 ± 0.4 |
Anna/chol | 43.1 ± 8.2 | 247 ± 6 | 300 ± 104 a | 2.3 ± 0.4 b | 25.5 ± 1.4 | 2.1 ± 0.1 |
Weiki/chol | 39.5 ± 9.0 | 252 ± 21 | 346 ± 91 ab | 2.6 ± 1.2 b | 26.6 ± 3.5 | 2.1 ± 0.3 |
Jumbo/chol | 43.8 ± 11.0 | 257 ± 20 | 288 ± 67 a | 3.0 ± 0.4 b | 28.6 ± 3.2 | 2.0 ± 0.2 |
Geneva/chol | 37.9 ± 7.4 | 247 ± 12 | 298 ± 75 a | 0.7 ± 0.1 a | 23.3 ± 1.8 | 1.8 ± 0.2 |
(C) | ||||||
Group | Ca | Mg | Fe | Mn | Zn | Cu |
Control | 38.4 ± 10 | 237 ± 9 | 71.4 ± 3.9 | 0.8 ± 0.2 a | 26.7 ± 0.9 | 4.6 ± 0.1 |
chol | 38.6 ± 14 | 230 ± 8 | 69.9 ± 10.0 | 1.0 ± 0.4 a | 27.6 ± 2.6 | 4.8 ± 0.2 |
Bingo/chol | 34.8 ± 7.5 | 224 ± 11 | 69.5 ± 3.1 | 1.0 ± 0.1 a | 25.8 ± 1.6 | 4.9 ± 0.2 |
M1/chol | 35.0 ± 5.0 | 219 ± 10 | 72.0 ± 7.0 | 0.9 ± 0.2 a | 26.1 ± 1.9 | 4.7 ± 0.2 |
Anna/chol | 36.3 ± 6.4 | 224 ± 8 | 69.8 ± 6.7 | 1.3 ± 0.3 ab | 27.4 ± 2.0 | 4.5 ± 0.2 |
Weiki/chol | 36.5 ± 7.0 | 227 ± 15 | 69.6 ± 3.7 | 1.6 ± 0.4 b | 26.7 ± 2.1 | 4.7 ± 0.2 |
Jumbo/chol | 36.1 ± 4.9 | 226 ± 13 | 68.2 ± 5.9 | 1.6 ± 0.4 b | 27.0 ± 3.3 | 4.8 ± 0.3 |
Geneva/chol | 37.3 ± 7.1 | 224 ± 4 | 68.6 ± 6.8 | 1.5 ± 0.3 b | 28.7 ± 1.5 | 4.7 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gralak, M.A.; Lasocka, I.; Leontowicz, M.; Leontowicz, H.; Latocha, P.; Gorinstein, S. Bioavailability of Macro- and Microelements in Rats Fed Hypercholesterolemic Diets Containing Actinidia arguta Fruits. Foods 2022, 11, 1633. https://doi.org/10.3390/foods11111633
Gralak MA, Lasocka I, Leontowicz M, Leontowicz H, Latocha P, Gorinstein S. Bioavailability of Macro- and Microelements in Rats Fed Hypercholesterolemic Diets Containing Actinidia arguta Fruits. Foods. 2022; 11(11):1633. https://doi.org/10.3390/foods11111633
Chicago/Turabian StyleGralak, Mikołaj Antoni, Iwona Lasocka, Maria Leontowicz, Hanna Leontowicz, Piotr Latocha, and Shela Gorinstein. 2022. "Bioavailability of Macro- and Microelements in Rats Fed Hypercholesterolemic Diets Containing Actinidia arguta Fruits" Foods 11, no. 11: 1633. https://doi.org/10.3390/foods11111633
APA StyleGralak, M. A., Lasocka, I., Leontowicz, M., Leontowicz, H., Latocha, P., & Gorinstein, S. (2022). Bioavailability of Macro- and Microelements in Rats Fed Hypercholesterolemic Diets Containing Actinidia arguta Fruits. Foods, 11(11), 1633. https://doi.org/10.3390/foods11111633