Combined Effect of Chitosan Coating and Laurel Essential Oil (Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Coating Solutions and Treatment of Meat Samples
2.2. Physicochemical Analysis
2.3. Microbiological Analysis
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Changes
3.1.1. Composition of Laurel Essential Oil
3.1.2. PH
3.1.3. TBA
3.1.4. Colour
3.2. Microbiological Changes
3.3. Sensory Analysis
3.4. Correlation between Sensory, Sensory and Physicochemical Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Available online: https://www.fao.org/faostat/en/#home (accessed on 18 January 2021).
- Tsiobani, E. Analysis of Behavior of Water Buffaloes during Grazing at Lake Kerkini, Greece. Ph.D. Thesis, University of Thessaloniki, Thessaloniki, Greece, 2019. [Google Scholar]
- Di Stasio, L.; Brugiapaglia, A. Current knowledge on river buffalo meat: A critical analysis. Animals 2021, 11, 2111. [Google Scholar] [CrossRef]
- Kandeepan, G.; Mendiratta, S.K.; Shukla, V.; Vishnuraj, M.R. Processing characteristics of buffalo meat—A review. J. Meat Sci. Technol. 2013, 1, 1–11. [Google Scholar]
- Ffoulkes, D.; Lemcke, B.; TenderBuff, R. Guidelines for Production, Agnote; Northern Territory Governments: Darwin, NT, Australia, 2015.
- Alegato All’ Istanza Rionoscimento Disciplinare Di Produzione Del’ Carne Di Bufalo Alta Qualita. Decreto Ministeriale N. 4337, Marzo, 2011, Caserta-81100, Italy. Available online: https://www.politicheagricole.it/flex/ (accessed on 24 February 2022).
- Deb, G.K.; Nahar, T.N.; Duran, P.G.; Presicce, G.A. Safe and sustainable traditional production: The water buffalo in Asia. Front. Environ. Sci. 2016, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Khedkar, C.D.; Khedkar, G.D.; Gyananath, G.; Kalyankar, S.D. Buffalo Meat: Compositional and Nutritional Properties. In Encyclopedia of Food Science and Nutrition; Caballero, B., Trugo, L.P.F., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 699–705. ISBN 9780123849533. [Google Scholar]
- Giuffrida De Mendoza, M.; Arenas De Moreno, L.; Huerta-Leidenz, N.; Uzcátegui-Bracho, S.; Beriain, M.J.; Smith, G.C. Occurrence of conjugated linoleic acid in longissimus dorsi muscle of water buffalo (Bubalus bubalis) and zebu-type cattle raised under savannah conditions. Meat Sci. 2005, 69, 93–100. [Google Scholar] [CrossRef]
- Jay, J.; Loessner, M.L.; Golden, D.A. Modern Food Microbiology; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Chounou, N.; Chouliara, E.; Mexis, S.F.; Kontakos, S.; Georgantelis, D.; Kontominas, M.G. Shelf life extension of ground meat stored at 4 °C using chitosan and an oxygen absorber. Int. J. Food Sci. Technol. 2013, 48, 89–95. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on natural preservatives for extending fish shelf life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Chin, Y.W.; Paik, H.D. Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment and Applications to Olive Industry Products. Foods 2022, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Boras Water Buffalo Farm. Cooking with Water Buffalo Meat. Recipes with Buffalo Meat (In Greek), Kerkini, Serres, Greece. Available online: https://kerkinifarm.gr/en/ (accessed on 8 September 2021).
- Stefanova, G.; Girova, T.; Gochev, V.; Stoyanova, M.; Petkova, Z.; Stoyanova, A.; Zheljazkov, V.D. Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon 2020, 6, e05491. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, J.; Kumar, S. Bay leaves. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 73–81. [Google Scholar]
- Chahal, K.K.; Kumar Singh, D.; Panchbhaiya, A.; Singh, N.; Kaur, M.; Bhardwaj, U.; Singla, N.; Kaur, A. A review on chemistry and biological activities of Laurus nobilis L. essential oil. J. Pharmacogn. Phytochem. JPP 2017, 6, 1153–1161. [Google Scholar]
- No, H.K.; Meyers, S.P.; Prinyawiwatkul, W.; Xu, Z. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food Sci. 2007, 72, R87–R100. [Google Scholar] [CrossRef]
- Hu, Z.; Gänzle, M.G. Challenges and opportunities related to the use of chitosan as a food preservative. J. Appl. Microbiol. 2019, 126, 1318–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT-Food Sci. Technol. 2013, 53, 321–326. [Google Scholar] [CrossRef]
- Latou, E.; Mexis, S.F.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT-Food Sci. Technol. 2014, 55, 263–268. [Google Scholar] [CrossRef]
- Sun, K.; Wang, S.; Ge, Q.; Zhou, X.I.; Zhu, J.; Xiong, G. Antimicrobial and Preservative Effects of the Combinations of Nisin, Tea Polyphenols, Rosemary Extract, and Chitosan on Pasteurized Chicken Sausage. J. Food Prot. 2021, 84, 233–239. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasbourg, Fance, 2004; Volume I, p. 217. [Google Scholar]
- Mexis, S.F.; Chouliara, E.; Kontominas, M.G. Combined effect of an O2 absorber and oregano essential oil on shelf-life extension of Greek cod roe paste (tarama salad) stored at 4 °C. Innov. Food Sci. Emerg. Technol. 2009, 10, 572–579. [Google Scholar] [CrossRef]
- Goulas, A.E.; Kontominas, M.G. Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes. Food Chem. 2007, 100, 287–296. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Compendium of Methods for the Microbiological Examination of Foods; Salfinger, Y., Tortorello, M.L., Eds.; American Public Health Association: Washington, DC, USA, 2015. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Marzouki, H.; Khaldi, A.; Chamli, R.; Bouzid, S.; Piras, A.; Falconieri, D.; Marongiu, B. Biological activity evaluation of the oils from Laurus nobilis of Tunisia and Algeria extracted by supercritical carbon dioxide. Nat. Prod. Res. 2009, 23, 230–237. [Google Scholar] [CrossRef]
- Mello, S.; Bittencourt, F.; Fronza, N.; Cunha, A.; Neud, G.; Rosana, C.; Vieira, W.; ChMello, S.; Bittencourt, F.; Fronza, N.; et al. Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored. LWT-Food Sci. Technol. 2014, 59, 86–93. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Kokkini, S.; Tsimidou, M.Z. Diagnostic Potential of FT-IR Fingerprinting in Botanical Origin Evaluation of Laurus nobilis L. Essential Oil is Supported by GC-FID-MS Data. Molecules 2020, 25, 583. [Google Scholar] [CrossRef] [Green Version]
- Chouliara, E.; Karatapanis, A.; Savvaidis, I.N.; Kontominas, M.G. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 °C. Food Microbiol. 2007, 24, 607–617. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Abd El-Hack, M.E.; Swelum, A.A.; Al-Sultan, S.I.; El-Ghareeb, W.R.; Hussein, E.O.S.; Ba-Awadh, H.A.; Akl, B.A.; Nader, M.M. Enhancing quality and safety of raw buffalo meat using the bioactive peptides of pea and red kidney bean under refrigeration conditions. Ital. J. Anim. Sci. 2021, 20, 762–776. [Google Scholar] [CrossRef]
- Byun, J.S.; Min, J.S.; Kim, I.S.; Kim, J.W.; Chung, M.S.; Lee, M. Comparison of indicators of microbial quality of meat during aerobic cold storage. J. Food Prot. 2003, 66, 1733–1737. [Google Scholar] [CrossRef]
- Kandeepan, G.; Biswas, S. Effect of Low Temperature Preservation on Quality and Shelf Life of Buffalo Meat. Am. J. Food Technol. 2007, 2, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Vatavali, K.; Karakosta, L.; Nathanailides, C.; Georgantelis, D.; Kontominas, M.G. Combined effect of chitosan and oregano essential oil dip on the microbiological, chemical, and sensory attributes of red porgy (Pagrus pagrus) stored in ice. Food Bioprocess Technol. 2013, 6, 3510–3521. [Google Scholar] [CrossRef]
- Khan, S.; Mohammad, S.; Rahman, B.; Roy, B.K. Meat quality assessment of local cattle and buffalo through nutritive and physicochemical evaluation of blood and meat. Buffalo Bull. 2021, 40, 431–441. [Google Scholar]
- Tremonte, P.; Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Ibañez, E.; Mendiola, J.A.; Di Renzo, T.; Reale, A.; Coppola, R. Antimicrobial Effect of Malpighia Punicifolia and Extension of Water Buffalo Steak Shelf-Life. J. Food Sci. 2016, 81, M97–M105. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods 2: Sampling for Microbiological Analysis: Principles and Scientific Applications, 2nd ed.; University of Toronto Press: Toronto, ON, Canada, 1986. [Google Scholar]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheong, J.H.; Kim, K.H.; Kim, C.R. Quality Evaluations of Refrigerated Korean Beef Loins Treated with Trisodium Phosphate and Chitosan. Korean J. Food Sci. Anim. Res. 2001, 21, 10–17. [Google Scholar]
- Elgayyar, M.; Draughon, F.A.; Golden, D.A.; Mount, J.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 2001, 64, 1019–1024. [Google Scholar] [CrossRef]
- Skandamis, P.; Tsigarida, E.; Nychas, G.J.E. The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5 °C under aerobic, VP/MAP conditions. Food Microbiol. 2002, 19, 97–103. [Google Scholar] [CrossRef]
- Kontominas, M.G. Packaging: Modified atmosphere packaging of foods. In Encyclopedia of Food Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 1012–1016. ISBN 9780123847331. [Google Scholar]
- Camargo, A.C.; Cossi, M.V.C.; da Silva, W.P.; Bersot, L.D.S.; Landgraf, M.; Baranyi, J.; Franco, B.D.G.d.M.; Augusto, N.L. Microbiological testing for the proper assessment of the hygiene status of beef carcasses. Microorganisms 2019, 7, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeepan, G.; Anjaneyulu, A.S.R.; Kondaiah, N.; Mendiratta, S.K.; Rajkumar, R.S. Evaluation of quality and shelf life of buffalo meat keema at refrigerated storage. J. Food Sci. Technol. 2013, 50, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Taxonomy role and significance of microorganisms in foods. In Modern Food Micro-Biology, 7th ed.; Springer Science and Business Media Inc.: New York, NY, USA, 2005; pp. 13–31. [Google Scholar]
RT (min) | Library/ID | % Composition | RT (min) | Library/ID | % Composition |
---|---|---|---|---|---|
6.44 | 3-hexen-1-ol, (Z) | 0.40 ± 0.02 | 12.66 | L-borneol | 0.37 ± 0.01 |
7.56 | .alpha.-thujene | 0.61 ± 0.03 | 12.77 | 4-terpineol | 4.36 ± 0.28 |
7.76 | .alpha.-pinene | 5.79 ± 0.21 | 13.10 | .alpha. terpineol | 5.40 ± 0.26 |
8.07 | camphene | 1.10 ± 0.60 | 13.62 | nerol | 0.23 ± 0.01 |
8.33 | sabinene | 6.90 ± 0.32 | 15.06 | 4-thujen-2.alpha.-yl acetate | 0.20 ± 0.02 |
8.40 | .beta.-myrcene | 0.44 ± 0.02 | 15.84 | (-)-bornyl acetate | 1.58 ± 0.07 |
8.51 | 2-.beta.-pinene | 4.93 ± 0.23 | 17.93 | alpha.terpinenyl acetate | 16.40 ± 0.84 |
8.88 | .alpha.-fellandrene | 0.31 ± 0.02 | 18.15 | eugenol | 3.25 ± 0.015 |
8.94 | .delta.3-carene | 0.39 ± 0.03 | 19.52 | methyl eugenol | 4.22 ± 0.20 |
9.05 | .alpha. terpinene | 0.60 ± 0.02 | 20.97 | caryophyllene | 0.51 ± 0.03 |
9.18 | Benzene, 1-methyl-2-(1-methylethyl)- | 1.31 ± 0.07 | 21.20 | trans-cinnamyl acetate | 0.57 ± 0.04 |
9.29 | dl-limonene | 2.69 ± 0.12 | 23.73 | .delta.-cadinene | 0.43 ± 0.02 |
9.44 | 1,8-cineole | 24.44 ± 1.26 | 25.69 | (+) spathulenol | 1.50 ± 0.08 |
9.77 | .gamma.-terpinene | 1.03 ± 0.04 | 25.95 | caryophyllene oxide | 1.41 ± 0.06 |
10.07 | trans-sabinene hydrate | 0.84 ± 0.08 | 26.39 | .beta.-Ionone | 0.34 ± 0.02 |
10.36 | .alpha.-terpinolene | 0.30 ± 0.02 | 26.68 | E,E-.alpha.-farnesene | 0.54 ± 0.04 |
10.44 | L-linalool | 2.99 ± 0.16 | 27.10 | .gamma.-himachalene | 0.45 ± 0.03 |
10.75 | cis-sabinene hydrate | 0.75 ± 0.05 | 27.34 | alpha.amorphene | 1.19 ± 0.06 |
11.71 | 1-terpineol | 0.27 ± 0.02 | 27.69 | .alpha.-cadinol | 0.65 ± 0.04 |
11.88 | trans-pinocarveol | 0.31 ± 0.03 |
Pearson Correlation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TVC | Pseudomonas spp. | Enterobacte- Riaceae | LAB | B. thermosphacta | pH | TBA | Odour | Taste | L* | a* | b* | |
TVC | 1 | |||||||||||
Pseudomonas spp. | 0.990 ++ | 1 | ||||||||||
Enterobacteriaceae | 0.968 ++ | 0.950 + | 1 | |||||||||
LAB | 0.879 + | 0.905 + | 0.929 + | 1 | ||||||||
B. thermosphacta | 0.999 ++ | 0.994 ++ | 0.972 ++ | 0.899 + | 1 | |||||||
pH | 0.649 | 0.657 | 0.439 | 0.296 | 0.629 | 1 | ||||||
TBA | 0.969 ++ | 0.952 + | 0.992 ++ | 0.901 + | 0.972 ++ | 0.480 | 1 | |||||
Odour | −0.937 + | −0.895 + | −0.803 | −0.960 ++ | −0.767 | −0.155 | −0.780 | 1 | ||||
Taste | −0.868 + | −0.922 + | −0.672 | −0.690 | −0.684 | −0.377 | −0.740 | 0.737 | 1 | |||
L* | 0.327 | 0.292 | 0.528 | 0.603 | 0.347 | −0.458 | 0.444 | −0.568 | −0.044 | 1 | ||
a* | 0.071 | 0.209 | 0.038 | 0.334 | 0.107 | 0.069 | 0.058 | −0.555 | −0.557 | −0.153 | 1 | |
b* | 0.752 | 0.753 | 0.750 | 0.622 | 0.753 | 0.480 | 0.828 | −0.568 | −0.918 + | 0.039 | 0.191 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakosta, L.K.; Vatavali, K.A.; Kosma, I.S.; Badeka, A.V.; Kontominas, M.G. Combined Effect of Chitosan Coating and Laurel Essential Oil (Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat. Foods 2022, 11, 1664. https://doi.org/10.3390/foods11111664
Karakosta LK, Vatavali KA, Kosma IS, Badeka AV, Kontominas MG. Combined Effect of Chitosan Coating and Laurel Essential Oil (Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat. Foods. 2022; 11(11):1664. https://doi.org/10.3390/foods11111664
Chicago/Turabian StyleKarakosta, Lydia K., Kornilia A. Vatavali, Ioanna S. Kosma, Anastasia V. Badeka, and Michael G. Kontominas. 2022. "Combined Effect of Chitosan Coating and Laurel Essential Oil (Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat" Foods 11, no. 11: 1664. https://doi.org/10.3390/foods11111664
APA StyleKarakosta, L. K., Vatavali, K. A., Kosma, I. S., Badeka, A. V., & Kontominas, M. G. (2022). Combined Effect of Chitosan Coating and Laurel Essential Oil (Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat. Foods, 11(11), 1664. https://doi.org/10.3390/foods11111664