Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lettuce Samples and Processing
2.2. DNA Isolation and Illumina MiSeq Sequencing Analysis
2.3. Processing of Sequencing Data
2.4. Microbiological Analysis
2.5. Sensory Analysis
2.6. Statistical Analyses
3. Results
3.1. Sequencing Output
3.2. Bacterial Compositions of Fresh-Cut Lettuce
3.3. Enumeration of Microorganisms from Lettuce
3.4. Sensory Quality Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Rodriguez, F.P.; Campos, D.; Ryser, E.T.; Buchholz, A.L.; Posada-Izquierdo, G.D.; Marks, B.P.; Zurera, G.; Todd, E. A mathematical risk model for Escherichia coli O157:H7 cross-contamination of lettuce during processing. Food Microbiol. 2011, 28, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Rochele, D.; Loiko, M.R.; Cheila, M.; Hessel, C.T.; Jacxsens, L.; Uyttendaele, M.; Bender, R.J.; ToNDO, E.C. Microbiological contamination linked to implementation of good agricultural practices in the production of organic lettuce in southern brazil. Food Control 2014, 42, 152–164. [Google Scholar]
- Holvoet, K.; Jacxsens, L.; Sampers, I.; Uyttendaele, M. Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry. J. Food Prot. 2012, 75, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Frimpong, G.K.; Kottoh, I.D.; Ofosu, D.O.; Larbi, D. Effect of gamma irradiation on microbial quality of minimally processed carrot and lettuce: A case study in greater accra region of ghana. Radiat. Phys. Chem. 2015, 110, 12–16. [Google Scholar] [CrossRef]
- Avila-Queza, G.; Gardea, A.A.; Acedo-Félix, E. Salmonella spp. And Escherichia coli: Survival and growth in plant tissue. N. Z. J. Crop Hortic. Sci. 2010, 38, 47–55. [Google Scholar] [CrossRef]
- Akeredolu, A. Microflora of three dehydrated vegetables. Br. Microbiol. Res. J. 2013, 3, 295–308. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Sokorai, K.; Ukuku, D.O.; Jin, T.; Juneja, V. Effects of direct and in-package pulsed light treatment on inactivation of E. coli O157:H7 and reduction of microbial loads in romaine lettuce. LWT-Food Sci. Technol. 2020, 139, 110710. [Google Scholar] [CrossRef]
- Jin, K.K.; Harrison, M.A. Surrogate selection for Escherichia coli O157:H7 based on cryotolerance and attachment to romaine lettuce. J. Food Prot. 2009, 72, 1385–1391. [Google Scholar]
- Huang, K.; Wrenn, S.; Tikekar, R.; Nitin, N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. J. Food Eng. 2018, 224, 95–104. [Google Scholar] [CrossRef]
- Federico, B.; Pinto, L.; Quintieri, L.; Canto, A.; Calabrese, N.; Caputo, L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol. 2015, 215, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, J.B.; Kim, M. Microbiota on spoiled vegetables and their characterization. J. Food Prot. 2013, 76, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Lagaert, S.; Belin, T.; Volckaert, G. Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin. Cell Dev. Biol. 2009, 20, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Tournas, V.H. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit. Rev. Microbiol. 2005, 31, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, H.; Zhang, W.; Yu, C.; Ji, C.; Lin, X. Investigation on microbial diversity of industrial zhacai paocai during fermentation using high-throughput sequencing and their functional characterization. LWT-Food Sci. Technol. 2018, 91, 460–466. [Google Scholar] [CrossRef]
- Wang, J.; Tao, D.; Wang, S.; Li, C.; Li, Y.; Zheng, F.; Wu, Z. Disinfection of lettuce using organic acids: An ecological analysis using 16s rrna sequencing. RSC Adv. 2019, 9, 17514–17520. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.; Zhang, M.; Bhandari, B.; Jiang, F. A combination treatment of ultrasound and ε-polylysine to improve microorganisms and storage quality of fresh-cut lettuce. LWT-Food Sci. Technol. 2019, 113, 108315–108323. [Google Scholar] [CrossRef]
- Elhariry, H.M. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: Cabbage and lettuce. Food Microbiol. 2011, 28, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.B.; Je, G.S.; Kim, K.; Mtenga, A.B.; Lee, W.G.; Song, J.U. Effect of irradiation on kinetic behavior of salmonella typhimurium and staphylococcus aureus in lettuce and damage of bacterial cell envelope. Radiat. Phys. Chem. 2012, 81, 566–571. [Google Scholar] [CrossRef]
- Kyere, E.O.; Foong, G.; Palmer, J.; Wargent, J.J.; Fletcher, G.C.; Flint, S. Rapid attachment of listeria monocytogenes to hydroponic and soil grown lettuce leaves. Food Control 2019, 19, 77–80. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.; Ma, Y.; Guan, H.; Wang, D. Inhibitory effect of modified atmosphere packaging on Escherichia coli O157:H7 in fresh-cut cucumbers (Cucumis sativus L.) and effectively maintain quality during storage. Food Chem. 2021, 369, 130969–130976. [Google Scholar] [CrossRef]
- Hendrayana, M.A.; Pinatih, K.; Yelly, A. Detection of bacteria Esherichia coli serotype O157 on pork from pork trader in denpasar city. Medicina 2013, 43, 3–8. [Google Scholar]
- FDA (U.S. Food and Drug Administration). Bacteriological Analytical Manual Online. 2010. Available online: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/default.htm (accessed on 11 July 2012).
- Park, S.; Elless, M.P.; Park, J.; Jenkins, A.; Hirschi, K.D. Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol. J. 2008, 7, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Feng, J.; Zheng, L.; Huang, J.; Yang, Y.; Li, X. Intercropping with marigold promotes soil health and microbial structure to assist in mitigating tobacco bacterial wilt. J. Plant Pathol. 2020, 102, 731–742. [Google Scholar] [CrossRef]
- Gu, G.; Ottesen, A.; Bolten, S.; Ramachandran, P.; Reed, E.; Rideout, S.; Luo, Y.; Patel, J.; Brown, E.; Nou, X. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol. 2018, 73, 73–84. [Google Scholar] [CrossRef]
- Wang, S.; Deng, K.; Zaremba, S.; Deng, X.; Lin, C.; Wang, Q.; Tortorello, M.L.; Zhang, W. Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Appl. Environ. Microbiol. 2009, 75, 6110–6123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.; Wang, X.; Sun, D.W.; Pu, H. Rapid detection and control of psychrotrophic microorganisms in cold storage foods: A review. Trends Food Sci. Technol. 2019, 86, 453–464. [Google Scholar] [CrossRef]
- Taborosi, D.; Jenson, J.W.; Sánchez Collazo, M.; Zega, M. Availability, usage, and threats to freshwater resources on low carbonate islands in micronesia. Geophys. Res. Abstr. 2010, 12, 1–2. [Google Scholar]
- Dees, M.W.; Lysøe, E.; Nordskog, B.; Brurberg, M.B. Bacterial communities associated with surfaces of leafy greens: Shift in composition and decrease in richness over time. Appl. Environ. Microbiol. 2015, 81, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Hayes, R.J.; Trent, M.A.; Mou, B.; Simko, I. Baby leaf lettuce germplasm enhancement: Developing diverse populations with resistance to bacterial leaf spot caused by xanthomonas campestris pv. vitians. Hortscience 2014, 49, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Frhling, A.; Rademacher, A.; Rumpold, B.; Klocke, M.; Schlüter, O. Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale. Heliyon 2018, 4, 671–694. [Google Scholar] [CrossRef] [Green Version]
- Oie, S.; Kiyonaga, H.; Matsuzaka, Y.; Maeda, K.; Masuda, Y.; Tasaka, K.; Aritomi, S.; Yamashita, A.; Kamiya, A. Microbial contamination of fruit and vegetables and their disinfection. Biol. Pharm. Bull. 2008, 31, 1902–1905. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Ottesen, A.; Bolten, S.; Wang, L.; Luo, Y.; Rideout, S.; Lyu, S.; Nou, X. Impact of routine sanitation on the microbiomes in a fresh produce processing facility. Int. J. Food Microbiol. 2019, 294, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, C.L.; Scifò, G.O.; Tomaselli, F.; Caggia, C. Polyphasic characterization of bacterial community in fresh cut salads. Int. J. Food Microbiol. 2009, 128, 484–490. [Google Scholar] [CrossRef]
- Nübling, S.; Schmidt, H.; Weiss, A. Variation of the pseudomonas community structure on oak leaf lettuce during storage detected by culture-dependent and -independent methods. Int. J. Food Microbiol. 2016, 216, 95–103. [Google Scholar] [CrossRef]
- Carli, M.D.; Rossi, P.D.; Paganin, P.; Fiore, A.D.; Lecce, F.; Capodicasa, C.; Bianco, L.; Perrotta, G.; Mengoni, A.; Bacci, G.; et al. Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging. FEMS Microbiol. Lett. 2016, 363, fnv209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efimochkina, N.R.; Bykova, I.B.; Batishcheva, S.I.; Minaeva, L.P.; Sheveleva, S.A. Study of microbial contamination of processed fresh vegetables and lettuce. Vopr. Pitan. 2014, 83, 33–42. [Google Scholar] [PubMed]
- Falcone-Dias, M.F.; Vaz-Moreira, I.; Manaia, C.M. Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Res. 2012, 46, 3612–3622. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Ottesen, A.; Bolten, S.; Luo, Y.; Rideout, S.; Nou, X. Microbiome convergence following sanitizer treatment and identification of sanitizer resistant species from spinach and lettuce rinse water-sciencedirect. Int. J. Food Microbiol. 2020, 318, 108458–108466. [Google Scholar] [CrossRef] [PubMed]
- Chisari, M.; Todaro, A.; Barbagallo, R.N.; Spagna, G. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende). Food Chem. 2010, 119, 1502–1506. [Google Scholar] [CrossRef]
Description | 5 (Excellent) | 4 (Good) | 3 (Fair) | 2 (Poor) | 1 (Bad) |
---|---|---|---|---|---|
Appearance | Fresh | Dehydrated | Slightly water-soaked | Water-soaked | Rotten |
Color | Fresh green | Green | Slightly dark | Dark | Dark yellow |
Texture | Crisp | Slightly soft | Soft | Wilted on the edges | Wilted |
Smell | Fresh | Slightly fresh | A little foul | A bit foul | Foul |
Sample | OTUs | Phylum | Class | Order | Family | Genus | Species |
---|---|---|---|---|---|---|---|
F1 | 387 | 23 | 38 | 99 | 155 | 253 | 301 |
F2 | 408 | 20 | 38 | 94 | 145 | 253 | 317 |
F3 | 341 | 15 | 31 | 85 | 128 | 213 | 258 |
W1 | 281 | 18 | 33 | 79 | 123 | 189 | 227 |
W2 | 315 | 16 | 27 | 72 | 124 | 197 | 251 |
W3 | 352 | 21 | 40 | 90 | 145 | 227 | 282 |
CD1 | 241 | 20 | 31 | 76 | 118 | 173 | 199 |
CD2 | 262 | 17 | 30 | 76 | 119 | 180 | 214 |
CD3 | 161 | 15 | 24 | 57 | 82 | 115 | 135 |
s6h1 | 451 | 23 | 46 | 112 | 180 | 289 | 366 |
s6h2 | 399 | 24 | 43 | 110 | 167 | 259 | 327 |
s6h3 | 433 | 23 | 44 | 104 | 168 | 268 | 335 |
s12h1 | 181 | 17 | 23 | 65 | 94 | 127 | 146 |
s12h2 | 260 | 17 | 28 | 70 | 114 | 168 | 208 |
s12h3 | 260 | 18 | 32 | 80 | 123 | 182 | 216 |
s1d1 | 364 | 22 | 41 | 94 | 151 | 249 | 308 |
s1d2 | 312 | 16 | 28 | 71 | 117 | 196 | 245 |
s1d3 | 403 | 21 | 38 | 93 | 153 | 256 | 327 |
s2d1 | 135 | 12 | 19 | 40 | 69 | 93 | 106 |
s2d2 | 135 | 12 | 18 | 41 | 68 | 96 | 107 |
s2d3 | 120 | 10 | 14 | 39 | 61 | 82 | 93 |
s3d1 | 121 | 11 | 18 | 41 | 63 | 83 | 96 |
s3d2 | 111 | 12 | 18 | 41 | 64 | 78 | 87 |
s3d3 | 139 | 14 | 21 | 48 | 77 | 99 | 110 |
s4d1 | 103 | 9 | 12 | 30 | 51 | 70 | 80 |
s4d2 | 125 | 11 | 15 | 38 | 64 | 86 | 95 |
s4d3 | 111 | 8 | 13 | 37 | 56 | 76 | 87 |
s6d1 | 75 | 7 | 10 | 22 | 34 | 47 | 54 |
s6d2 | 69 | 8 | 11 | 24 | 36 | 45 | 49 |
s6d3 | 81 | 8 | 11 | 24 | 36 | 47 | 55 |
s8d1 | 55 | 5 | 7 | 17 | 26 | 34 | 38 |
s8d2 | 59 | 6 | 9 | 19 | 28 | 37 | 43 |
s8d3 | 60 | 7 | 9 | 19 | 29 | 37 | 42 |
Sample | Total Colonies (CFU/g) | B. cereus (CFU/g) | S.aureus (MPN/g) | E. coli (MPN/g) | E. coli O157: H7 | Salmonella | L. monocytogenes |
---|---|---|---|---|---|---|---|
F | 5.33 ± 0.20 bc | <100 | <3 | <3 | ND | ND | ND |
W | 4.04 ± 0.04 def | <100 | <3 | <3 | ND | ND | ND |
CD | 4.00 ± 0.38 def | <100 | <3 | <3 | ND | ND | ND |
s6h | 3.26 ± 0.24 ef | <100 | <3 | <3 | ND | ND | ND |
s12h | 2.97 ± 0.03 f | <100 | <3 | <3 | ND | ND | ND |
s1d | 4.29 ± 0.89 cde | <100 | <3 | <3 | ND | ND | ND |
s2d | 4.37 ± 1.30 cd | <100 | <3 | <3 | ND | ND | ND |
s3d | 5.15 ± 0.46 bc | <100 | <3 | <3 | ND | ND | ND |
s4d | 6.08 ± 0.21 ab | <100 | <3 | <3 | ND | ND | ND |
s6d | 6.39 ± 0.48 a | <100 | <3 | <3 | ND | ND | ND |
s8d | 7.05 ± 0.80 a | <100 | <3 | <3 | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhao, X.; Ma, Y.; Ma, Z.; He, Z.; Zhao, W.; Wang, P.; Zhao, S.; Wang, D. Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality. Foods 2022, 11, 1683. https://doi.org/10.3390/foods11121683
Sun Y, Zhao X, Ma Y, Ma Z, He Z, Zhao W, Wang P, Zhao S, Wang D. Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality. Foods. 2022; 11(12):1683. https://doi.org/10.3390/foods11121683
Chicago/Turabian StyleSun, Yeting, Xiaoyan Zhao, Yue Ma, Zhihong Ma, Zhaoying He, Wenting Zhao, Pan Wang, Shuang Zhao, and Dan Wang. 2022. "Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality" Foods 11, no. 12: 1683. https://doi.org/10.3390/foods11121683
APA StyleSun, Y., Zhao, X., Ma, Y., Ma, Z., He, Z., Zhao, W., Wang, P., Zhao, S., & Wang, D. (2022). Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality. Foods, 11(12), 1683. https://doi.org/10.3390/foods11121683