The Effect of Steviol Glycosides on Sensory Properties and Acceptability of Ice Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ice Cream Preparation
2.3. Panel Recruitment
2.4. Sample Preparation
2.5. Testing Procedure
2.6. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Sensory Analysis of Ice Cream
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vreman, R.A.; Goodell, A.J.; Rodriguez, L.A.; Porco, T.C.; Lustig, R.H.; Kahn, J.G. Health and Economic Benefits of Reducing Sugar Intake in the USA, Including Effects via Non-Alcoholic Fatty Liver Disease: A Microsimulation Model. BMJ Open 2017, 7, e013543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciuto, L.; Fulgoni, V.L.; Gaine, P.C.; Scott, M.O.; DiFrancesco, L. Sources of Added Sugars Intake Among the U.S. Population: Analysis by Selected Sociodemographic Factors Using the National Health and Nutrition Examination Survey 2011-18. Front. Nutr. 2021, 8, 316. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar Consumption, Metabolic Disease and Obesity: The State of the Controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.; Hernández-Torres, C.E.; Gontarek-Castro, E.; Ahmad, M.Z. Natural Sweeteners: Sources, Extraction and Current Uses in Foods and Food Industries. Food Chem. 2022, 370, 130991. [Google Scholar] [CrossRef] [PubMed]
- Center for Food Safety and Applied Nutrition Additional Information about High-Intensity Sweeteners. Available online: https://www.fda.gov/food/food-additives-petitions/additional-information-about-high-intensity-sweeteners-permitted-use-food-united-states (accessed on 8 February 2022).
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. [Google Scholar] [CrossRef]
- Whitehouse, C.R.; Boullata, J.; McCauley, L.A. The Potential Toxicity of Artificial Sweeteners. AAOHN J. 2008, 56, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Schiffman, S.S.; Buckley, C.E.; Sampson, H.A.; Massey, E.W.; Baraniuk, J.N.; Follett, J.V.; Warwick, Z.S. Aspartame and Susceptibility to Headache. N. Engl. J. Med. 1987, 317, 1181–1185. [Google Scholar] [CrossRef]
- Grotz, V.L.; Henry, R.R.; McGill, J.B.; Prince, M.J.; Shamoon, H.; Trout, J.R.; Pi-Sunyer, F.X. Lack of Effect of Sucralose on Glucose Homeostasis in Subjects with Type 2 Diabetes. J. Am. Diet. Assoc. 2003, 103, 1607–1612. [Google Scholar] [CrossRef]
- Pepino, M.Y. Metabolic Effects of Non-Nutritive Sweeteners. Physiol. Behav. 2015, 152, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Pearlman, M.; Obert, J.; Casey, L. The Association Between Artificial Sweeteners and Obesity. Curr. Gastroenterol. Rep. 2017, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Ruanpeng, D.; Thongprayoon, C.; Cheungpasitporn, W.; Harindhanavudhi, T. Sugar and Artificially Sweetened Beverages Linked to Obesity: A Systematic Review and Meta-Analysis. QJM Int. J. Med. 2017, 110, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Gibson, S.; Drewnowski, A.; Hill, J.; Raben, A.B.; Tuorila, H.; Widström, E. Consensus Statement on Benefits of Low-Calorie Sweeteners. Nutr. Bull. 2014, 39, 386–389. [Google Scholar] [CrossRef] [Green Version]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The Importance of Food Naturalness for Consumers: Results of a Systematic Review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Alizadeh, M.; Azizi-Lalabadi, M.; Kheirouri, S. Impact of Using Stevia on Physicochemical, Sensory, Rheology and Glycemic Index of Soft Ice Cream. Food Nutr. Sci. 2014, 5, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of Stevia, Aspartame, and Sucrose on Food Intake, Satiety, and Postprandial Glucose and Insulin Levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef] [Green Version]
- United States Sweetener Market 2022–27 Industry Share, Size, Growth-Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/us-food-sweetener-market-industry (accessed on 8 February 2022).
- Narayanan, P.; Chinnasamy, B.; Jin, L.; Clark, S. Use of Just-about-Right Scales and Penalty Analysis to Determine Appropriate Concentrations of Stevia Sweeteners for Vanilla Yogurt. J. Dairy Sci. 2014, 97, 3262–3272. [Google Scholar] [CrossRef]
- Boldt, A. What Diet Soft Drinks have splenda? | Livestrong. Available online: https://www.livestrong.com/article/190662-what-diet-soft-drinks-have-splenda/ (accessed on 12 June 2022).
- Wunsch, N.-G. Topic: Stevia Industry. Available online: https://www.statista.com/topics/2304/stevia-industry/ (accessed on 12 June 2022).
- Stevia Market Size, Share, Price & Demand Growth Analysis by 2026. Available online: https://www.alliedmarketresearch.com/stevia-market-A06042 (accessed on 4 April 2022).
- Lin, T.-N. Sensory Analysis, Instrumental Analysis and Consumers’ Acceptance toward Multifunctional Ice Creams. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2012. [Google Scholar]
- Qamar, A.S.; Saba, A.; Rizwan, S.; Tahir, Z. Effects of Different Ingredients on Texture of Ice Cream. J. Nutr. Health Food Eng. 2018, 8, 422–435. [Google Scholar] [CrossRef] [Green Version]
- Global High Intensity Sweeteners Market Report and Forecast 2022–2027. Available online: https://www.expertmarketresearch.com/reports/high-intensity-sweeteners-market (accessed on 8 February 2022).
- The Inside Scoop on Frozen Desserts. Available online: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2018/may/features/frozen-desserts (accessed on 9 February 2022).
- Birthday Cake Ice Cream. Available online: https://halotop.com/dairy-ice-cream/birthday-cake (accessed on 13 April 2022).
- Keto Caramel Chocolate Double Dough Pint. Available online: https://eatenlightened.com/products/caramel-chocolate-double-dough (accessed on 13 April 2022).
- Goyal, S.K.; Samsher, N.; Goyal, R.K. Stevia (Stevia Rebaudiana) a Bio-Sweetener: A Review. Int. J. Food Sci. Nutr. 2010, 61, 1–10. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, S.; Dhyani, D.S.A. A Review on the Improvement of Stevia [Stevia Rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011. [Google Scholar] [CrossRef]
- GRAS Notice Inventory FDA. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory (accessed on 8 February 2022).
- Peteliuk, V.; Rybchuk, L.; Bayliak, M.; Storey, K.B.; Lushchak, O. Natural Sweetener Stevia Rebaudiana: Functionalities, Health Benefits and Potential Risks. EXCLI J. 2021, 20, 1412–1430. [Google Scholar] [CrossRef] [PubMed]
- Prakash Chaturvedula, V.S.; Upreti, M.; Prakash, I. Diterpene Glycosides from Stevia Rebaudiana. Molecules 2011, 16, 3552–3562. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, S.; Markosyan, A.; Prakash, I.; Bhusari, S.; Pugh, G.; Lynch, B.; Roberts, A. Steviol Glycosides in Purified Stevia Leaf Extract Sharing the Same Metabolic Fate. Regul. Toxicol. Pharmacol. 2016, 77, 125–133. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; et al. Safety of a Proposed Amendment of the Specifications for Steviol Glycosides (E 960) as a Food Additive: To Expand the List of Steviol Glycosides to All Those Identified in the Leaves of Stevia Rebaudiana Bertoni. EFSA J. 2020, 18, e06106. [Google Scholar] [CrossRef] [PubMed]
- Libik-Konieczny, M.; Capecka, E.; Tuleja, M.; Konieczny, R. Synthesis and Production of Steviol Glycosides: Recent Research Trends and Perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 3883–3900. [Google Scholar] [CrossRef]
- Kochikyan, V.T.; Markosyan, A.A.; Abelyan, L.A.; Balayan, A.M.; Abelyan, V.A. Combined enzymatic modification of stevioside and rebaudioside A. Appl. Biochem. Microbiol. 2006, 42, 31–37. [Google Scholar] [CrossRef]
- Savita, S.M.; Sheela, K.; Sunanda, S.; Shankar, A.G.; Ramakrishna, P. Stevia Rebaudiana—A Functional Component for Food Industry. J. Hum. Ecol. 2004, 15, 261–264. [Google Scholar] [CrossRef]
- Prakash, I.; Markosyan, A.; Bunders, C. Development of Next Generation Stevia Sweetener: Rebaudioside M. Foods 2014, 3, 162–175. [Google Scholar] [CrossRef]
- Han, J. What Are Steviol Glycosides (E960) in Stevia Leaf? Types, Uses and Safety. Available online: https://foodadditives.net/natural-sweeteners/steviol-glycosides/ (accessed on 28 February 2022).
- Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives (Text with EEA Relevance). 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/28cb4a37-b40e-11e3-86f9-01aa75ed71a1/language-en (accessed on 15 January 2022).
- We Will Be Able to Breed Stevia Plants with Commercially Viable Quantities of Reb D and Reb M. Available online: https://www.foodnavigator.com/Article/2015/09/16/GLG-We-ll-be-able-to-breed-stevia-plants-with-more-Reb-D-Reb-M (accessed on 9 February 2022).
- Allen, A.L.; McGeary, J.E.; Hayes, J.E. Rebaudioside A and Rebaudioside D Bitterness do not Covary with Acesulfame K Bitterness or Polymorphisms in TAS2R9 and TAS2R31. Chemosens. Percept. 2013, 6, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Cho, S. Consumer-Based Sensory Characterization of Steviol Glycosides (Rebaudioside A, D, and M). Foods 2020, 9, 1026. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health Benefits of Dietary Fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Samuel, P.; Ayoob, K.T.; Magnuson, B.A.; Wölwer-Rieck, U.; Jeppesen, P.B.; Rogers, P.J.; Rowland, I.; Mathews, R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J. Nutr. 2018, 148, 1186S–1205S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, B.; Arora, S.; Nagaraj, V. Polydextrose as a Functional Ingredient and Its Food Applications: A Review. Indian J. Dairy Sci. 2015, 69, 239–251. [Google Scholar]
- Alvarez, V.B.; Wolters, C.L.; Vodovotz, Y.; Ji, T. Physical Properties of Ice Cream Containing Milk Protein Concentrates. J. Dairy Sci. 2005, 88, 862–871. [Google Scholar] [CrossRef]
- Canfora, E.E.; Blaak, E.E. The Role of Polydextrose in Body Weight Control and Glucose Regulation. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 395–400. [Google Scholar] [CrossRef]
- Everitt, M. CHAPTER 8—Consumer-Targeted Sensory Quality. In Global Issues in Food Science and Technology; Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K., Colonna, P., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 117–128. ISBN 978-0-12-374124-0. [Google Scholar]
- Cardello, H.M.A.B.; da Silva, M.A.P.A.; Damasio, M.H. Measurement of the Relative Sweetness of Stevia Extract, Aspartame and Cyclamate/Saccharin Blend as Compared to Sucrose at Different Concentrations. Plant Foods Hum. Nutr. 1999, 54, 119–129. [Google Scholar] [CrossRef]
- Why High Purity Stevia Extracts Overcome Taste Issues. Available online: https://www.foodnavigator-usa.com/Article/2009/03/16/Why-high-purity-stevia-extracts-overcome-taste-issues (accessed on 12 February 2022).
- Velotto, S.; Parafati, L.; Ariano, A.; Palmeri, R.; Pesce, F.; Planeta, D.; Alfeo, V.; Todaro, A. Use of Stevia and Chia Seeds for the Formulation of Traditional and Vegan Artisanal Ice Cream. Int. J. Gastron. Food Sci. 2021, 26, 100441. [Google Scholar] [CrossRef]
- Jung, J.; Kim, S.; Park, S.; Hong, J.-H. Sweetness Profiles of Glycosylated Rebaudioside A and Its Binary Mixtures with Allulose and Maltitol. Food Sci. Biotechnol. 2021, 30, 423–432. [Google Scholar] [CrossRef]
- Gwak, M.-J.; Chung, S.-J.; Kim, Y.J.; Lim, C.S. Relative Sweetness and Sensory Characteristics of Bulk and Intense Sweeteners. Food Sci. Biotechnol. 2012, 21, 889–894. [Google Scholar] [CrossRef]
- Olsson, K.; Carlsen, S.; Semmler, A.; Simón, E.; Mikkelsen, M.D.; Møller, B.L. Microbial Production of Next-Generation Stevia Sweeteners. Microb. Cell Fact. 2016, 15, 207. [Google Scholar] [CrossRef] [Green Version]
- Lattimore, P.J.; Halford, J.C.G. Adolescence and the Diet-Dieting Disparity: Healthy Food Choice or Risky Health Behaviour? Br. J. Health Psychol. 2003, 8, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisie, F. Gender Differences in Food Choice: The Contribution of Health Beliefs and Dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Guinard, J.-X.; Uotani, B.; Mazzucchelli, R.; Taguchi, A.; Masuoka, S.; Fujino, S. Consumer Testing of Commercial Lager Beers in Blind Versus Informed Conditions: Relation With Descriptive Analysis and Expert Quality Ratings. J. Inst. Brew. 2000, 106, 11–20. [Google Scholar] [CrossRef]
Ingredients | Functionality | Sucrose (g) | Stevia (Reb A, D, M) (g) |
---|---|---|---|
Heavy cream | Mouthfeel texture [45] | 400.0 | 400.0 |
Non-fat dry milk | Texture and flavor [46] | 140.0 | 140.0 |
Water | Solvent [24] | 650.0 | 650.0 |
Vanilla extract | Flavoring agent | 5.0 | 5.0 |
Sucrose | Sweetener | 203.0 | 0.0 |
Reb A, D, M | Sweetener | 0.0 | 1.3 |
Polydextrose | Bulking agent [45] | 50.0 | 245.0 |
Total | 1448.0 | 1441.3 | |
Calories per serving 1 (80.0 g or 2/3 cup) | 150.0 | 120.0 |
Variable | Definition | Participant (n) | Frequency (%) |
---|---|---|---|
Gender | |||
Female | 55 | 59.8 | |
Male | 37 | 40.2 | |
Age | |||
56–65 | 4 | 4.4 | |
46–55 | 3 | 3.3 | |
36–45 | 5 | 5.4 | |
26–35 | 33 | 35.9 | |
18–25 | 47 | 51.1 | |
BMI (Mean ± Standard Deviation) | 26.0 ± 5.3 kg/m2 | ||
Education level | |||
Graduate degree (Master’s, Doctorate, etc.) | 35 | 38.0 | |
4-year college degree | 28 | 30.4 | |
2-year college degree | 5 | 5.4 | |
High School diploma or GED | 24 | 26.1 | |
Household income | |||
Over $80,000 | 4 | 4.4 | |
$50,000 to $79,999 | 7 | 7.6 | |
$30,000 to $49,999 | 14 | 15.2 | |
Under $30,000 | 67 | 72.8 | |
Ethnicity | |||
Asian or Pacific Islander | 11 | 12.0 | |
Black or African American | 2 | 2.2 | |
Hispanic or Latino | 13 | 14.1 | |
White or Caucasian | 65 | 70.6 | |
Prefer not to say | 1 | 1.1 |
Variable | Definition | Participants (n) | Frequency (%) |
---|---|---|---|
Frequency of ice cream consumption | |||
2–3 times per month | 16 | 17.4 | |
Once a week | 33 | 35.9 | |
2–3 times per week | 37 | 40.2 | |
More than 3 times per week | 6 | 6.5 | |
Frequency of ice cream purchase | |||
Once every 2 or 3 months | 6 | 6.5 | |
Once a month/every four weeks | 17 | 18.5 | |
Once every 2 or 3 weeks | 50 | 54.4 | |
Once a week or more often | 19 | 20.7 | |
Low- or no-sugar ice cream purchased within the past six months | |||
Yes | 28 | 30.4 | |
No | 59 | 64.2 | |
Don’t remember | 5 | 5.4 |
Familiarity, n (%) | |||||
---|---|---|---|---|---|
Low/Zero-Sugar Sweeteners | Very Unfamiliar | Somewhat Unfamiliar | Neutral | Somewhat Familiar | Very Familiar |
Artificial sweeteners | |||||
Acesulfame-K | 67(72.8%) | 14(16.3%) | 4(4.3%) | 3(3.3%) | 4(4.3%) |
Aspartame | 25(28.3%) | 9 (9.8%) | 3(3.3%) | 29(31.5%) | 26(28.3%) |
Erythritol | 62(68.5%) | 10(10.9%) | 5(5.4%) | 10(10.9%) | 5(5.4%) |
Saccharin | 22(26.1%) | 7(7.6%) | 10(10.9%) | 26(28.3%) | 27(30.4%) |
Sucralose | 17(18.5%) | 7(7.6%) | 5(5.4%) | 32(34.8%) | 31(33.7%) |
Natural sweeteners | |||||
Monk Fruit | 57(62.0%) | 10(10.9%) | 8(8.7%) | 13(14.1%) | 4(4.3%) |
Stevia | 17(18.5%) | 3(3.3%) | 4(4.3%) | 30(32.6%) | 38(41.3%) |
Xylitol | 45(48.9%) | 11(12.0%) | 9(9.8%) | 16(18.5%) | 11(12.0%) |
Consumption Frequency, n (%) | |||
---|---|---|---|
Variables | Yes | No | Don’t know |
Low/zero-sugar foods/beverages | 52(56.6%) | 37(41.3%) | 3(3.3%) |
Artificial sweeteners | |||
Acesulfame-K | 0(0.0%) | 57(62.0%) | 35(38.0%) |
Aspartame | 16(17.4%) | 52(56.5%) | 24(26.1%) |
Erythritol | 6(6.5%) | 49(53.3%) | 37(40.2%) |
Saccharin | 11(12.0%) | 59(64.1%) | 22(23.9%) |
Sucralose | 23(25.0%) | 46(50.0%) | 23(25.0%) |
Natural sweeteners | |||
Monk Fruit | 3(3.3%) | 61(66.3%) | 28(30.4%) |
Stevia | 26(28.3%) | 43(46.7%) | 23(25.0%) |
Xylitol | 11(12.0%) | 48(52.2%) | 33(35.9%) |
Liking Score 1 | Purchase Intent 2,*** | |||||
---|---|---|---|---|---|---|
Ice Cream | Overall * | Appearance * | Flavor *** | Texture/ Mouthfeel * | Aftertaste *** | |
Sucrose | 7.6 ± 0.13 a | 7.5 ± 0.12 a | 7.7 ± 0.12 a | 7.3 ± 0.16 a | 7.4 ± 0.13 a | 3.7± 0.12 a |
Reb A | 5.4 ± 0.19 c | 6.7 ± 0.14 b | 5.2 ± 0.19 c | 6.1 ± 0.17 c | 4.3 ± 0.23 c | 2.1 ± 0.11 c |
Reb D | 6.4 ± 0.16 b | 6.9 ± 0.17 ab | 6.2 ± 0.17 b | 6.4 ± 0.17 bc | 5.5 ± 0.19 b | 2.6 ± 0.11 b |
Reb M | 6.6 ± 0.18 b | 7.1 ± 0.13 ab | 6.5 ± 0.19 b | 6.7 ± 0.14 ab | 5.6 ± 0.21 b | 2.8 ± 0.12 b |
Intensity 1 | ||
---|---|---|
Ice Cream | Sweetness *** | Bitterness * |
Sucrose | 10.3 ± 0.24 a | 1.6 ± 0.27 c |
Reb A | 7.9 ± 0.40 b | 5.4 ± 0.37 a |
Reb D | 8.0 ± 0.29 b | 2.9 ± 0.33 b |
Reb M | 9.8 ± 0.30 a | 2.6 ± 0.36 bc |
Ice Cream | ||||
---|---|---|---|---|
Attributes 1 | Sucrose | Reb A | Reb D | Reb M |
Artificial *** | 7 a | 54 c | 47 bc | 35 b |
Bitter *** | 2 a | 37 b | 14 a | 10 a |
Buttery ns | 22 | 18 | 17 | 27 |
Chemical *** | 1 a | 26 c | 12 b | 10 ab |
Creamy *** | 62 c | 32 a | 50 bc | 45 ab |
Honey ns | 5 | 4 | 6 | 4 |
Metallic ** | 2 a | 14 b | 5 ab | 8 ab |
Milky *** | 62 b | 30 a | 49 b | 58 b |
Minty ns | 1 | 1 | 0 | 0 |
Pleasant *** | 51 c | 9 a | 28 b | 29 b |
Sweet *** | 72 c | 39 a | 53 ab | 62 bc |
Tart * | 2 a | 13 b | 6 ab | 5 ab |
Vanilla *** | 84 b | 54 a | 64 a | 64 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muenprasitivej, N.; Tao, R.; Nardone, S.J.; Cho, S. The Effect of Steviol Glycosides on Sensory Properties and Acceptability of Ice Cream. Foods 2022, 11, 1745. https://doi.org/10.3390/foods11121745
Muenprasitivej N, Tao R, Nardone SJ, Cho S. The Effect of Steviol Glycosides on Sensory Properties and Acceptability of Ice Cream. Foods. 2022; 11(12):1745. https://doi.org/10.3390/foods11121745
Chicago/Turabian StyleMuenprasitivej, Nannapas, Ran Tao, Sarah Jeanne Nardone, and Sungeun Cho. 2022. "The Effect of Steviol Glycosides on Sensory Properties and Acceptability of Ice Cream" Foods 11, no. 12: 1745. https://doi.org/10.3390/foods11121745