Physico-Chemical, Textural and Sensory Evaluation of Spelt Muffins Supplemented with Apple Powder Enriched with Sugar Beet Molasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Powder Preparation
2.2. Muffin Preparation
2.3. Proximate Composition
2.4. Technological Characteristics
2.5. Muffin Color
- ΔL*—difference in L* parameter between control and muffin sample with apple powder addition;
- Δa*—difference in a* parameter between control and muffin sample with apple powder addition;
- Δb*—difference in b* parameter between control and muffin sample with apple powder addition.
2.6. Sensory Evaluation of Muffins
2.7. Consumer Acceptance Test
2.8. Statistical Analysis
Global Sensitivity Analysis
3. Results and Discussion
3.1. Correlation between Observed Chemical Composition and Technological Characteristic Responses and Addition of Apple Powder to the Spelt Muffin Formulation
3.2. Principal Component Analysis
3.3. ANN Model and Global Sensitivity Analysis—Yoon’s Interpretation Method
3.4. Correspondence Analysis, Sensory Evaluation of Muffins, and Consumer Acceptance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shih, Y.-T.; Wang, W.; Hasenbeck, A.; Stone, D.; Zhao, Y. Investigation of physicochemical, nutritional, and sensory qualities of muffins incorporated with dried brewer’s spent grain flours as a source of dietary fiber and protein. J. Food Sci. 2020, 85, 3943–3953. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, M. Microstructural, physicochemical, antioxidant, textural and quality characteristics of wheat muffins as influenced by partial replacement with ground flaxseed. LWT Food Sci. Technol. 2018, 91, 278–285. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Wang, W.; Li, Y. Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends Food Sci. Technol. 2020, 103, 200–213. [Google Scholar] [CrossRef]
- Beegum, S.; Sharma, M.; Manikantan, M.R.; Gupta, R.K. Effect of virgin coconut oil cake on physical, textural, microbial and sensory attributes of muffins. Int. J. Food Sci. Technol. 2017, 52, 540–549. [Google Scholar] [CrossRef]
- Grasso, S.; Liu, S.; Methven, L. Quality of muffins enriched with upcycled defatted sunflower seed flour. LWT Food Sci. Technol. 2020, 119, 108893. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Shin, W.-S. Evaluation of the Physicochemical and Functional Properties of Aquasoya (Glycine max Merr.) Powder for Vegan Muffin Preparation. Foods 2022, 11, 591. [Google Scholar] [CrossRef]
- Antoniewska, A.; Rutkowska, J.; Pineda, M.M.; Adamska, A. Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT Food Sci. Technol. 2018, 89, 217–223. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Lee, W.Y. Quality and antioxidant properties of functional rice muffins enriched with shiitake mushroom and carrot pomace. Int. J. Food Sci. Technol. 2019, 54, 2321–2328. [Google Scholar] [CrossRef]
- Kurek, M.A.; Moczkowska-Wyrwisz, M.; Wyrwisz, J.; Karp, S. Development of Gluten-Free Muffins with β-Glucan and Pomegranate Powder Using Response Surface Methodology. Foods 2021, 10, 2551. [Google Scholar] [CrossRef]
- Salehi, F.; Aghajanzadeh, S. Effect of dried fruits and vegetables powder on cakes quality: A review. Trends Food Sci. Technol. 2019, 95, 162–172. [Google Scholar] [CrossRef]
- Milner, L.; Kerry, J.P.; O’Sullivan, M.; Gallagher, E. Physical, textural and sensory characteristics of reduced sucrose cakes, incorporated with clean-label sugar-replacing alternative ingredients. Innov. Food Sci. Emerg. Technol. 2020, 59, 102235. [Google Scholar] [CrossRef]
- Grasso, S.; Pintado, T.; Pérez-Jiménez, J.; Ruiz-Capillas, C.; Herrero, A.M. Characterisation of Muffins with Upcycled Sunflower Flour. Foods 2021, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Harastani, R.; James, L.J.; Ghosh, S.; Rosenthal, A.J.; Woolley, E. Reformulation of Muffins Using Inulin and Green Banana Flour: Physical, Sensory, Nutritional and Shelf-Life Properties. Foods 2021, 10, 1883. [Google Scholar] [CrossRef] [PubMed]
- Karp, S.; Wyrwisz, J.; Kurek, M.A.; Wierzbicka, A. Combined use of cocoa dietary fibre and steviol glycosides in low-calorie muffins production. Int. J. Food Sci. Technol. 2017, 52, 944–953. [Google Scholar] [CrossRef]
- Ghaboos, H.; Ardabili, S.; Kashaninejad, M. Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. Int. Food Res. J. 2018, 25, 854–860. [Google Scholar]
- Struck, S.; Gundel, L.; Zahn, S.; Rohm, H. Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT Food Sci. Technol. 2016, 65, 32–38. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Jakobek, L.; Ištuk, J.; Buljeta, I.; Voća, S.; Šic Žlabur, J.; Skendrović Babojelić, M. Traditional, Indigenous Apple Varieties, a Fruit with Potential for Beneficial Effects: Their Quality Traits and Bioactive Polyphenol Contents. Foods 2020, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Średnicka-Tober, D.; Barański, M.; Kazimierczak, R.; Ponder, A.; Kopczyńska, K.; Hallmann, E. Selected Antioxidants in Organic vs. Conventionally Grown Apple Fruits. Appl. Sci. 2020, 10, 2997. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.; Azeredo, D.R.; Cruz, A.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, K.; Kern, M.; Hong, M.Y.; Liu, C.; Hooshmand, S. Acute Effects of Dried Apple Consumption on Metabolic and Cognitive Responses in Healthy Individuals. FASEB J. Med. Food 2017, 21, 1158–1164. [Google Scholar] [CrossRef]
- Cubeddu, A.; Fava, P.; Pulvirenti, A.; Haghighi, H.; Licciardello, F. Suitability Assessment of PLA Bottles for High-Pressure Processing of Apple Juice. Foods 2021, 10, 295. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.; Petit, J.; Zimmer, D.; Djantou, E.; Scher, J. Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Cvetković, B.; Pezo, L.; Mišan, A.; Mastilović, J.; Kevrešan, Z.; Ilić, N.; Filipčev, B. The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT Food Sci. Technol. 2019, 110, 332–337. [Google Scholar] [CrossRef]
- Šarić, L.Ć.; Filipčev, B.V.; Šimurina, O.D.; Plavšić, D.V.; Šarić, B.M.; Lazarević, J.M.; Milovanović, I.L. Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables. Food Feed Res. 2016, 43, 135–144. [Google Scholar] [CrossRef]
- Filipčev, B.; Šimurina, O.; Bodroža-Solarov, M.; Brkljača, J. Dough rheological properties in relation to cracker-making performance of organically grown spelt cultivars. Int. J. Food Sci. Technol. 2013, 48, 2356–2362. [Google Scholar] [CrossRef]
- Filipović, J.; Pezo, L.; Filipović, V.; Brkljača, J.; Krulj, J. The effects of ω-3 fatty acids and inulin addition to spelt pasta quality. LWT Food Sci. Technol. 2015, 63, 43–51. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Oniszczuk, A.; Kasprzak, K.; Olech, M.; Mitrus, M.; Oniszczuk, T. Chemical composition and selected quality characteristics of new types of precooked wheat and spelt pasta products. Food Chem. 2020, 309, 125673. [Google Scholar] [CrossRef]
- Šovljanski, O.; Šeregelj, V.; Pezo, L.; Tumbas Šaponjac, V.; Vulić, J.; Cvanić, T.; Markov, S.; Ćetković, G.; Čanadanović-Brunet, J. Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties. Antioxidants 2022, 11, 825. [Google Scholar] [CrossRef]
- Nicetin, M.; Pezo, L.; Loncar, B.; Filipovic, V.; Suput, D.; Knezevic, V.; Filipovic, J. The possibility of increasing the antioxidant activity of celery root during osmotic treatment. J. Serbian Chem. Soc. 2017, 82, 253–265. [Google Scholar] [CrossRef]
- Koprivica, G.B.; Pezo, L.L.; Ćurčić, B.L.; Lević, L.B.; Šuput, D.Z. Osmotic dehydration. sugar beet apple. J. Food Process. Preserv. 2014, 38, 1705–1715. [Google Scholar] [CrossRef]
- Nicol, A. Breakfast muffins. In The Bread Cookbook; McDowall, A., Ed.; Smithmark Publisher: New York, NY, USA, 1995; pp. 94–95. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Method No. 930.25; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- AACC. Volumetric and Dimensional Profile of Baked Products by Laser Topography-VolScan Profiler Method; AACC: Arnold, MD, USA, 1999; pp. 10–16. [Google Scholar]
- Filipović, J.; Miladinovic, Z.; Pezo, L.; Filipovic, N.; Filipovic, V.; Jevtic-Vukmirovic, A. Quality of spelt pasta enriched with eggs and identification of eggs using 13C MAS NMR spectroscopy. Chem. Ind. 2015, 69, 59–65. [Google Scholar] [CrossRef]
- Filipović, J.; Ivkov, M.; Košutić, M.; Filipović, V. Ratio of omega -6/omega-3 of Spelt and Flaxseed Pasta and Consumer Acceptability. Czech. J. Food Sci. 2016, 34, 522–528. [Google Scholar] [CrossRef] [Green Version]
- ISO 4121; Sensory Analysis—Methodology—Evaluation of Food Product by Methods of Using Scales. International Organization for Standardization, Austrian Standards Institute: Vienna, Austria, 2002.
- Kojić, J.; Belović, M.; Krulj, J.; Pezo, L.; Teslić, N.; Kojić, P.; Tukuljac, L.P.; Šeregelj, V.; Ilić, N. Textural, Color and Sensory Features of Spelt Wholegrain Snack Enriched with Betaine. Foods 2022, 11, 475. [Google Scholar] [CrossRef] [PubMed]
- Košutić, M.; Filipović, J.; Jeftić-Mučibabić, R.; Nježić, Z.; Plavšić, D. Consumer acceptability of flakes products enriched with functional components. J. Oper. Res. Soc. 2017, 21, 211–213. [Google Scholar]
- Yoon, Y.; Swales, G.; Margavio, T.M. Comparison of Discriminant Analysis versus Artificial Neural Networks. J. Oper. Res. Soc. 2017, 44, 51–60. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef]
- Knežević, V.; Pezo, L.L.; Lončar, B.L.; Filipović, V.S.; Nićetin, M.R.; Gorjanović, S.; Šuput, D. Antioxidant Capacity of Nettle Leaves During Osmotic Treatment. Period. Polytech. Chem. Eng. 2019, 63, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Filipcev, B.; Levic, L.; Bodroza-Solarov, M.; Mišljenović, N.; Koprivica, G. Quality Characteristics and Antioxidant Properties of Breads Supplemented with Sugar Beet Molasses-Based Ingredients. Int. J. Food Prop. 2010, 13, 1035–1053. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Technical Report Series, Protein and Amino Acid Requirements in Human Nutrition, Chapter: Protein–Energy Interactions; Joint FAO/WHO/UNU: Geneva, Switzerland, 2002; p. 79.
- Gunasekara, D.; Bulathgama, A.; Wickramasinghe, I. Comparison of Different Hydrocolloids on the Novel Development of Muffins from “Purple Yam”(Dioscorea alata) Flour in Sensory, Textural, and Nutritional Aspects. Int. J. Food Sci. 2021. [Google Scholar] [CrossRef]
- Azmoon, E.; Saberi, F.; Kouhsari, F.; Akbari, M.; Kieliszek, M.; Vakilinezam, A. The Effects of Hydrocolloids-Protein Mixture as a Fat Replacer on Physicochemical Characteristics of Sugar-Free Muffin Cake: Modeling and Optimization. Foods 2021, 10, 1549. [Google Scholar] [CrossRef] [PubMed]
- Younas, M.B.; Rakha, A.; Sohail, M.; Rashid, S.; Ishtiaq, H. Physicochemical and sensory assessment of apple pomace enriched muffins. Pak. J. Food Sci. 2015, 25, 224–234. [Google Scholar]
- Šobot, K.; Laličić-Petronijević, J.; Filipovic, V.; Nićetin, M.; Filipović, J.; Popović, L. Contribution of Osmotically Dehydrated Wild Garlic on Biscuits’ Quality Parameters. Period. Polytech. Chem. Eng. 2019, 63, 497–507. [Google Scholar] [CrossRef]
- Koprivica, G.; Mišljenović, N.; Lević, L.j.; Jokanović, M.; Jevrić, L. Effect of process parameters on the color of apple osmotically dehydrated in sugar beet molasses. J. Process. Energy Agric. 2011, 15, 223–226. [Google Scholar]
- Kim, Y.K.; Jeong, S.L.; Cha, S.H.; Yi, J.Y.; Kim, D.; Yoo, D.; Hyun, T.K.; Jang, K. Quality and Antioxidant Properties of Muffin Added with ‘Fuji’ Apple Pomace Powder. J. Korean Soc. Food Sci. Nutr. 2019, 48, 319–327. [Google Scholar] [CrossRef]
- Filipović, V.; Lončar, B.; Filipović, J.; Nićetin, M.; Knežević, V.; Šeregelj, V.; Košutić, M.; Bodroža Solarov, M. Addition of Combinedly Dehydrated Peach to the Cookies—Technological Quality Testing and Optimization. Foods 2022, 11, 1258. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Tešević, V.; Čabarkapa, I.; Todosijević, M. QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. ex Heuff. essential oil composition. Ind. Crop. Prod. 2020, 154, 112752. [Google Scholar] [CrossRef]
- Mellette, T.; Yerxa, K.; Therrien, M.; Camire, M.E. Whole Grain Muffin Acceptance by Young Adults. Foods 2018, 7, 91. [Google Scholar] [CrossRef] [Green Version]
No. | Sample | Flour Content (%) | Lyo Apple or OT+Lyo Apple Powder Content (%) |
---|---|---|---|
1 | Control | 100 | 0 |
2 | 10% Lyo apple powder | 90 | 10 |
3 | 20% Lyo apple powder | 80 | 20 |
4 | 30% Lyo apple powder | 70 | 30 |
5 | 10% OT+Lyo apple powder | 90 | 10 |
6 | 20% OT+Lyo apple powder | 80 | 20 |
7 | 30% OT+Lyo apple powder | 70 | 30 |
No. | Proteins (% d.m) | Moisture (%) | Starch (% d.m) | Fat (% d.m) | Cellulose (% d.m) | Sugars (% d.m) |
---|---|---|---|---|---|---|
1 | 12.75 ± 0.05 a | 9.59 ± 0.13 a | 33.59 ± 0.66 d | 14.40 ± 0.91 b | 0.49 ± 0.08 a | 31.30 ± 0.66 a |
2 | 12.48 ± 0.16 a | 11.30 ± 0.21 b | 32.91 ± 0.54 d | 13.24 ± 0.54 a,b | 0.56 ± 0.05 a,b | 32.84 ± 0.54 a |
3 | 11.40 ± 0.20 b,d | 12.07 ± 0.69 b | 26.04 ± 0.39 b | 12.27 ± 0.72 a,b | 0.67 ± 0.03 c | 35.01 ± 0.39 b |
4 | 10.57 ± 0.15 c | 12.16 ± 0.57 b | 23.81 ± 0.88 a | 11.79 ± 0.83 a | 0.90 ± 0.09 d | 36.20 ± 0.88 b,c |
5 | 12.59 ± 0.35 a | 11.15 ± 0.42 b | 28.34 ± 0.92 c | 13.02 ± 0.89 a.b | 0.50 ± 0.03 a.b | 35.19 ± 0.92 b,c |
6 | 11.75 ± 0.09 b | 11.55 ± 0.44 b | 24.36 ± 0.51 a | 12.28 ± 1.10 a,b | 0.64 ± 0.05 b,c | 35.60 ± 0.51 b,c |
7 | 11.20 ± 0.03 d | 11.66 ± 0.38 b | 23.49 ± 0.47 a | 11.94 ± 1.01 a | 0.86 ± 0.02 d | 36.84 ± 0.47 c |
No. | Mg | Ca | K | Na |
---|---|---|---|---|
1 | 80.06 ± 0.66 e | 49.73 ± 0.66 a | 204.43 ± 0.66 d | 34.70 ± 0.66 a |
2 | 75.08 ± 0.54 d | 50.14 ± 0.54 a | 200.11 ± 0.54 c | 35.35 ± 0.54 a.b |
3 | 70.09 ± 0.39 c | 50.54 ± 0.39 a,b | 195.79 ± 0.39 b | 36.01 ± 0.39 a,b,c |
4 | 65.12 ± 0.88 a | 50.94 ± 0.88 a,b | 191.47 ± 0.88 a | 36.66 ± 0.88 b,c |
5 | 81.83 ± 0.92 d | 51.85 ± 0.92 b | 221.91 ± 0.92 e | 37.47 ± 0.92 c |
6 | 82.60 ± 0.51 c | 53.96 ± 0.51 c | 239.38 ± 0.51 f | 40.23 ± 0.51 d |
7 | 85.37 ± 0.47 b | 56.07 ± 0.47 d | 256.85 ± 0.47 g | 43.00 ± 0.47 e |
No. | Spec Volume (mL) | Spec Weight (g) | Hardness (g) | Springiness (%) |
---|---|---|---|---|
1 | 1.78 ± 0.18 a | 40.00 ± 0.66 a | 1383.66 ± 0.66 e | 56.83 ± 0.66 b |
2 | 1.77 ± 0.24 a | 41.00 ± 0.54 a | 1785.18 ± 0.54 g | 60.01 ± 0.54 d |
3 | 1.73 ± 0.16 a | 40.00 ± 0.39 a | 1585.57 ± 0.39 f | 59.11 ± 0.39 c,d |
4 | 1.68 ± 0.10 a | 40.00 ± 0.88 a | 1465.28 ± 0.88 d | 57.09 ± 0.88 b |
5 | 1.81 ± 0.27 a | 40.00 ± 0.92 a | 1229.96 ± 0.92 c | 60.30 ± 0.92 d |
6 | 1.78 ± 0.09 a | 40.00 ± 0.51 a | 1205.68 ± 0.51 b | 57.87 ± 0.51 b,c |
7 | 1.67 ± 0.14 a | 40.00 ± 0.47 a | 737.26 ± 0.47 a | 53.63 ± 0.47 a |
No. | L* | a* | b* | ΔE | W |
---|---|---|---|---|---|
1 | 47.17 ± 0.54 c | 5.45 ± 0.66 a | 26.85 ± 0.66 c,d | - | 21.19 ± 0.88 c |
2 | 49.42 ± 0.66 d | 9.39 ± 0.54 b | 27.95 ± 0.54 d | 4.67 ± 0.05 a | 21.62 ± 0.39 c |
3 | 50.95 ± 0.39 d | 12.44 ± 0.88 c | 33.58 ± 0.39 e | 10.41 ± 0.07 b | 22.39 ± 0.54 c,d |
4 | 53.69 ± 0.88 e | 12.82 ± 0.39 c | 36.53 ± 0.88 f | 13.80 ± 0.17 c | 23.84 ± 0.66 d |
5 | 40.55 ± 0.92 b | 12.46 ± 0.51 c | 26.22 ± 0.92 b,c | 9.66 ± 0.14 a | 19.20 ± 0.92 b |
6 | 38.16 ± 0.47 a | 12.56 ± 0.92 c | 24.85 ± 0.51 a,b | 11.65 ± 0.22 b | 18.88 ± 0.51 b |
7 | 37.53 ± 0.51 a | 13.14 ± 0.47 c | 23.39 ± 0.47 a | 12.81 ± 0.30 c | 15.80 ± 0.47 a |
No. | Smell | Taste | Appearance | Mastication | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | Apple | Sweet | Molasses | Characteristic | Apple | Sweet | Molasses | Characteristic | The Appearance of the Upper Surface | ||
1 | 5.0 ± 0.0 d | 0 | 1.67 ± 0.52 a | 0 | 5.0 ± 0.0 b | 0 | 1.83 ± 0.41 a | 0 | 5.00 ± 0.0 b | 4.83 ± 0.41 c | 0.33 ± 0.52 a |
2 | 4.0 ± 0.63 c | 3.00 ± 0.63 a | 3.33 ± 0.52 b | 0 | 4.17 ± 0.41 a,b | 3.17 ± 0.41 a | 3.83 ± 0.41 b | 0 | 4.33 ± 0.52 a,b | 4.33 ± 0.52 b,c | 1.17 ± 0.41 a,b |
3 | 3.67 ± 0.52 b | 3.83 ± 0.41 a,b | 3.33 ± 0.52 b | 0 | 3.83 ± 0.75 a,b | 4.17 ± 0.41 b,c | 4.00 ± 0.63 b | 0 | 4.00 ± 0.63 a,b | 3.67 ± 1.03 a,b,c | 2.33 ± 0.52 b,c |
4 | 4.17 ± 0.75 c | 4.83 ± 0.41 b | 4.87 ± 0.52 b | 0 | 4.33 ± 0.75 a,b | 5.00 ± 0.0 c | 4.87 ± 0.52 b | 0 | 3.83 ± 0.41 a,b | 3.17 ± 0.41 a,b | 4.83 ± 0.41 e |
5 | 2.67 ± 0.52 a | 3.00 ± 0.63 a | 4.00 ± 0.63 a,b | 2.17 ± 0.75 a | 3.17 ± 0.41 a | 3.33 ± 0.41 a,b | 4.33 ± 0.52 b | 2.33 ± 0.52 a | 3.33 ± 0.52 a | 3.0 ± 0.63 a,b | 1.33 ± 0.52 a,b |
6 | 2.87 ± 0.75 a,b | 4.17 ± 0.41 a,b | 3.83 ± 0.41 a,b | 3.00 ± 0.89 a | 3.00 ± 0.63 a | 4.33 ± 0.52 c | 4.50 ± 0.50 b | 4.00 ± 0.63 b | 3.17 ± 0.75 a | 2.83 ± 0.41 a,b | 3.33 ± 0.52 c,d |
7 | 3.17 ± 0.75 b | 4.83 ± 0.41 b | 54.83 ± 0.41 d | 4.50 ± 0.55 b | 3.33 ± 0.52 a | 5.00 ± 0.0 c | 5.00 ± 0.0 b | 4.67 ± 0.52 b | 3.0 ± 0.63 a | 2.17 ± 0.41 a | 4.00 ± 0.63 d,e |
No. | Taste | Smell | Chewing Properties | General Acceptability |
---|---|---|---|---|
1 | 3.25 ± 1.5 a | 3.5 ± 1.29 a | 2.75 ± 1.26 a | 3 ± 1.41 a |
2 | 5.25 ± 1.26 a,b | 5.0 ± 1.41 a | 5.0 ± 1.41 a,b | 5.0 ± 1.5 a,b |
3 | 5.5 ± 2.08 a,b | 5.25 ± 2.06 a | 6.0 ± 1.82 a,b | 5.75 ± 2.22 a,b |
4 | 6.25 ± 1.71 a,b | 6.25 ± 2.21 a | 7.25 ± 0.96 b | 6.5 ± 1.74 a,b |
5 | 6.25 ± 0.5 a,b | 5.75 ± 0.96 a | 6.25 ± 0.96 b | 6.5 ± 0.58 a,b |
6 | 6.25 ± 0.96 a,b | 6.0 ± 0.82 a | 6.5 ± 1.29 b | 6.5 ± 1.0 a,b |
7 | 7.5 ± 1.29 b | 7.5 ± 1.73 a | 7.75 ± 1.26 b | 8.0 ± 1.41 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lončar, B.; Pezo, L.; Filipović, V.; Nićetin, M.; Filipović, J.; Pezo, M.; Šuput, D.; Aćimović, M. Physico-Chemical, Textural and Sensory Evaluation of Spelt Muffins Supplemented with Apple Powder Enriched with Sugar Beet Molasses. Foods 2022, 11, 1750. https://doi.org/10.3390/foods11121750
Lončar B, Pezo L, Filipović V, Nićetin M, Filipović J, Pezo M, Šuput D, Aćimović M. Physico-Chemical, Textural and Sensory Evaluation of Spelt Muffins Supplemented with Apple Powder Enriched with Sugar Beet Molasses. Foods. 2022; 11(12):1750. https://doi.org/10.3390/foods11121750
Chicago/Turabian StyleLončar, Biljana, Lato Pezo, Vladimir Filipović, Milica Nićetin, Jelena Filipović, Milada Pezo, Danijela Šuput, and Milica Aćimović. 2022. "Physico-Chemical, Textural and Sensory Evaluation of Spelt Muffins Supplemented with Apple Powder Enriched with Sugar Beet Molasses" Foods 11, no. 12: 1750. https://doi.org/10.3390/foods11121750
APA StyleLončar, B., Pezo, L., Filipović, V., Nićetin, M., Filipović, J., Pezo, M., Šuput, D., & Aćimović, M. (2022). Physico-Chemical, Textural and Sensory Evaluation of Spelt Muffins Supplemented with Apple Powder Enriched with Sugar Beet Molasses. Foods, 11(12), 1750. https://doi.org/10.3390/foods11121750