Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities
Abstract
:1. Introduction
2. L. monocytogenes in Food Production Environments
3. Hygienic Zoning
4. Environmental Monitoring Program
4.1. Sampling Time and Frequency
4.2. Sample Size
4.3. Sample Collection Methods
4.4. Detection Methods
5. Novel Approaches to Control of L. monocytogenes
5.1. Thermal Methods
5.2. Non-Thermal Methods
5.3. Biocontrol Methods
5.4. Natural Methods
5.5. Chemical Agents
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Genet. 2018, 16, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.G.D.; Webb, R.A.; Swann, M.B.R. A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J. Pathol. Bacteriol. 1926, 29, 407–439. [Google Scholar] [CrossRef]
- Schlech, W.F.; Lavigne, P.M.; Bortolussi, R.A.; Allen, A.C.; Haldane, E.V.; Wort, A.J.; Hightower, A.W.; Johnson, S.E.; King, S.H.; Nicholls, E.S.; et al. Epidemic Listeriosis—Evidence for Transmission by Food. N. Engl. J. Med. 1983, 308, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, V.; Wong, P.-C.; Goh, B.-H.; Ming, L.C.; Pusparajah, P.; Wong, S.H.; Ab Mutalib, N.-S.; Lee, L.-H. A review on the characteristics, taxanomy and prevalence of Listeria monocytogenes. Prog. Microbes Mol. Biol. 2018, 1, a0000007. [Google Scholar] [CrossRef] [Green Version]
- Charlier, C.; Disson, O.; Lecuit, M. Maternal-neonatal listeriosis. Virulence 2020, 11, 391–397. [Google Scholar] [CrossRef]
- CDC. Listeria (Listeriosis). 2022. Available online: https://www.cdc.gov/listeria/index.html (accessed on 10 March 2022).
- Tompkin, R.B. Control of Listeria monocytogenes in the Food-Processing Environment. J. Food Prot. 2002, 65, 709–725. [Google Scholar] [CrossRef]
- CDC. Foodborne Disease Outbreak Surveillance System—National Outbreak Reporting System Dashboard. U.S. Department of Health and Human Services, CDC. 2022. Available online: https://wwwn.cdc.gov/norsdashboard// (accessed on 15 February 2022).
- Saraiva, C.; García-Díez, J.; Fontes, M.D.C.; Esteves, A. Modeling the Behavior of Listeria monocytogenes in Meat. In Listeria Monocytogenes; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kurpas, M.; Wieczorek, K.; Osek, J. Ready-to-eat meat products as a source of Listeria monocytogenes. J. Vet. Res. 2018, 62, 49–55. [Google Scholar] [CrossRef] [Green Version]
- CDC. Listeria (Listeriosis)—Outbreaks. Outbreak of Listeria Infections Linked to Deli-Sliced Meats and Cheeses (Final Update). 2019. Available online: https://www.cdc.gov/listeria/outbreaks/deliproducts-04-19/index.html (accessed on 20 January 2022).
- CDC. Listeria (Listeriosis)—Outbreaks. Outbreak of Listeria Infections Linked to Deli-Meats (Final Update). 2021. Available online: https://www.cdc.gov/listeria/outbreaks/delimeat-10-20/index.html (accessed on 22 January 2022).
- CDC. Listeria (Listeriosis)—Multistate Outbreak of Listeriosis Linked to Soft Cheeses Distributed by Karoun Dairies, Inc. (Final Update). 2015. Available online: https://www.cdc.gov/listeria/outbreaks/soft-cheeses-09-15/index.html (accessed on 22 January 2022).
- CDC. Listeria (Listeriosis)—Outbreaks. Multistate Outbreak of Listeriosis Linked to Blue Bell Creameries Products (Final Update). 2015. Available online: https://www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html (accessed on 23 January 2022).
- FDA. Inspection and Environmental Sampling of Ice Cream Production Facilities for Listeria Monocytogenes and Salmonella FY 2016-17. 2022. Available online: https://www.fda.gov/food/sampling-protect-food-supply/inspection-and-environmental-sampling-ice-cream-production-facilities-listeria-monocytogenes-and (accessed on 26 February 2022).
- FDA. Outbreak Investigation of Listeria Monocytogenes: Dole Packaged Salad (December 2021). 2022. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-listeria-monocytogenes-dole-packaged-salad-december-2021 (accessed on 27 April 2022).
- CDC (Center for Disease Control and Prevention). Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado (Final Update). 2012. Available online: https://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html (accessed on 1 March 2022).
- UFPA. Guidance on Environmental Monitoring and Control of Listeria for the Fresh Produce Industry, 2nd ed.; United Fresh Produce Association: Washington, DC, USA, 2018; Available online: https://www.freshproduce.com/siteassets/files/reports/food-safety/guidance-on-environmental-monitoring-and-control-of-listeria.pdf (accessed on 5 March 2022).
- Simonetti, T.; Peter, K.; Chen, Y.; Jin, Q.; Zhang, G.; LaBorde, L.F.; Macarisin, D. Prevalence and Distribution of Listeria monocytogenes in Three Commercial Tree Fruit Packinghouses. Front. Microbiol. 2021, 12, 652708. [Google Scholar] [CrossRef]
- Spanu, C.; Jordan, K. Listeria monocytogenes environmental sampling program in ready-to-eat processing facilities: A practical approach. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2843–2861. [Google Scholar] [CrossRef]
- Belias, A.; Sullivan, G.; Wiedmann, M.; Ivanek, R. Factors that contribute to persistent Listeria in food processing facilities and relevant interventions: A rapid review. Food Control 2021, 133, 108579. [Google Scholar] [CrossRef]
- Autio, T.; Keto-Timonen, R.; Lundén, J.; Bjorkroth, J.; Korkeala, H. Characterisation of Persistent and Sporadic Listeria monocytogenes Strains by Pulsed-Field Gel Electrophoresis (PFGE) and Amplified Fragment Length Polymorphism (AFLP). Syst. Appl. Microbiol. 2003, 26, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, W.; Gay, C.; Knowles, D.; Borucki, M. Prevalence of Listeria monocytogenes Subtypes in Bulk Milk of the Pacific Northwest. J. Food Prot. 2003, 66, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Dauphin, G.; Ragimbeau, C.; Malle, P. Use of PFGE typing for tracing contamination with Listeria monocytogenes in three cold-smoked salmon processing plants. Int. J. Food Microbiol. 2001, 64, 51–61. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef]
- McLauchlin, J.; Greenwood, M.H.; Pini, P.N. The occurrence of Listeria monocytogenes in cheese from a manufacturer associated with a case of listeriosis. Int. J. Food Microbiol. 1990, 10, 255–262. [Google Scholar] [CrossRef]
- Giovannacci, I.; Ragimbeau, C.; Queguiner, S.; Salvat, G.; Vendeuvre, J.-L.; Carlier, V.; Ermel, G. Listeria monocytogenes in pork slaughtering and cutting plants: Use of RAPD, PFGE and PCR-REA for tracing and molecular epidemiology. Int. J. Food Microbiol. 1999, 53, 127–140. [Google Scholar] [CrossRef]
- Mędrala, D.; Dąbrowski, W.; Czekajło-Kołodziej, U.; Daczkowska-Kozon, E.; Koronkiewicz, A.; Augustynowicz, E.; Manzano, M. Persistence of Listeria monocytogenes strains isolated from products in a Polish fish-processing plant over a 1-year period. Food Microbiol. 2003, 20, 715–724. [Google Scholar] [CrossRef]
- Miettinen, M.K.; Björkroth, K.J.; Korkeala, H.J. Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis. Int. J. Food Microbiol. 1999, 46, 187–192. [Google Scholar] [CrossRef]
- Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in Biofilm Formation among Strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [Google Scholar] [CrossRef] [Green Version]
- Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. [Google Scholar] [CrossRef] [Green Version]
- Norwood, D.E.; Gilmour, A. Adherence of Listeria monocytogenes strains to stainless steel coupons. J. Appl. Microbiol. 1999, 86, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Lundén, J.M.; Miettinen, M.K.; Autio, T.J.; Korkeala, H. Persistent Listeria monocytogenes Strains Show Enhanced Adherence to Food Contact Surface after Short Contact Times. J. Food Prot. 2000, 63, 1204–1207. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Moltz, A.G.; Martin, S.E. Formation of Biofilms by Listeria monocytogenes under Various Growth Conditions. J. Food Prot. 2005, 68, 92–97. [Google Scholar] [CrossRef]
- Íñigo, L.U. Research review: Towards the identification of the common features of bacterial biofilm development. Int. Microbiol. 2006, 9, 21–28. Available online: https://scielo.isciii.es/pdf/im/v9n1/03lasa.pdf (accessed on 6 March 2022).
- da Silva, E.P.; De Martinis, E.C.P. Current knowledge and perspectives on biofilm formation: The case of Listeria monocytogenes. Appl. Microbiol. Biotechnol. 2012, 97, 957–968. [Google Scholar] [CrossRef]
- Gu, T.; Meesrisom, A.; Luo, Y.; Dinh, Q.N.; Lin, S.; Yang, M.; Sharma, A.; Tang, R.; Zhang, J.; Jia, Z.; et al. Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition. Food Control 2021, 130, 108275. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, X. Biofilm formation and food safety in food industries. Trends Food Sci. Technol. 2009, 20, 407–413. [Google Scholar] [CrossRef]
- Silva, S.; Teixeira, P.; Oliveira, R.; Azeredo, J. Adhesion to and Viability of Listeria monocytogenes on Food Contact Surfaces. J. Food Prot. 2008, 71, 1379–1385. [Google Scholar] [CrossRef]
- Russo, P.; Hadjilouka, A.; Beneduce, L.; Capozzi, V.; Paramithiotis, S.; Drosinos, E.H.; Spano, G. Effect of different conditions on Listeria monocytogenes biofilm formation and removal. Czech J. Food Sci. 2018, 36, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Piffaretti, J.C.; Kressebuch, H.; Aeschbacher, M.; Bille, J.; Bannerman, E.; Musser, J.M.; Selander, R.K.; Rocourt, J. Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc. Natl. Acad. Sci. USA 1989, 86, 3818–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibb, W.F.; Schwartz, B.; Gellin, B.G.; Plikaytis, B.D.; Weaver, R.E. Analysis of Listeria monocytogenes by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Int. J. Food Microbiol. 1989, 8, 233–239. [Google Scholar] [CrossRef]
- Rasmussen, O.F.; Beck, T.; Olsen, J.E.; Dons, L.; Rossen, L. Listeria monocytogenes isolates can be classified into two major types according to the sequence of the listeriolysin gene. Infect. Immun. 1991, 59, 3945–3951. [Google Scholar] [CrossRef] [Green Version]
- Brosch, R.; Chen, J.; Luchansky, J.B. Pulsed-field fingerprinting of listeriae: Identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl. Environ. Microbiol. 1994, 60, 2584–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nørrung, B.; Skovgaard, N. Application of multilocus enzyme electrophoresis in studies of the epidemiology of Listeria monocytogenes in Denmark. Appl. Environ. Microbiol. 1993, 59, 2817–2822. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, O.F.; Skouboe, P.; Dons, L.; Rossen, L.; Olsen, J.E. Listeria monocytogenes exists in at least three evolutionary lines: Evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 1995, 141, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Wiedmann, M.; Bruce, J.L.; Keating, C.; Johnson, A.E.; McDonough, P.L.; Batt, C.A. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 1997, 65, 2707–2716. [Google Scholar] [CrossRef] [Green Version]
- Nadon, C.A.; Woodward, D.L.; Young, C.; Rodgers, F.G.; Wiedmann, M. Correlations between Molecular Subtyping and Serotyping of Listeria monocytogenes. J. Clin. Microbiol. 2001, 39, 2704–2707. [Google Scholar] [CrossRef] [Green Version]
- Borucki, M.K.; Kim, S.H.; Call, D.R.; Smole, S.C.; Pagotto, F. Selective Discrimination of Listeria monocytogenes Epidemic Strains by a Mixed-Genome DNA Microarray Compared to Discrimination by Pulsed-Field Gel Electrophoresis, Ribotyping, and Multilocus Sequence Typing. J. Clin. Microbiol. 2004, 42, 5270–5276. [Google Scholar] [CrossRef] [Green Version]
- Call, D.R.; Borucki, M.K.; Besser, T.E. Mixed-Genome Microarrays Reveal Multiple Serotype and Lineage-Specific Differences among Strains of Listeria monocytogenes. J. Clin. Microbiol. 2003, 41, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Cazalet, C.; Simoes, N.; Frangeul, L.; Jacquet, C.; Kunst, F.; Martin, P.; Cossart, P.; Glaser, P.; Buchrieser, C. New Aspects Regarding Evolution and Virulence of Listeria monocytogenes Revealed by Comparative Genomics and DNA Arrays. Infect. Immun. 2004, 72, 1072–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhang, M.; Ju, J.; Nietfeldt, J.; Wise, J.; Terry, P.M.; Olson, M.; Kachman, S.D.; Wiedmann, M.; Samadpour, M.; et al. Genome Diversification in Phylogenetic Lineages I and II of Listeria monocytogenes: Identification of Segments Unique to Lineage II Populations. J. Bacteriol. 2003, 185, 5573–5584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nightingale, K.; Bovell, L.; Grajczyk, A.; Wiedmann, M. Combined sigB allelic typing and multiplex PCR provide improved discriminatory power and reliability for Listeria monocytogenes molecular serotyping. J. Microbiol. Methods 2007, 68, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Meloni, D.; Galluzzo, P.; Mureddu, A.; Piras, F.; Griffiths, M.; Mazzette, R. Listeria monocytogenes in RTE foods marketed in Italy: Prevalence and automated EcoRI ribotyping of the isolates. Int. J. Food Microbiol. 2009, 129, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Mei, L.; Jiang, L.; Fang, W. Prevalence of Listeria in Chinese Food Products from 13 Provinces Between 2000 and 2007 and Virulence Characterization of Listeria monocytogenes Isolates. Foodborne Pathog. Dis. 2009, 6, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Norton, D.M.; Scarlett, J.M.; Horton, K.; Sue, D.; Thimothe, J.; Boor, K.J.; Wiedmann, M. Characterization and Pathogenic Potential of Listeria monocytogenes Isolates from the Smoked Fish Industry. Appl. Environ. Microbiol. 2001, 67, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, D.; Clancy, D.; O’Mahony, M.; Grant, K.; Hyland, E.; Shanaghy, N.; Whyte, P.; McLauchlin, J.; Moloney, A.; Fanning, S. Comparison of Listeria monocytogenes strain types in Irish smoked salmon and other foods. Int. J. Hyg. Environ. Health 2006, 209, 527–534. [Google Scholar] [CrossRef]
- Bruhn, J.B.; Vogel, B.F.; Gram, L.; Lunde, M.; Aastveit, A.H.; Blatny, J.M.; Nes, I.F. Bias in the Listeria monocytogenes Enrichment Procedure: Lineage 2 Strains Outcompete Lineage 1 Strains in University of Vermont Selective Enrichments. Appl. Environ. Microbiol. 2005, 71, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Porto, A.C.S.; Wonderling, L.; Call, J.E.; Luchansky, J.B. Use of Pulsed-Field Gel Electrophoresis to Monitor a Five-Strain Mixture of Listeria monocytogenes in Frankfurter Packages. J. Food Prot. 2003, 66, 1465–1468. [Google Scholar] [CrossRef]
- Buncic, S.; Avery, S.M.; Rocourt, J.; Dimitrijevic, M. Can food-related environmental factors induce different behaviour in two key serovars, 4b and 1/2a, of Listeria monocytogenes? Int. J. Food Microbiol. 2001, 65, 201–212. [Google Scholar] [CrossRef]
- Chae, M.S.; Schraft, H.; Hansen, L.T.; Mackereth, R. Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol. 2006, 23, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Kalmokoff, M.; Austin, J.; Wan, X.-D.; Sanders, G.; Banerjee, S.; Farber, J. Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J. Appl. Microbiol. 2001, 91, 725–734. [Google Scholar] [CrossRef] [PubMed]
- FSPCA. FSPCA Preventive Controls for Human Food—Participant Manual (English), 1st ed.; Food Safety Preventive Controls Alliance: Bedford Park, IL, USA, 2016; Available online: https://www.ifsh.iit.edu/fspca/fspca-preventive-controls-human-food (accessed on 12 March 2022).
- De Oliveira Mota, J.; Boué, G.; Prévost, H.; Maillet, A.; Jaffres, E.; Maignien, T.; Arnich, N.; Sanaa, M.; Federighi, M. Environmental monitoring program to support food microbiological safety and quality in food industries: A scoping review of the research and guidelines. Food Control 2021, 130, 108283. [Google Scholar] [CrossRef]
- Zoellner, C.; Ceres, K.; Ghezzi-Kopel, K.; Wiedmann, M.; Ivanek, R. Design Elements of Listeria Environmental Monitoring Programs in Food Processing Facilities: A Scoping Review of Research and Guidance Materials. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1156–1171. [Google Scholar] [CrossRef] [Green Version]
- FDA. Draft Guidance for Industry: Control of Listeria Monocytogenes in Ready-To-Eat Foods. FDA-2008-D-0096; 2017. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-control-listeria-monocytogenes-ready-eat-foods (accessed on 15 March 2022).
- FDA-CFSAN. Control of Listeria monocytogenes in Ready-To-Eat Foods: Guidance for Industry. Draft Guidance; 2017. Available online: https://www.fda.gov/downloads/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/UCM535981.pdf#page=1zoom=auto,-121,792 (accessed on 18 March 2022).
- Lappi, V.R.; Thimothe, J.; Walker, J.; Bell, J.; Gall, K.; Moody, M.W.; Wiedmann, M. Impact of Intervention Strategies on Listeria Contamination Patterns in Crawfish Processing Plants: A Longitudinal Study. J. Food Prot. 2004, 67, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.; López-Alonso, V.; Rodríguez, P.; Martínez-Suárez, J.V. The Connection between Persistent, Disinfectant-Resistant Listeria monocytogenes Strains from Two Geographically Separate Iberian Pork Processing Plants: Evidence from Comparative Genome Analysis. Appl. Environ. Microbiol. 2016, 82, 308–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for Human Food, 21CFR117.130. 2022. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=117.130 (accessed on 30 March 2022).
- Grocery Manufacturers Association (GMA). Listeria monocytogenes Guidance on Environmental Monitoring and Corrective Actions in At-Risk Foods. 2014. Available online: https://ucfoodsafety.ucdavis.edu/sites/g/files/dgvnsk7366/files/inline-files/208833.pdf (accessed on 30 March 2022).
- Moore, G.; Griffith, C.J. Factors influencing Recovery of microorganisms from surfaces by use of traditional hygiene swabbing. Dairy Food Environ. Sanit. 2002, 22, 410–421. [Google Scholar]
- Capita, R.; Prieto, M.; Alonso-Calleja, C. Sampling Methods for Microbiological Analysis of Red Meat and Poultry Carcasses. J. Food Prot. 2004, 67, 1303–1308. [Google Scholar] [CrossRef]
- Daley, E.; Pagotto, F.; Farber, J. The inhibitory properties of various sponges on Listeria spp. Lett. Appl. Microbiol. 1995, 20, 195–198. [Google Scholar] [CrossRef]
- ISO 18593:2018; Microbiology of the Food Chain—Horizontal Methods for Surface Sampling. International Organization for Standardization: London, UK, 2018. Available online: https://www.iso.org/standard/64950.html (accessed on 2 April 2022).
- Gómez, D.; Arino, A.; Carramiñana, J.J.; Rota, C.; Yangüela, J. Comparison of Sampling Procedures for Recovery of Listeria monocytogenes from Stainless Steel Food Contact Surfaces. J. Food Prot. 2012, 75, 1077–1082. [Google Scholar] [CrossRef]
- Clemons, J.A. Novel Approaches for the Efficient Sampling and Detection of Listeria monocytogenes and Brochothrix thermosphacta on Food Contact Surfaces. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2010. Available online: https://trace.tennessee.edu/utk_gradthes/784 (accessed on 3 April 2022).
- Nyachuba, D.; Donnelly, C. Comparison of 3M Petrifilm Environmental Listeria Plates against Standard Enrichment Methods for the Detection of Listeria monocytogenes of Epidemiological Significance from Environmental Surfaces. J. Food Sci. 2007, 72, M346–M354. [Google Scholar] [CrossRef] [PubMed]
- ISO 11290-1:2017(E); Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. International Organization for Standardization: London, UK, 2017. Available online: https://www.sis.se/api/document/preview/921869/ (accessed on 5 April 2022).
- FDA. Detection of Listeria monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria monocytogenes in Foods. BAM Chapter 10; 2022. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration (accessed on 5 April 2022).
- AOAC International. AOAC Official Method 997.03. Detection of Listeria monocytogenes and Related Listeria Species in Selected Foods and from Environmental Surfaces. Visual Immunoprecipitated Assay (VIP). 2022. Available online: http://www.naidesw.com/Uploads/2018-12-26/5c22f1e7ac5a1.pdf (accessed on 5 April 2022).
- Jeyaletchumi, P.; Tunung, R.; Margaret, S.P.; Son, P.; Farinazleen, M.G.; Cheah, Y.K. Detection of Listeria monocytogenes in foods. Int. Food Res. J. 2010, 17, 1–11. [Google Scholar]
- Goh, S.; Kuan, C.; Loo, Y.; Chang, W.; Lye, Y.; Soopna, P.; Tang, J.; Nakaguchi, Y.; Nishibuchi, M.; Afsah-Hejri, L.; et al. Listeria monocytogenes in retailed raw chicken meat in Malaysia. Poult. Sci. 2012, 91, 2686–2690. [Google Scholar] [CrossRef] [PubMed]
- Lambertz, S.T.; Nilsson, C.; Brådenmark, A.; Sylvén, S.; Johansson, A.; Jansson, L.-M.; Lindblad, M. Prevalence and level of Listeria monocytogenes in ready-to-eat foods in Sweden 2010. Int. J. Food Microbiol. 2012, 160, 24–31. [Google Scholar] [CrossRef]
- Jamali, H.; Chai, L.C.; Thong, K.L. Detection and isolation of Listeria spp. and Listeria monocytogenes in ready-to-eat foods with various selective culture media. Food Control 2013, 32, 19–24. [Google Scholar] [CrossRef]
- Kramarenko, T.; Roasto, M.; Meremäe, K.; Kuningas, M.; Põltsama, P.; Elias, T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013, 30, 24–29. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front. Microbiol. 2015, 6, 1227. [Google Scholar] [CrossRef] [Green Version]
- Dara, L.; Avelino, A.; Piet, J.; Kieran, J. Listeria monocytogenes in food: Control by monitoring the food processing environment. Afr. J. Microbiol. Res. 2016, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Capita, R.; Alonso-Calleja, C. Comparison of Different Most-Probable-Number Methods for Enumeration of Listeria in Poultry. J. Food Prot. 2003, 66, 65–71. [Google Scholar] [CrossRef]
- Martin, B.; Jofré, A.; Garriga, M.; Hugas, M.; Aymerich, T. Quantification of Listeria monocytogenes in fermented sausages by MPN-PCR method. Lett. Appl. Microbiol. 2004, 39, 290–295. [Google Scholar] [CrossRef]
- Russo, P.; Botticella, G.; Amodio, M.; Colelli, G.; Cavaiuolo, M.; Ferrante, A.; Massa, S.; Spano, G.; Beneduce, L. Detection and enumeration of Listeria monocytogenes in fresh cut vegetables using MPN-real-time PCR. Acta Hortic. 2015, 1071, 567–674. [Google Scholar] [CrossRef] [Green Version]
- Jeyaletchumi, P.; Tunung, R.; Margaret, S.P.; Son, R.; Ghazali, F.M.; Cheah, Y.K.; Nishibuchi, M.; Nakaguchi, Y.; Malakar, P.K. Quantification of Listeria monocytogenes in salad vegetables by MPN-PCR. Int. Food Res. J. 2010, 17, 281–286. [Google Scholar]
- Liu, D.; Lawrence, M.L.; Austin, F.W.; Ainsworth, A.J. A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J. Microbiol. Methods 2007, 71, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Knabel, S.J. Multiplex PCR for Simultaneous Detection of Bacteria of the Genus Listeria, Listeria monocytogenes, and Major Serotypes and Epidemic Clones of L. monocytogenes. Appl. Environ. Microbiol. 2007, 73, 6299–6304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawool, D.B.; Malik, S.; Shakuntala, I.; Sahare, A.; Barbuddhe, S. Detection of multiple virulence-associated genes in Listeria monocytogenes isolated from bovine mastitis cases. Int. J. Food Microbiol. 2007, 113, 201–207. [Google Scholar] [CrossRef]
- Bubert, A.; Hein, I.; Rauch, M.; Lehner, A.; Yoon, B.; Goebel, W.; Wagner, M. Detection and Differentiation of Listeria spp. by a Single Reaction Based on Multiplex PCR. Appl. Environ. Microbiol. 1999, 65, 4688–4692. [Google Scholar] [CrossRef] [Green Version]
- Foddai, A.C.G.; Grant, I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef] [Green Version]
- Nadal, A.; Coll, A.; Cook, N.; Pla, M. A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: Role of target mRNA secondary structure on NASBA design. J. Microbiol. Methods 2007, 68, 623–632. [Google Scholar] [CrossRef]
- Tang, M.-J.; Zhou, S.; Zhang, X.-Y.; Pu, J.-H.; Ge, Q.-L.; Tang, X.-J.; Gao, Y.-S. Rapid and Sensitive Detection of Listeria monocytogenes by Loop-Mediated Isothermal Amplification. Curr. Microbiol. 2011, 63, 511–516. [Google Scholar] [CrossRef]
- Sheridan, G.E.C.; Masters, C.I.; Shallcross, J.A.; Mackey, B.M. Detection of mRNA by Reverse Transcription-PCR as an Indicator of Viability in Escherichia coli Cells. Appl. Environ. Microbiol. 1998, 64, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Karamonová, L.; Blažková, M.; Fukal, L.; Rauch, P.; Greifová, M.; Horáková, K.; Tomáška, M.; Roubal, P.; Brett, G.M.; Wyatt, G.M. Development of an ELISA specific for Listeria monocytogenes using a polyclonal antibody raised against a cell extract containing internalin B. Food Agric. Immunol. 2003, 15, 167–182. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Song, S.; Xu, L.; Kuang, H.; Zhu, J.; Xu, C. Identification and quantification of eight Listeria monocytogenes serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Mikrochim. Acta 2017, 184, 715–724. [Google Scholar] [CrossRef]
- Ledlod, S.; Bunroddith, K.; Areekit, S.; Santiwatanakul, S.; Chansiri, K. Development of a duplex lateral flow dipstick test for the detection and differentiation of Listeria spp. and Listeria monocytogenes in meat products based on loop-mediated isothermal amplification. J. Chromatogr. B 2020, 1139, 121834. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, C.; Liu, Y.; Nie, H.; Guo, X.; Song, X.; Xu, K.; Li, J.; Wang, J. A novel fluorescence method for the rapid and effective detection of Listeria monocytogenes using aptamer-conjugated magnetic nanoparticles and aggregation-induced emission dots. Analyst 2020, 145, 3857–3863. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef] [Green Version]
- Soni, D.K.; Ahmad, R.; Dubey, S.K. Biosensor for the detection of Listeria monocytogenes: Emerging trends. Crit. Rev. Microbiol. 2018, 44, 590–608. [Google Scholar] [CrossRef]
- Raghu, H.V.; Kumar, N. Rapid Detection of Listeria monocytogenes in Milk by Surface Plasmon Resonance Using Wheat Germ Agglutinin. Food Anal. Methods 2020, 13, 982–991. [Google Scholar] [CrossRef]
- Koubová, V.; Brynda, E.; Karasová, L.; Škvor, J.; Homola, J.; Dostalek, J.; Tobiska, P.; Rošický, J. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B Chem. 2001, 74, 100–105. [Google Scholar] [CrossRef]
- Vaughan, R.; Sullivan, C.O.; Guilbault, G. Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzym. Microb. Technol. 2001, 29, 635–638. [Google Scholar] [CrossRef]
- Sharma, H.; Mutharasan, R. Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. Biosens. Bioelectron. 2013, 45, 158–162. [Google Scholar] [CrossRef]
- Cheng, C.; Peng, Y.; Bai, J.; Zhang, X.; Liu, Y.; Fan, X.; Ning, B.; Gao, Z. Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sensors Actuators B Chem. 2014, 190, 900–906. [Google Scholar] [CrossRef]
- Mazza, R.; Piras, F.; Ladu, D.; Putzolu, M.; Consolati, S.G.; Mazzette, R. Identification of Listeria spp. strains isolated from meat products and meat production plants by multiplex polymerase chain reaction. Ital. J. Food Saf. 2015, 4, 5498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.; Park, S.H.; Yeom, Y.S.; Shrivastav, A.; Lee, S.-H.; Kim, Y.-R.; Kim, H.-Y. Simultaneous detection of Listeria species isolated from meat processed foods using multiplex PCR. Food Control 2013, 32, 659–664. [Google Scholar] [CrossRef]
- Volokhov, D.; Rasooly, A.; Chumakov, K.; Chizhikov, V. Identification of Listeria Species by Microarray-Based Assay. J. Clin. Microbiol. 2002, 40, 4720–4728. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Huang, Z.; Hu, S.; Peng, J.; Liu, D.; Xiong, Y.; Xu, H.; Wei, H.; Lai, W. Invited review: Advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. J. Dairy Sci. 2019, 102, 1887–1900. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.V.; Jeevanantham, S.; Kamalesh, R.; Sneha, S.; Yaashikaa, P.R. Methods of detection of food-borne pathogens: A review. Environ. Chem. Lett. 2020, 19, 189–207. [Google Scholar] [CrossRef]
- Armstrong, C.; Lee, J.; Gehring, A.; Capobianco, J. Flow-Through Electrochemical Biosensor for the Detection of Listeria monocytogenes Using Oligonucleotides. Sensors 2021, 21, 3754. [Google Scholar] [CrossRef]
- Hadjilouka, A.; Loizou, K.; Apostolou, T.; Dougiakis, L.; Inglezakis, A.; Tsaltas, D. Newly Developed System for the Robust Detection of Listeria monocytogenes Based on a Bioelectric Cell Biosensor. Biosensors 2020, 10, 178. [Google Scholar] [CrossRef]
- Daskalov, H.; Atanassova, S.; Stoyanchev, T.; Santo, R. Application of near infrared spectroscopy for rapid noninvasive detection of Listeria monocytogenes, Escherichia coli and Staphylococcus aureus growth in foods. Bulg. J. Vet. Med. 2011, 14, 150–157. [Google Scholar]
- Wang, J.; Xie, X.; Feng, J.; Chen, J.C.; Du, X.-J.; Luo, J.; Lu, X.; Wang, S. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. Int. J. Food Microbiol. 2015, 204, 66–74. [Google Scholar] [CrossRef]
- Barbuddhe, S.B.; Maier, T.; Schwarz, G.; Kostrzewa, M.; Hof, H.; Domann, E.; Chakraborty, T.; Hain, T. Rapid Identification and Typing of Listeria Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Appl. Environ. Microbiol. 2008, 74, 5402–5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, P.; Sekhon, A.S.; Chen, X.; Michael, M. Developing an affordable hyperspectral imaging system for rapid identification of Escherichia coli O157:H7 and Listeria monocytogenes in dairy products. Food Sci. Nutr. 2022, 10, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Cady, N.C.; Stelick, S.; Kunnavakkam, M.V.; Batt, C.A. Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sens. Actuators B Chem. 2005, 107, 332–341. [Google Scholar] [CrossRef]
- Sumrall, E.T.; Röhrig, C.; Hupfeld, M.; Selvakumar, L.; Du, J.; Dunne, M.; Schmelcher, M.; Shen, Y.; Loessner, M.J. Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Appl. Environ. Microbiol. 2020, 86, e00612-20. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Almeida, R.; Hofer, E.; Almeida, P. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. Braz. J. Microbiol. 2012, 43, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Aaliya, B.; Sunooj, K.V.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; Mir, S.A.; Sabu, S.; Sasidharan, A.; Hlaing, M.T.; George, J. Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Food Res. Int. 2021, 147, 110514. [Google Scholar] [CrossRef]
- Khan, I.; Tango, C.N.; Miskeen, S.; Lee, B.H.; Oh, D.-H. Hurdle technology: A novel approach for enhanced food quality and safety—A review. Food Control 2017, 73 Pt B, 1426–1444. [Google Scholar] [CrossRef]
- Ndoti-Nembe, A.; Vu, K.D.; Doucet, N.; Lacroix, M. Effect of combination of essential oils and bacteriocins on the efficacy of gamma radiation against Salmonella Typhimurium and Listeria monocytogenes. Int. J. Radiat. Biol. 2013, 89, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Upadhyaya, I.; Mooyottu, S.; Johny, A.K.; Venkitanarayanan, K. Efficacy of plant-derived compounds combined with hydrogen peroxide as antimicrobial wash and coating treatment for reducing Listeria monocytogenes on cantaloupes. Food Microbiol. 2014, 44, 47–53. [Google Scholar] [CrossRef]
- Espina, L.; Monfort, S.; Álvarez, I.; García-Gonzalo, D.; Pagán, R. Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg. Int. J. Food Microbiol. 2014, 189, 119–125. [Google Scholar] [CrossRef]
- Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef]
- Noci, F.; Walkling-Ribeiro, M.; Cronin, D.; Morgan, D.; Lyng, J. Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. Int. Dairy J. 2009, 19, 30–35. [Google Scholar] [CrossRef]
- Nassau, V.T.J.; Lenz, C.; Scherzinger, A.S.; Vogel, R.F. Combination of endolysins and high pressure to inactivate Listeria monocytogenes. Food Microbiol. 2017, 68, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Orihuel, A.; Bonacina, J.; Vildoza, M.J.; Bru, E.; Vignolo, G.; Saavedra, L.; Fadda, S. Biocontrol of Listeria monocytogenes in a meat model using a combination of a bacteriocinogenic strain with curing additives. Food Res. Int. 2018, 107, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Chibeu, A.; Agius, L.; Gao, A.; Sabour, P.M.; Kropinski, A.M.; Balamurugan, S. Efficacy of bacteriophage LISTEX™P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int. J. Food Microbiol. 2013, 167, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Pirbalouti, A.; Rahimi, E.; Moosavi, S. Antimicrobial activity of essential oils of three herbs against Listeria monocytogenes on chicken frankfurters. Acta Agric. Slov. 2010, 95, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.H.; Tsai, H.-C.; Rasco, B.; Tang, J.; Zhu, M.-J. Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control 2018, 91, 434–439. [Google Scholar] [CrossRef]
- Silva, F.V.; Gibbs, P.A. Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Res. Int. 2012, 45, 695–699. [Google Scholar] [CrossRef]
- Bradshaw, J.G.; Peeler, J.T.; Corwin, J.J.; Hunt, J.M.; Tierney, J.T.; Larkin, E.P.; Twedt, R.M. Thermal Resistance of Listeria monocytogenes in Milk. J. Food Prot. 1985, 48, 743–745. [Google Scholar] [CrossRef]
- Roering, A.M.; Wierzba, R.K.; Ihnot, A.M.; Luchansky, J.B. Pasteurization of vacuum-sealed packages of summer sausage inoculated with Listeria monocytogenes. J. Food Saf. 1998, 18, 49–56. [Google Scholar] [CrossRef]
- Muriana, P.M.; Quimby, W.; Davidson, C.A.; Grooms, J. Postpackage Pasteurization of Ready-to-Eat Deli Meats by Submersion Heating for Reduction of Listeria monocytogenes. J. Food Prot. 2002, 65, 963–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, A.K.; Davidson, P.M. Microwave and Radio Frequency Processing. J. Food Sci. 2000, 65, 32–41. [Google Scholar] [CrossRef]
- Sung, H.-J.; Kang, D.-H. Effect of a 915 MHz microwave system on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in salsa. LWT Food Sci. Technol. 2014, 59, 754–759. [Google Scholar] [CrossRef]
- Awuah, G.; Ramaswamy, H.; Economides, A.; Mallikarjunan, K. Inactivation of Escherichia coli K-12 and Listeria innocua in milk using radio frequency (RF) heating. Innov. Food Sci. Emerg. Technol. 2005, 6, 396–402. [Google Scholar] [CrossRef]
- Sastry, S.K.; Li, Q. Modeling the ohmic heating of foods: Ohmic heating for thermal processing of foods: Government, industry, and academic perspectives. Food Technol. 1996, 50, 246–248. [Google Scholar]
- Aurina, K.; Sari, A. Ohmic heating: A review and application in food industry. In Proceedings of the 2nd International Conference on Smart and Innovative Agriculture, Yogyakarta, Indonesia, 3–4 November 2021. [Google Scholar]
- Palaniappan, S.; Sastry, S.K. Electrical conductivity of selected juices: Influences of temperature, solids content, applied voltage, and particle size. J. Food Process Eng. 1991, 14, 247–260. [Google Scholar] [CrossRef]
- Kumar, J.P.; Ramanathan, M.; Ranganathan, T.V. Ohmic heating technology in food processing—A review. Int. J. Eng. Res. Technol. 2014, 3, 1236–1241. [Google Scholar]
- Tian, X.; Yu, Q.; Wu, W.; Dai, R. Inactivation of Microorganisms in Foods by Ohmic Heating: A Review. J. Food Prot. 2018, 81, 1093–1107. [Google Scholar] [CrossRef]
- Pereira, M.O.; Guimarães, J.T.; Ramos, G.L.; Prado-Silva, L.D.; Nascimento, J.S.; Sant’Ana, A.S.; Franco, R.M.; Cruz, A.G. Inactivation kinetics of Listeria monocytogenes in whey dairy beverage processed with ohmic heating. LWT 2020, 127, 109420. [Google Scholar] [CrossRef]
- Roux, S.; Courel, M.; Birlouez-Aragon, I.; Municino, F.; Massa, M.; Pain, J.-P. Comparative thermal impact of two UHT technologies, continuous ohmic heating and direct steam injection, on the nutritional properties of liquid infant formula. J. Food Eng. 2016, 179, 36–43. [Google Scholar] [CrossRef]
- Bahrami, A.; Baboli, Z.M.; Schimmel, K.; Jafari, S.M.; Williams, L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci. Technol. 2019, 96, 61–78. [Google Scholar] [CrossRef]
- Considine, K.M.; Kelly, A.L.; Fitzgerald, G.F.; Hill, C.; Sleator, R.D. High-pressure processing—Effects on microbial food safety and food quality. FEMS Microbiol. Lett. 2008, 281, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wouters, P.C.; Dutreux, N.; Smelt, J.P.P.M.; Lelieveld, H.L.M. Effects of Pulsed Electric Fields on Inactivation Kinetics of Listeria innocua. Appl. Environ. Microbiol. 1999, 65, 5364–5371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, N.; García, D.; Álvarez, I.; Condón, S.; Raso, J. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. Int. J. Food Microbiol. 2005, 103, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Piyasena, P.; Mohareb, E.; McKellar, R. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Baumann, A.R.; Martin, S.E.; Feng, H. Removal of Listeria monocytogenes Biofilms from Stainless Steel by Use of Ultrasound and Ozone. J. Food Prot. 2009, 72, 1306–1309. [Google Scholar] [CrossRef]
- Munir, M.T.; Federighi, M. Control of Foodborne Biological Hazards by Ionizing Radiations. Foods 2020, 9, 878. [Google Scholar] [CrossRef]
- Bari, M.L.; Nakauma, M.; Todoriki, S.; Juneja, V.K.; Isshiki, K.; Kawamoto, S. Effectiveness of Irradiation Treatments in Inactivating Listeria monocytogenes on Fresh Vegetables at Refrigeration Temperature. J. Food Prot. 2005, 68, 318–323. [Google Scholar] [CrossRef]
- Farkas, J. Irradiation as a method for decontaminating food: A review. Int. J. Food Microbiol. 1998, 44, 189–204. [Google Scholar] [CrossRef]
- Velasco, R.; Ordóñez, J.A. Use of E-beam radiation to eliminate Listeria monocytogenes from surface mould cheese. Int. Microbiol. 2015, 18, 33–40. [Google Scholar] [CrossRef]
- Mohamed, H.; Elnawawi, F.A.; Yousef, A.E. Nisin Treatment to Enhance the Efficacy of Gamma Radiation against Listeria monocytogenes on Meat. J. Food Prot. 2011, 74, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Alfarobbi, R.; Anngraini, N. Preservation of foodstuffs with gamma ray irradiation technology for decreasing pathogen bacteria on food and maintain sustainable food security: A review. In Proceedings of the 3rd International Conference of Integrated Intellectual Community, Hanover, Germany, 28–29 April 2018. [Google Scholar]
- Adhikari, A.; Syamaladevi, R.; Killinger, K.; Sablani, S.S. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. Int. J. Food Microbiol. 2015, 210, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Silva, J.L.; Chen, T.C. Effects of UV Irradiation on Selected Pathogens in Peptone Water and on Stainless Steel and Chicken Meat. J. Food Prot. 2002, 65, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Sommers, C.H.; Sites, J.E.; Musgrove, M. Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless-steel surfaces. J. Food Saf. 2010, 30, 470–479. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Rodriguez-Rubio, L.; Fernández, L.; Martínez, B.; Rodríguez, A.; García, P. Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control 2017, 73, 1474–1482. [Google Scholar] [CrossRef]
- FDA. FDA Approval of Listeria-Specific Bacteriophage Preparation on Ready-to-Eat (RTE) Meat and Poultry Products; Food and Drug Administration: Silver Spring, MD, USA, 2006.
- Anany, H.; Chen, W.; Pelton, R.; Griffiths, M.W. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in Meat by Using Phages Immobilized on Modified Cellulose Membranes. Appl. Environ. Microbiol. 2011, 77, 6379–6387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, L.A.I.; Van Tassell, M.L.; Miller, M.J. Antimicrobial behavior of phage endolysin PlyP100 and its synergy with nisin to control Listeria monocytogenes in Queso Fresco. Food Microbiol. 2018, 72, 128–134. [Google Scholar] [CrossRef]
- Cotter, P.; Hill, C.; Ross, R. Bacteriocins: Developing innate immunity for food. Nat. Rev. Genet. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Pinto, A.; Fernandes, M.; Pinto, C.; Albano, H.; Castilho, F.; Teixeira, P.; Gibbs, P. Characterization of anti-Listeria bacteriocins isolated from shellfish: Potential antimicrobials to control non-fermented seafood. Int. J. Food Microbiol. 2009, 129, 50–58. [Google Scholar] [CrossRef]
- Ming, X.; Weber, G.H.; Ayres, J.W.; Sandine, W.E. Bacteriocins Applied to Food Packaging Materials to Inhibit Listeria monocytogenes on Meats. J. Food Sci. 1997, 62, 413–415. [Google Scholar] [CrossRef]
- Vignolo, G.; Palacios, J.; Farías, M.E.; Sesma, F.; Schillinger, U.; Holzapfel, W.; Oliver, G. Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Curr. Microbiol. 2000, 41, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Montiel, R.; Martín-Cabrejas, I.; Langa, S.; El Aouad, N.; Arqués, J.; Reyes, F.; Medina, M. Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food Microbiol. 2014, 44, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Arqués, J.L.; Fernández, J.; Gaya, P.; Nuñez, M.; Rodríguez, E.; Medina, M. Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int. J. Food Microbiol. 2004, 95, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Doyle, M.P.; Zhao, P. Control of Listeria monocytogenes in a Biofilm by Competitive-Exclusion Microorganisms. Appl. Environ. Microbiol. 2004, 70, 3996–4003. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Venkitanarayanan, K. Natural Approaches for Controlling Listeria monocytogenes. In Food Sources, Prevalence and Management Strategies; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014. [Google Scholar]
- Ting, W.E.; Deibel, K.E. Sensitivity of Listeria monocytogenes to spices at two temperatures. J. Food Saf. 1991, 12, 129–137. [Google Scholar] [CrossRef]
- Yousefi, M.; Khorshidian, N.; Hosseini, H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front. Nutr. 2020, 7, 577287. [Google Scholar] [CrossRef]
- Sandasi, M.; Leonard, C.; Viljoen, A. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 2008, 19, 1070–1075. [Google Scholar] [CrossRef]
- Morshdy, A.E.M.A.; Al-Mogbel, M.S.; Mohamed, M.E.M.; Elabbasy, M.T.; Elshafee, A.K.; Hussein, M.A. Bioactivity of Essential Oils for Mitigation of Listeria monocytogenes Isolated from Fresh Retail Chicken Meat. Foods 2021, 10, 3006. [Google Scholar] [CrossRef]
- Pintado, C.M.B.S.; Ferreira, M.A.S.S.; Sousa, I. Properties of Whey Protein-Based Films Containing Organic Acids and Nisin to Control Listeria monocytogenes. J. Food Prot. 2009, 72, 1891–1896. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.Y.; Hanson, R.E.; Johnson, N.R.; Chappa, K.; Berrang, M.E. Combining Organic Acid Treatment with Steam Pasteurization to Eliminate Listeria monocytogenes on Fully Cooked Frankfurters. J. Food Prot. 2006, 69, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Sagong, H.-G.; Lee, S.-Y.; Chang, P.-S.; Heu, S.; Ryu, S.; Choi, Y.-J.; Kang, D.-H. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 2011, 145, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.-G.; Yoo, M.-Y.; Yoon, J.-W.; Marshall, D.L.; Oh, D.-H. Effect of combined ozone and organic acid treatment for control of Escherichia coli O157:H7 and Listeria monocytogenes on enoki mushroom. Food Control 2007, 18, 548–553. [Google Scholar] [CrossRef]
- de Oliveira, C.E.V.; Stamford, T.L.M.; Neto, N.J.G.; de Souza, E.L. Inhibition of Staphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids. Int. J. Food Microbiol. 2010, 137, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, W.; Fang, W.; Li, Y. Inhibitory Effects of Chitosan Coating Combined with Organic Acids on Listeria monocytogenes in Refrigerated Ready-to-Eat Shrimps. J. Food Prot. 2013, 76, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.; Tudela, J.A.; Garrido, Y.; Albolafio, S.; Hernández, N.; Andújar, S.; Allende, A.; Gil, M.I. Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products. Innov. Food Sci. Emerg. Technol. 2020, 66, 102533. [Google Scholar] [CrossRef]
- Al-Sa’ady, A.T.; Nahar, H.S.; Saffah, F.F. Antibacterial activities of chlorine gas and chlorine dioxide gas against some pathogenic bacteria. Eurasian J. Biosci. 2020, 14, 3875–3882. [Google Scholar]
- Sy, K.V.; Murray, M.B.; Harrison, M.D.; Beuchat, L.R. Evaluation of Gaseous Chlorine Dioxide as a Sanitizer for Killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Yeasts and Molds on Fresh and Fresh-Cut Produce. J. Food Prot. 2005, 68, 1176–1187. [Google Scholar] [CrossRef]
- Trinetta, V.; Vaid, R.; Xu, Q.; Linton, R.; Morgan, M. Inactivation of Listeria monocytogenes on ready-to-eat food processing equipment by chlorine dioxide gas. Food Control 2012, 26, 357–362. [Google Scholar] [CrossRef]
- Sun, X.; Bai, J.; Ference, C.; Wang, Z.; Zhang, Y.; Narciso, J.; Zhou, K. Antimicrobial Activity of Controlled-Release Chlorine Dioxide Gas on Fresh Blueberries. J. Food Prot. 2014, 77, 1127–1132. [Google Scholar] [CrossRef]
- Trinetta, V.; Linton, R.; Morgan, M. The application of high-concentration short-time chlorine dioxide treatment for selected specialty crops including Roma tomatoes (Lycopersicon esculentum), cantaloupes (Cucumis melo ssp. melo var. cantaloupensis) and strawberries (Fragaria × ananassa). Food Microbiol. 2013, 34, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Luu, P.; Chhetri, V.S.; Janes, M.E.; King, J.M.; Adhikari, A. Efficacy of gaseous chlorine dioxide in reducing Salmonella enterica, E. coli O157:H7, and Listeria monocytogenes on strawberries and blueberries. LWT 2021, 141, 110906. [Google Scholar] [CrossRef]
Food Product | Time of Persistence | Serotypes | Country | Linked to Outbreak? | References |
---|---|---|---|---|---|
Bulk milk | 7 months | 1/2a | United States | No | [23] |
Cold-smoked salmon | 9 months | 1/2a | France | No | [24] |
Goat cheese | 11 months | 4b | United Kingdom | Yes | [26] |
Pork | 1 year | Several | France | No | [27] |
Salmon, seatrout, and their products | 1 year | 4 | Poland | No | [28] |
Soft cheese | 5 years | ND | United States | Yes | [13] |
Ice cream | 7 years | 1/2b | Finland | No | [29] |
ND, not defined |
Method | Working Principle | Advantages | Disadvantages | References |
---|---|---|---|---|
Molecular methods | ||||
Multiplex PCR | Simultaneously amplifies multiple target DNA sequences and quantifies by detecting fluorescent probes attached to the DNA fragments. | Rapid and high-throughput analysis. | High cost, complex, and difficult in optimization. | [113,114] |
Real-time nucleic acid sequence-based amplification (NASBA) | Amplifies nucleic acid (generally by converting single-stranded RNA into cDNA) under isothermal condition and detects fluorescent probes attached to the target fragment. | Operates without thermal cycling equipment and can detect viable microbial cells. | Complexity in handling RNA. | [99] |
Loop-mediated isothermal amplification (LAMP) | Six primers target eight specific regions of target DNA, producing cauliflower-like structure of DNA bearing multiple loops. Assay performed under isothermal conditions, amplification products detected by agarose gel electrophoresis or fluorescent dye. | Greater yield, lower detection limit, operates without thermal cycling equipment. | Requires complex primer designing system, which can limit specificity. | [100] |
Oligonucleotide-based microarray | A glass slide coated with chemically synthesized oligonucleotide probes detects target DNA or RNA labeled with fluorescent dye. | Simultaneous identification and typing of microbial strain. | Require high amount of target DNA or RNA. | [115] |
Immunological methods | ||||
Immunomagnetic capture | Labelled Immunoglobulin G and aptamer-conjugated magnetic nanoparticles form sandwich-type immuno-complex in the presence of L. monocytogenes, detects fluorescence. | Can detect L. monocytogenes without pre-enrichment. | Requires validation and further development. | [105] |
Lateral flow immunoassay | Sample flows through four sections of immunoassay strip: sample pad, conjugate pad (target binds with antibody labeled by color particles), nitrocellulose pad (captures target and conjugate), and absorbent pad. Detects target as presence or absence of line colors. | Low cost, rapid, and easy to operate. | Low sensitivity and may require pre-treatment of samples. | [116] |
Biosensors | ||||
Optical | Detects change in optical field that results from the binding of analyte with bioreceptor on the surface of transducer. Optical biosensors can be based on reflection, refraction, fluorescence, phosphorescence, resonance, dispersion, and chemiluminescence. | Easy, rapid, and do not need pre-enrichment. | Less stability and high cost. | [107] |
Piezoelectric | Surface of piezoelectric sensor is coated with bioreceptor. When analyte bind with bioreceptor it changes the mass on the crystal surface, resulting a change in resonance oscillation frequency. | Sensor can be reused. | Suitable for analytes with high molecular weight. | [117] |
Electrochemical | Classified based on signal measured: ampere, potential, and impedance. Bio-electrodes are used to convert analyte-bioreceptor interaction into measurable electrical signal. | Sensitive, rapid, and cost effective. | Interference due to sample matrix. | [118] |
Cell-based | Immobilized cells are used to detect analytes. Sensors or transducers are used to detect interaction between cells and analytes in terms of response time, physiological parameters, extracellular and intracellular microenvironment. | Sensitive, selective, and rapid. | Complexity in immobilizing living cells on the surface of transducers. | [119] |
Spectroscopic methods | ||||
Near infrared spectroscopy (NIR) | Analyzes the absorption of C-H, N-H, and O-H molecular bonds of analyte in 750–2500 nm wavelength range. | Low cost and non-destructive. | Temperature may damage samples. Interference due to water content in samples. | [120] |
Raman spectroscopy | Photons of monochromatic light are absorbed and re-emitted by the sample, causing a change in the frequency of photons, called as Raman effect. | Non-destructive and high specificity. | Complex sample preparation. | [121] |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) | Analyte mixed with matrix (energy absorbent organic compound) is ionized with laser beam generating protonated ions which move through a vacuum by electric field and reach a detector. The time-of-flight is detected, and mass-to-charge ratio (m/z) is measured. | Rapid, sensitive, and economical. | Limited database, low reproducibility, and limited ability to discriminate between species. | [122] |
Hyperspectral imaging | Integration of conventional imaging and spectroscopy to obtain spectral and spatial information about the sample. | Non-destructive. | High limit of detection. | [123] |
Microfluidic systems | ||||
Microfluidics lab-on-a-chip | Microchip with integrated microprocessor, pumps, valves, thermocycler, fluorescence detection module, to purify L. monocytogenes cells, and detect using real time-PCR. | Fully automated purification and detection method. | Lower sensitivity. | [124] |
Phage-based methods | ||||
Phage protein | Listeria cells incubated with GFP-tagged phage protein and fluorescence measured after removal of unbound protein. | Rapid and precise glycotype determination. | Requires validation and further development. | [125] |
Phage amplification | Phages replicate inside viable target cells and lyse the cells to release progeny cells along with host DNA and intracellular components which can be detected using qPCR, ELISA, or enzyme assays. | Rapid and detects viable cells. | Complex and low throughput. | [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, P.; Adhikari, A. Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022, 11, 1760. https://doi.org/10.3390/foods11121760
Gupta P, Adhikari A. Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods. 2022; 11(12):1760. https://doi.org/10.3390/foods11121760
Chicago/Turabian StyleGupta, Priyanka, and Achyut Adhikari. 2022. "Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities" Foods 11, no. 12: 1760. https://doi.org/10.3390/foods11121760
APA StyleGupta, P., & Adhikari, A. (2022). Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods, 11(12), 1760. https://doi.org/10.3390/foods11121760