Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Microwave System
2.3. Preparation of Wine Samples and Storage
2.4. Colour Analysis
2.5. Determination of Total Phenolic Compounds (TPC)
2.6. Determination of Total Monomeric Anthocyanins (TMA)
2.7. Determination of Main Phenolic Compounds
2.8. Statistical Analysis
3. Results and Discussion
3.1. Selection of Power and Temperature of Microwave
3.2. Visible Spectrum Analysis of Microwave Treatment Time and Storage Time on Wine
3.3. Browning Index, Wine Colour and Colour Intensity
3.4. CIELab Coordinates
3.5. Analysis of TPC and TMA in Red Wine
3.6. Identification and Quantification of Phenolic Compounds
3.7. Changes of the Phenolic Compounds during Storage
3.8. Principle Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.A.; Wang, T.T. Effect of ultrasound irradiation on the evolution of colour properties and major phenolic compounds in wine during storage. Food Chem. 2017, 234, 372–380. [Google Scholar] [CrossRef] [PubMed]
- García Martín, J.F.; Sun, D.W. Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of-the-art research. Trends Food Sci. Techol. 2013, 33, 40–53. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Avizcuri, J.M.; Ferreira, V.; Fernández-Zurbano, P. Sensory changes during bottle storage of Spanish red wines under different initial oxygen doses. Food Res. Int. 2014, 66, 235–246. [Google Scholar] [CrossRef]
- Barrio-Galán, R.D.; Pérez-Magariño, S.; Ortega-Heras, M. Techniques for improving or replacing ageing on lees of oak aged red wines: The effects on polysaccharides and the phenolic composition. Food Chem. 2011, 127, 528–540. [Google Scholar] [CrossRef]
- Tao, Y.; García, J.F.; Sun, D.W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Guo, Q.S.; Sun, D.W.; Cheng, J.H.; Han, Z. Microwave processing techniques and their recent applications in the food industry. Trends Food Sci. Techol. 2017, 67, 236–247. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Dipalmo, T.; Rizzello, C.G.; Corbo, F.; Crupi, P. Emerging technology to develop novel red winemaking practices: An overview. Innov. Food Sci. Emerg. 2016, 38, 41–56. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Qiao, L.; Yang, F.J.; Gu, H.Y.; Yang, L. Brnsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. Int. J. Biol. Macromol. 2017, 94, 309–318. [Google Scholar] [CrossRef]
- Yuan, J.F.; Chen, Z.Y.; Wang, D.H.; Gong, M.G.; Qiu, Z.J. Microwave-induced free radicals production in red wine and model wine by electron paramagnetic resonance spin trapping. J. Food Process. Preserv. 2021, 45, e15407. [Google Scholar] [CrossRef]
- Carew, A.L.; Smith, P.; Close, D.C.; Curtin, C.; Dambergs, R.G. Yeast effects on pinot noir wine phenolics, color, and tannin composition. J. Agric. Food Chem. 2013, 61, 9892–9898. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Liu, C.H.; Huo, J.W.; Li, C. Effect of the microwave irradiated treatment on the wine sensory properties. J. Food Eng. 2011, 7, 71–78. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Pomposo-Medina, M.; Díaz-Romero, C.; Darias-Martín, J. Copigmentation, colour and antioxidant activity of single-cultivar red wines. Eur. Food Res. Technol. 2014, 239, 13–19. [Google Scholar] [CrossRef]
- Castillo-Sánchez, J.X.; García-Falcón, M.S.; Garrido, J.; Martínez-Carballo, E.; Martins-Dias, L.R.; Mejuto, X.C. Phenolic compounds and colour stability of Vinhão wines: Influence of wine-making protocol and fining agents. Food Chem. 2008, 106, 18–26. [Google Scholar] [CrossRef]
- Li, S.Y.; Duan, C.Q. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1840–1867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, X.Q.; Yang, B.; Li, N.N.; Niu, J.M.; Shi, X.; Han, S.Y. Copigmentation evidence of phenolic compound: The effect of caffeic and rosmarinic acids addition on the chromatic quality and phenolic composition of Cabernet Sauvignon red wine from the Hexi Corridor region (China). J. Food Compos. Anal. 2021, 102, 104037. [Google Scholar] [CrossRef]
- Yuan, J.F.; Wang, T.T.; Chen, Z.Y.; Wang, D.H.; Gong, M.G.; Li, P.Y. Microwave irradiation: Impacts on physicochemical properties of red wine. CyTA-J. Food 2020, 18, 281–290. [Google Scholar] [CrossRef]
- Yuan, J.F.; Wang, T.T.; Wang, D.H.; Zhou, G.H.; Zou, G.X.; Wang, Y.; Gong, M.G.; Zhang, B. Effect of microwave on changes of gallic acid and resveratrol in a model extraction solution. Food Bioprocess Technol. 2020, 13, 1246–1254. [Google Scholar] [CrossRef]
- Yuan, J.F.; Hou, Z.C.; Wang, D.H.; Qiu, Z.J.; Gong, M.G.; Sun, J.R. Microwave irradiation: Effect on activities and properties of polyphenol oxidase in grape maceration stage. Food Biosci. 2021, 44, 101378. [Google Scholar] [CrossRef]
- Sobol, Z.; Jakubowski, T.; Nawara, P. Correction: The effect of UV-C stimulation of potato tubers and soaking of potato strips in water on color and analyzed color by CIE L*a*b*. Sustainability 2020, 12, 3487. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.Y.; Zhang, Q.A.; Zhang, B.S.; Zhang, Y.F.; Li, E.C. Effects of ultrasound on the formation of oxidative pigments in a model red wine solution containing glutathione. J. Food Compos. Anal. 2021, 103, 104092. [Google Scholar] [CrossRef]
- Gordillo, B.; Rivero, F.J.; Jara-Palacios, M.J.; González-Miret, M.L.; Heredia, F.J. Impact of a double post-fermentative maceration with ripe and overripe seeds on the phenolic composition and color stability of Syrah red wines from warm climate. Food Chem. 2021, 346, 128919. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Pereira, V.; Pereira, A.C.; Pinto, J.L.; Marques, J.C. Evaluation of wine colour under accelerated and oak-cask ageing using CIELab and chemometric approaches. Food Bioprocess Technol. 2015, 8, 2309–2318. [Google Scholar] [CrossRef]
- Sant’ Anna, V.; Gurak, P.D.; Ferreira Marczak, L.D.; Tessaro, I.C. Tracking bioactive compounds with colour changes in foods-A review. Dyes Pigments 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Celotti, E.; Stante, S.; Ferraretto, P.; Román, T.; Nicolini, G.; Natolino, A. High power ultrasound treatments of red young wines: Effect on anthocyanins and phenolic stability indices. Foods 2020, 9, 1344. [Google Scholar] [CrossRef]
- Es-Safi, N.E.; Cheynier, V.; Moutounet, M. Effect of copper on oxidation of (+)-catechin in a model solution system. Int. J. Food Sci. Techol. 2003, 38, 153–163. [Google Scholar] [CrossRef]
- Pati, S.; Crupi, P.; Savastano, M.L.; Benucci, I.; Esti, M. Evolution of phenolic and volatile compounds during bottle storage of a white wine without added sulfite. J. Sci. Food Agric. 2019, 100, 775–784. [Google Scholar] [CrossRef]
- Chinnici, F.; Sonni, F.; Natali, N.; Galassi, S.; Riponi, C. Colour features and pigment composition of Italian carbonic macerated red wines. Food Chem. 2009, 113, 651–657. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.; Coppola, M.; Moio, L. Aging of Aglianico and Sangiovese wine on mannoproteins: Effect on astringency and colour. LWT 2019, 105, 233–241. [Google Scholar] [CrossRef]
- Sun, J.X.; Cao, X.M.; Bai, W.B.; Liao, X.J.; Hu, X.S. Comparative analyses of copigmentation of cyanidin 3-glucoside and cyanidin 3-sophoroside from red raspberry fruits. Food Chem. 2010, 120, 1131–1137. [Google Scholar] [CrossRef]
- Zhang, B.; He, F.; Zhou, P.P.; Liu, Y.; Duan, C.Q. The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio. Food Chem. 2016, 199, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Romina Castellanos, E.; Jofre, V.P.; Fanzone, M.L.; Assof, M.V.; Catania, A.A.; Diaz-Sambueza, A.M.; Heredia, F.J.; Mercado, L.A. Effect of different closure types and storage temperatures on the color and sensory characteristics development of Argentinian Torrontes Riojano white wines aged in bottles. Food Control. 2021, 130, 108343. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Chmielewska, J. Effect of different pre-treatment maceration techniques on the content of phenolic compounds and color of Dornfelder wines elaborated in cold climate. Food Chem. 2021, 339, 127888. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida de Esteban, M.L.; Ubeda, C.; Heredia, F.J.; Catania, A.A.; Assof, M.V.; Fanzone, M.L.; Jofre, V.P. Impact of closure type and storage temperature on chemical and sensory composition of Malbec wines (Mendoza, Argentina) during aging in bottle. Food Res. Int. 2019, 125, 108553. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Delgado-González, M.J.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. LWT 2021, 140, 110706. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Luo, Y.H.; Li, Y.; Liu, X.; Wu, J.H.; Liao, X.J.; Chen, F. The identification of degradation products and degradation pathway of malvidin-3-glucoside and malvidin-3, 5-diglucoside under microwave treatment. Food Chem. 2013, 141, 3260–3267. [Google Scholar] [CrossRef] [PubMed]
- Puértolas, E.; Saldaña, G.; Condón, S.; Álvarez, I.; Raso, J. Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chem. 2010, 119, 1063–1070. [Google Scholar] [CrossRef]
- Es-Safi, N.E.; Le Guernevé, C.; Fulcrand, H.; Cheynier, V.; Moutounet, M. New polyphenolic compounds with xanthylium skeletons formed through reaction between (+)-catechin and glyoxylic acid. J. Agric. Food Chem. 1999, 47, 5211–5217. [Google Scholar] [CrossRef]
- Gutiérrez, I.H.; Lorenzo, E.S.P.; Espinosa, A.V. Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem. 2005, 92, 269–283. [Google Scholar] [CrossRef]
- Kanha, N.; Surawang, S.; Pitchakarn, P.; Regenstein, J.M.; Laokuldilok, T. Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Biosci. 2019, 30, 100419. [Google Scholar] [CrossRef]
- Li, X.S.; Zhang, L.; Peng, Z.Y.; Zhao, Y.Q.; Wu, K.Y.; Zhou, N.; Yan, Y.; Ramaswamy, H.S.; Sun, J.X.; Bai, W.B. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its in-vitro anti-oxidant capacity. Food Chem. 2020, 333, 127455. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Zhao, P.R.; Ling, M.Q.; Qi, M.Y.; García-Estévez, I.; Escribano-Bailón, M.T.; Chen, X.J.; Shi, Y.; Duan, C.Q. Blending strategies for wine color modification I: Color improvement by blending wines of different phenolic profiles testified under extreme oxygen exposures. Food Res. Int. 2020, 130, 108885. [Google Scholar] [CrossRef] [PubMed]
Parameters | Treatment Time | Storing Time(Days) | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | ||
BI (abs 420) | M0 | 0.321 ± 0.005 A,a | 0.359 ± 0.004 A,b | 0.382 ± 0.004 A,c | 0.403 ± 0.007 A,d | 0.442 ± 0.006 A,e | 0.481 ± 0.007 A,f | 0.514 ± 0.005 A,g | 0.546 ± 0.006 A,h |
Mt3 | 0.325 ± 0.005 A,a | 0.362 ± 0.005 A,b | 0.389 ± 0.005 A,c | 0.411 ± 0.006 A,B,d | 0.458 ± 0.008 B,e | 0.486 ± 0.005 A,f | 0.526 ± 0.006 B,g | 0.567 ± 0.006 B,h | |
Mt6 | 0.339 ± 0.004 B,a | 0.367 ± 0.006 A,b | 0.399 ± 0.004 B,c | 0.415 ± 0.004 B,d | 0.466 ± 0.005 B,e | 0.491 ± 0.004 A,f | 0.534 ± 0.005 B,g | 0.585 ± 0.005 C,h | |
WC (abs 520) | M0 | 0.280 ± 0.008 A,a | 0.314 ± 0.005 A,b | 0.339 ± 0.004 A,c | 0.344 ± 0.005 A,c,d | 0.355 ± 0.005 A,d,e | 0.365 ± 0.008 A,e | 0.390 ± 0.110 A,f | 0.412 ± 0.005 A,g |
Mt3 | 0.284 ± 0.005 A,B,a | 0.317 ± 0.006 A,b | 0.336 ± 0.006 A,c | 0.348 ± 0.007 A,d | 0.360 ± 0.004 A,d | 0.378 ± 0.007 A,B,e | 0.401 ± 0.007 A,B,f | 0.428 ± 0.006 B,g | |
Mt6 | 0.294 ± 0.005 B,a | 0.319 ± 0.005 A,b | 0.337 ± 0.007 A,c | 0.344 ± 0.006 A,c | 0.362 ± 0.007 A,d | 0.381 ± 0.006 B,e | 0.408 ± 0.006 B,f | 0.441 ± 0.007 C,g | |
CI (sum of 420, 520, 620 abs) | M0 | 0.663 ± 0.007 A,a | 0.749 ± 0.007 A,b | 0.799 ± 0.007 A,c | 0.822 ± 0.009 A,d | 0.882 ± 0.006 A,e | 0.950 ± 0.008 A,f | 1.015 ± 0.008 A,g | 1.071 ± 0.010 A,h |
Mt3 | 0.672 ± 0.006 A,a | 0.756 ± 0.009 A,b | 0.801 ± 0.006 A,c | 0.839 ± 0.006 B,d | 0.910 ± 0.010 B,e | 0.959 ± 0.005 A,B,f | 1.039 ± 0.005 B,g | 1.130 ± 0.006 B,h | |
Mt6 | 0.698 ± 0.010 B,a | 0.760 ± 0.006 A,b | 0.815 ± 0.010 A,c | 0.841 ± 0.004 B,d | 0.912 ± 0.008 B,e | 0.965 ± 0.007 B,f | 1.046 ± 0.010 B,g | 1.149 ± 0.009 C,h | |
L* (lightness) | M0 | 27.79 ± 0.13 A,h | 23.87 ± 0.22 A,g | 22.68 ± 0.18 A,f | 21.95 ± 0.11 A,e | 20.05 ± 0.10 A,d | 18.55 ± 0.13 A,c | 15.65 ± 0.15 A,b | 6.58 ± 0.17 A,a |
Mt3 | 32.55 ± 0.14 C,g | 25.10 ± 0.16 B,f | 22.74 ± 0.13 A,e | 22.02 ± 0.18 A,d | 21.02 ± 0.12 C,c | 20.91 ± 0.20 C,c | 18.33 ± 0.10 C,b | 15.33 ± 0.15 C,a | |
Mt6 | 29.12 ± 0.17 B,g | 24.12 ± 0.14 A,f | 22.72 ± 0.21 A,e | 21.90 ± 0.16 A,d | 20.41 ± 0.19 B,c | 20.31 ± 0.10 B,c | 17.84 ± 0.18 B,b | 9.04 ± 0.19 B,a | |
a* (green/red component) | M0 | 52.43 ± 0.23 C,g | 52.41 ± 0.17 A,g | 51.82 ± 0.27 A,f | 51.12 ± 0.20 B,e | 50.15 ± 0.26 A,d | 44.89 ± 0.16 B,c | 40.65 ± 0.18 A,b | 31.45 ± 0.15 A,a |
Mt3 | 41.62 ± 0.18 A,a | 53.80 ± 0.22 B,f | 52.52 ± 0.19 B,e | 52.77 ± 0.18 C,e | 51.41 ± 0.23 B,d | 46.64 ± 0.20 C,c | 43.51 ± 0.25 C,b | 41.31 ± 0.21 C,a | |
Mt6 | 49.40 ± 0.26 B,d | 52.50 ± 0.16 A,h | 51.70 ± 0.15 A,g | 50.62 ± 0.23 A,f | 50.08 ± 0.17 A,e | 44.22 ± 0.25 A,c | 41.67 ± 0.16 B,b | 33.30 ± 0.21 B,a | |
b* (yellow/blue component) | M0 | 20.35 ± 0.13 C,g | 15.56 ± 0.21 A,f | 16.23 ± 0.20 B,f | 14.73 ± 0.22 A,e | 12.97 ± 0.25 A,d | 9.18 ± 0.19 A,c | 7.63 ± 0.08 A,b | 5.33 ± 0.13 A,a |
Mt3 | 13.68 ± 0.17 A,c | 15.41 ± 0.17 A,d | 16.67 ± 0.14 C,e | 15.32 ± 0.085 B,d | 13.64 ± 0.12 B,c | 11.01 ± 0.16 C,a | 11.26 ± 0.11 B,a,b | 11.47 ± 0.16 C,b | |
Mt6 | 18.35 ± 0.14 B,g | 15.68 ± 0.11 A,f | 15.02 ± 0.12 A,e | 14.99 ± 0.14 A,e | 13.13 ± 0.15 A,d | 10.69 ± 0.095 B,b | 11.09 ± 0.17 B,c | 6.51 ± 0.125 B,a | |
C*ab (chroma) | M0 | 56.24 ± 0.26 C,g | 54.67 ± 0.22 A,f | 54.30 ± 0.20 B,f | 53.20 ± 0.25 A,e | 51.80 ± 0.31 A,d | 45.82 ± 0.19 A,c | 41.36 ± 0.19 A,b | 31.90 ± 0.17 A,a |
Mt3 | 43.81 ± 0.22 A,b | 55.97 ± 0.16 B,g | 55.10 ± 0.14 C,f | 54.95 ± 0.20 B,f | 53.19 ± 0.25 B,e | 47.92 ± 0.23 B,d | 44.94 ± 0.27 C,c | 42.88 ± 0.24 C,a | |
Mt6 | 52.70 ± 0.29 B,e | 54.79 ± 0.12 A,g | 53.84 ± 0.11 A,f | 52.80 ± 0.26 A,e | 51.77 ± 0.20 A,d | 45.49 ± 0.26 A,c | 43.12 ± 0.20 B,b | 33.93 ± 0.23 B,a | |
hab (hue) | M0 | 21.21° ± 0.05 C,h | 16.54° ± 0.16 A,f | 17.40° ± 0.29 B,g | 16.07° ± 0.16 A,e | 14.50° ± 0.19 A,d | 11.55° ± 0.19 A,c | 10.65° ± 0.06 A,b | 9.61° ± 0.20 A,a |
Mt3 | 18.19° ± 0.13 A,g | 15.98° ± 0.24 A,e | 17.61° ± 0.19 B,f | 16.19° ± 0.03 A,e | 14.84° ± 0.06 B,c | 13.28° ± 0.11 B,b | 14.52° ± 0.05 B,a | 15.52° ± 0.13 C,d | |
Mt6 | 20.37° ± 0.03 B,f | 16.65° ± 0.16 B,e | 16.21° ± 0.16 A,d | 16.51° ± 0.08 B,e | 14.68° ± 0.11 A,B,c | 13.58° ± 0.03 C,b | 14.90° ± 0.16 C,c | 11.05° ± 0.14 B,a | |
ΔE*ab | Mt3 | 13.56 ± 0.56 e | 1.92 ± 0.065 b | 0.96 ± 0.20 a | 1.78 ± 0.46 b | 1.79 ± 0.36 b | 3.50 ± 0.15 c | 5.35 ± 0.23 d | 14.55 ± 0.31 f |
Mt6 | 3.87 ± 0.045 f | 0.38 ± 0.095 a | 1.26 ± 0.061 c | 0.61 ± 0.053 b | 0.42 ± 0.10 a | 2.42 ± 0.06 d | 4.22 ± 0.053 g | 3.30 ± 0.025 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.-F.; Lai, Y.-T.; Chen, Z.-Y.; Song, H.-X.; Zhang, J.; Wang, D.-H.; Gong, M.-G.; Sun, J.-R. Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage. Foods 2022, 11, 1778. https://doi.org/10.3390/foods11121778
Yuan J-F, Lai Y-T, Chen Z-Y, Song H-X, Zhang J, Wang D-H, Gong M-G, Sun J-R. Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage. Foods. 2022; 11(12):1778. https://doi.org/10.3390/foods11121778
Chicago/Turabian StyleYuan, Jiang-Feng, Yu-Ting Lai, Zhuo-Yao Chen, Hui-Xia Song, Jing Zhang, Da-Hong Wang, Ming-Gui Gong, and Jian-Rui Sun. 2022. "Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage" Foods 11, no. 12: 1778. https://doi.org/10.3390/foods11121778
APA StyleYuan, J. -F., Lai, Y. -T., Chen, Z. -Y., Song, H. -X., Zhang, J., Wang, D. -H., Gong, M. -G., & Sun, J. -R. (2022). Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage. Foods, 11(12), 1778. https://doi.org/10.3390/foods11121778