Instrumental Texture Differentiation of Channel (Ictalurus punctatus) and Hybrid (Channel × Blue, Ictalurus furcatus) Catfish Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Texture Profile Analysis (TPA)
2.3. Proximate Analysis
2.4. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyldig, G.; Nielsen, D. A review of sensory and instrumental methods used to evaluate the texture of fish muscle. J. Texture Stud. 2001, 32, 219–242. [Google Scholar] [CrossRef]
- Kiessling, A.; Ruohonen, K.; Bjornevic, M. Muscle fiber growth and quality in fish. Arch. Tierz. Dummerstorf 2006, 49, 137–146. [Google Scholar]
- Love, R.M. Texture and the fragility of fish muscle cells. Research at the Torry Research Station. J. Texture Stud. 1983, 5, 351–358. [Google Scholar] [CrossRef]
- Barroso, M.; Careche, M.; Borderias, A.J. Quality control of frozen fish using rheological techniques. Trends Food Sci. Technol. 1998, 9, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.S. Quality of farmed salmonids with emphasis on proximate composition, yield and sensory characteristics. Aquacult. Res. 2001, 32, 767–786. [Google Scholar] [CrossRef]
- Skjervold, P.O.; Røra, A.M.B.; Fjæra, S.O.; Vegusdal, A.; Vorre, A.; Einen, O. Effects of pre-, in-, or post-rigor filleting of live chilled Atlantic salmon. Aquaculture 2001, 194, 315–326. [Google Scholar] [CrossRef]
- Engle, C.R.; Hanson, T.; Kumar, G. Economic history of U.S. catfish farming: Lessons for growth and development of aquaculture. Aquac. Econ. Manag. 2021, 26, 1–35. [Google Scholar] [CrossRef]
- Kumar, G.; Engle, C.; Hegde, S.; van Senten, J. Economics of U.S. catfish farming practices: Profitability, economies of size, and liquidity. J. World Aquacult. Soc. 2020, 51, 829–846. [Google Scholar] [CrossRef]
- Dunham, R.; Masser, M. Production of Hybrid Catfish. SRAC Publication No. 190, June 2012 Revision, 1–7. Available online: https://aquaculture.ca.uky.edu/sites/aquaculture.ca.uky.edu/files/srac_0190_production_of_hybrid_catfish_0.pdf (accessed on 18 May 2022).
- Venugopalan, A.; Griffin, M.J.; Wise, D.J.; White, D.; Ford, L.; López-Porras, A.; Camus, A.C.; Hanson, L.A. Virulence and immunogenicity of blue catfish alloherpesvirus in channel, blue and blue × channel hybrid catfish. J. Fish Dis. 2021, 44, 1299–1409. [Google Scholar] [CrossRef] [PubMed]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Dunham, R.A.; Brummett, R.E.; Ella, M.O.; Smitherman, R.O. Genotype-environment interactions for growth of blue, channel and hybrid catfish in ponds and cages at varying densities. Aquaculture 1990, 85, 143–151. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Pysiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.A. Bioenergetics modelling approaches to evaluation of stress in fish. Am. Fish. Soc. Symp. 1990, 8, 80–92. [Google Scholar]
- Adineh, H.; Naderi, M.; Nazer, A.; Yousefi, M.; Ahmadifar, E. Interactive effects of stocking density and dietary supplementation with Nano selenium and garlic extract on growth, feed utilization, digestive enzymes, stress responses, and antioxidant capacity of grass carp, Ctenopharyngodon Idella. J. World Aquacult. Soc. 2021, 52, 789–804. [Google Scholar] [CrossRef]
- Ciaramella, M.A.; Nair, M.N.; Suman, S.P.; Allen, P.J.; Schilling, M.W. Differential abundance of muscle proteome in cultured channel catfish (Ictalurus punctatus) subjected to ante-mortem stressors and its impact on fillet quality. Comp. Biochem. Physiol. Part D 2016, 20, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hatae, K.; Yoshimatsu, F.; Matsumoto, J.J. Discriminative characterization of different texture profiles of various cooked fish muscles. J. Food Sci. 1984, 49, 721–726. [Google Scholar] [CrossRef]
- Hatae, K.; Yoshimatsu, F.; Matsumoto, J.J. Role of muscle fibers in contributing firmness of cooked fish. J. Food Sci. 1990, 55, 693–696. [Google Scholar] [CrossRef]
- Hurling, R.; Rodell, J.B.; Hunt, H.D. Fiber diameter and fish texture. J. Texture Stud. 1996, 27, 679–685. [Google Scholar] [CrossRef]
- Periago, M.J.; Ayala, M.D.; Lopez-Albors, O.; Abdel, I.; Martinez, C.; Garcia-Alcazar, A.; Ros, G.; Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Pond Mixing. SRAC Publication No. 4602. 2003. pp. 1–6. Available online: https://srac.tamu.edu/fact-sheets/serve/168 (accessed on 30 October 2021).
- Tucker, C. Pond Aeration. SRAC Publication No. 3700. 2005. pp. 1–8. Available online: https://srac.tamu.edu/fact-sheets/serve/292 (accessed on 30 October 2021).
- Kim, M.K.; Lovell, R.T. Effect of overwinter feeding regimen on body weight, body composition and resistance to Edwardsiella ictaluri in channel catfish, Ictarulus punctatus. Aquaculture 1995, 134, 237–246. [Google Scholar] [CrossRef]
- Goswami, T.K. Cryogenic fish freezing: Science, technology & economics. In Proceedings of the 4th International Conference on Mechanical Engineering, Dhaka, Bangladesh, 26–28 December 2001; pp. 179–184. Available online: https://me.buet.ac.bd/icme/icme2001/cdfiles/Papers/Thermal/32_final_TE-09(179-184).pdf (accessed on 18 May 2022).
- Makri, M.; Melvin, M.; Hotos, G.; Doubi, X. The biochemical and sensory properties of gilthead sea bream (Sparus aurata) frozen at different characteristic freezing times. J. Food Qual. 2007, 30, 970–992. [Google Scholar] [CrossRef]
- Bland, J.M.; Bett-Garber, K.L.; Li, C.H.; Brashear, S.S.; Lea, J.M.; Bechtel, P.J. Comparison of sensory and instrumental methods for the analysis of texture of cooked individually quick frozen and fresh-frozen catfish fillets. Food Sci. Nutr. 2018, 6, 1692–1705. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC, 15th ed.; Methods 950.46 and 923.03; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Milliken, G.A.; Johnson, D.E. Analysis of Messy Data, Volume 1: Designed Experiments, 2nd ed.; Taylor and Francis Group, LLC: Boca Raton, FL, USA; New York, NY, USA, 2009. [Google Scholar]
- Shaw, R.G.; Mitchell-Olds, T. ANOVA for unbalanced data: An overview. Ecology 1993, 74, 1638–1645. [Google Scholar] [CrossRef]
- Bernardo, Y.A.d.; do Rosario, D.K.A.; Monteiro, M.L.G.; Mano, S.B.; Delgado, I.F.; Conte-Junior, C.A. Texture profile analysis: How parameter settings affect the instrumental texture characteristics of fish fillets stored under refrigeration? Food Anal. Methods 2022, 15, 144–156. [Google Scholar] [CrossRef]
- Texture Technologies. Overview of Texture Profile Analysis. Available online: http://www.texturetechnologies.com/resources/texture-profile-analysis (accessed on 18 May 2022).
- Bosworth, B.G.; Wolters, W.R.; Silva, J.L.; Chamul, R.S.; Park, S. Comparison of production, meat yield, and meat quality traits of NWAC103 line channel catfish, Norris line channel catfish, and female channel catfish x male blue catfish F1 hybrids. N. Am. J. Aquacult. 2004, 66, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A. Analyses of Texture and Sensory Traits, Carcass Traits, and Fillet Color in Different Genetic Types of Farmed Catfish: Genetic Approaches to Enhance Catfish Fillets. Master’s Thesis, Auburn University, Auburn, AL, USA, 2021. Available online: https://etd.auburn.edu//handle/10415/7659 (accessed on 18 May 2022).
- Wiles, J.L.; Green, B.W.; Bryant, R. Texture profile analysis and composition of minced catfish product. J. Texture Stud. 2004, 35, 325–337. [Google Scholar] [CrossRef]
- Park, S. Raw and Baked Aquacultured Catfish Quality Parameters. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 1998; pp. 1–81. [Google Scholar]
- Kin, S.; Schilling, M.W.; Smith, B.S.; Silva, J.L.; Jackson, V.; Kim, T.J. Phosphate type affects the quality of injected catfish fillets. J. Food Sci. 2010, 75, S74–S80. [Google Scholar] [CrossRef] [PubMed]
- Truxillo, C.; Hamer, R.; Huber, M.; Rothenberg, L.; Tao, J. Multivariate Statistical Methods: Practical Research Applications Course Notes; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Nettleton, J.A.; Allen, W.H.; Klatt, L.V.; Ratnayake, W.M.N.; Ackman, R.G. Nutrients and chemical residues in one-to two-pound Mississippi farm-raised channel catfish (Ictalurus punctatus). J. Food Sci. 1990, 55, 954–958. [Google Scholar] [CrossRef]
- Haque, M.M. Proximate Composition, Retained Water, and Bacterial Load for Two Sizes of Hybrid Catfish (Ictalurus furcatus × Ictalurus punctatus) Fillets at Different Process Steps. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 2018; pp. 1–89. Available online: https://scholarsjunction.msstate.edu/td/3675 (accessed on 18 May 2022).
- Dunajski, E. Texture of fish muscle. J. Texture Stud. 1980, 10, 301–318. [Google Scholar] [CrossRef]
- Prasad Thakur, D.; Morioka, K.; Itoh, Y.; Obatake, A. Lipid composition and deposition of cultured yellowtail Seriola quinqueradiata muscle at different anatomical locations in relation to meat texture. Fish. Sci. 2003, 69, 487–494. [Google Scholar] [CrossRef] [Green Version]
Attribute | Formula a | Description |
---|---|---|
Thickness | 2 × Distance 1 | Fillet thickness—twice the 50% compression distance. |
Firmness | Force at anchor 2 | Maximum force of a 50% compression. |
Toughness | Area 1/5 | 1st peak compression work, divided by 5. |
Cohesiveness | Area 4/Area 1 | 2nd compression work relative to 1st compression work. |
Springiness | Distance 2/Distance 1 × 100 | Relative recovery from 1st compression. |
Chewiness | Firmness × Cohesiveness × Springiness | Work required to chew sample to a state ready for swallowing. |
Resilience | Area 2/Area 1 × 100 | Decompression work relative to compression work. |
Adhesiveness | Area 3 | Negative work at end of decompression. |
Firmness (g) | Toughness (g × s) | Cohesiveness | Adhesiveness (g × s) | Chewiness (g) | Resilience (%) | Springiness (%) | |
---|---|---|---|---|---|---|---|
Channel | 249.6 ± 35.3 | 187.6 ± 40.6 | 0.48 ± 0.03 | −1.1 ± 0.3 | 85.8 ± 15.3 | 21.5 ± 1.8 | 71.0 ± 3.1 |
Hybrid | 175.2 ± 21.9 | 124.6 ± 24.1 | 0.46 ± 0.03 | −1.1 ± 0.3 | 56.6 ± 10.2 | 20.6 ± 1.8 | 68.4 ± 3.9 |
Fresh (n = 30) | Frozen (n = 40) | IQF (n = 49) | ||||
---|---|---|---|---|---|---|
Channel | Hybrid | Channel | Hybrid | Channel | Hybrid | |
Firmness (g) | 274.6 ± 35.5 | 167.22 ± 18.7 | 248.3 ± 30.0 | 183.1 ± 24.2 | 235.3 ± 31.0 | 173.6 ± 20.0 |
Toughness (g × s) | 216.3 ± 36.8 | 118.2 ± 19.6 | 178.8 ± 35.4 | 131.0 ± 32.1 | 177.2 ± 39.1 | 123.2 ± 17.3 |
Cohesiveness | 0.47 ± 0.03 | 0.46 ± 0.03 | 0.47 ± 0.03 | 0.44 ± 0.02 | 0.49 ± 0.02 | 0.48 ± 0.02 |
Adhesiveness (g × s) | −1.2 ± 0.3 | −1.4 ± 0.3 | −1.1 ± 0.3 | −1.1 ± 0.3 | −1.0 ± 0.2 | −0.9 ± 0.3 |
Chewiness (g) | 93.4 ± 17.8 | 51.7 ± 8.4 | 84.7 ± 14.4 | 56.9 ± 10.3 | 81.9 ± 12.8 | 59.3 ± 10.2 |
Resilience (%) | 22.5 ± 1.9 | 20.1 ± 1.8 | 21.3 ± 1.7 | 19.1 ± 1.1 | 21.0 ± 1.7 | 21.5 ± 1.9 |
Springiness (%) | 71.1 ± 2.6 | 65.9 ± 2.3 | 71.5 ± 3.14 | 69.0 ± 4.2 | 70.6 ± 3.1 | 69.4 ± 3.8 |
Firmness (g) | Toughness (g × s) | Cohesiveness | Adhesiveness (g × s) | Chewiness (g) | Resilience (%) | Springiness (%) | |
---|---|---|---|---|---|---|---|
Fresh | 220.9 ± 61.0 | 167.2 ± 57.5 | 0.46 ± 0.03 b | −1.3 ± 0.32 a | 72.5 ± 25.2 | 21.3 ± 2.2 a,b | 68.5 ± 3.6 b |
Frozen | 215.7 ± 42.6 | 154.9 ± 41.3 | 0.46 ± 0.03 b | −1.1 ± 0.28 b | 70.8 ± 18.7 | 20.6 ± 1.6 b | 70.3 ± 4.0 a |
IQF | 204.5 ± 40.4 | 150.2 ± 40.5 | 0.48 ± 0.02 a | −1.0 ± 0.25 c | 70.6 ± 16.2 | 21.3 ± 1.8 a | 70.0 ± 3.5 a |
TPA Attribute | Can1 |
---|---|
Firmness | 0.95 |
Toughness | 0.71 |
Cohesiveness | 0.18 |
Adhesiveness | −0.01 |
Chewiness | 0.84 |
Resilience | 0.19 |
Springiness | 0.28 |
Hit Rate 1 | |
---|---|
Overall 2 | 0.912 |
Fresh | 0.983 |
Frozen | 0.875 |
IQF | 0.888 |
Samples (No.) | Age (Days) | STWT (g) | WT (g) | HGWT (g) | Carcass (%) | Fillet (g) | |
---|---|---|---|---|---|---|---|
total | 98 | 592.3 | 90.2 | 771.2 | 507.7 | 65.4 b | 260.5 |
male | 52 | 592.3 | 91.4 | 803.0 | 527.7 | 65.0 a,b | 268.3 |
female | 46 | 592.2 | 88.8 | 735.2 | 485.0 | 66.0 b,c | 251.9 |
Channel | 49 | 590.4 | 96.3 | 764.2 | 490.5 | 64.3 a | 256.4 |
C-male | 26 | 590.5 | 99.6 | 793.8 | 504.4 | 63.7 a | 261.8 |
C-female | 23 | 590.3 | 92.7 | 730.8 | 474.8 | 65.0 a,b | 250.3 |
Hybrid | 49 | 594.2 | 84.0 | 778.1 | 524.8 | 66.6 c | 264.7 |
H-male | 26 | 594.2 | 83.3 | 812.2 | 551.0 | 66.3 b,c | 275.0 |
H-female | 23 | 594.2 | 84.9 | 739.6 | 495.3 | 67.0 c | 253.4 |
Moisture | Protein | Lipid | Ash | |
---|---|---|---|---|
Channel (n = 25) | 76.1 (±1.6) b | 19.7 (±1.1) b | 3.7 (±1.2) a | 1.10 (±0.07) a |
C-male (n = 13) | 76.6 (±1.5) b | 19.7 (±1.1) b | 3.3 (±1.1) a | 1.11 (±0.07) a |
C-female (n = 11) | 75.5 (±1.6) b | 19.7 (±1.2) b | 4.3 (±1.1) a | 1.10 (±0.06) a |
Hybrid (n = 25) | 74.6 (±1.4) a,b | 18.8 (±0.7) a,b | 5.8 (±1.3) b | 1.05 (±0.07) a |
H-male (n = 11) | 74.9 (±1.1) a | 18.7 (±0.8) a | 5.6 (±1.0) b | 1.07 (±0.44) a |
H-female (n = 14) | 74.4 (±1.7) a | 18.9 (±0.7) a,b | 6.0 (±1.6) b | 1.04 (±0.29) a |
Total frozen (n = 48) | 75.3 (±1.7) | 19.3 (±1.0) | 4.8 (±1.6) | 1.08 (±0.07) |
T-male (n = 24) | 75.8 (±1.5) | 19.2 (±1.1) | 4.4 (±1.5) | 1.09 (±0.06) |
T-female (n = 25) | 74.9 (±1.7) | 19.3 (±1.0) | 5.2 (±1.6) | 1.07 (±0.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bland, J.M.; Ardoin, R.; Li, C.H.; Bechtel, P.J. Instrumental Texture Differentiation of Channel (Ictalurus punctatus) and Hybrid (Channel × Blue, Ictalurus furcatus) Catfish Fillets. Foods 2022, 11, 1875. https://doi.org/10.3390/foods11131875
Bland JM, Ardoin R, Li CH, Bechtel PJ. Instrumental Texture Differentiation of Channel (Ictalurus punctatus) and Hybrid (Channel × Blue, Ictalurus furcatus) Catfish Fillets. Foods. 2022; 11(13):1875. https://doi.org/10.3390/foods11131875
Chicago/Turabian StyleBland, John M., Ryan Ardoin, Carissa H. Li, and Peter J. Bechtel. 2022. "Instrumental Texture Differentiation of Channel (Ictalurus punctatus) and Hybrid (Channel × Blue, Ictalurus furcatus) Catfish Fillets" Foods 11, no. 13: 1875. https://doi.org/10.3390/foods11131875
APA StyleBland, J. M., Ardoin, R., Li, C. H., & Bechtel, P. J. (2022). Instrumental Texture Differentiation of Channel (Ictalurus punctatus) and Hybrid (Channel × Blue, Ictalurus furcatus) Catfish Fillets. Foods, 11(13), 1875. https://doi.org/10.3390/foods11131875